
Sensor Fusion and Tracking Toolbox™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Sensor Fusion and Tracking Toolbox™ Reference Guide
© COPYRIGHT 2018 – 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2018 Online only New for Version 1.0 (Release 2018b)
March 2019 Online only Revised for Version 1.1 (Release 2019a)
September 2019 Online only Revised for Version 1.2 (Release 2019b)
March 2020 Online only Revised for Version 1.3 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

System Objects
3

Blocks
4

Apps
5

iii

Contents

Functions

1

allanvar
Allan variance

Syntax
[avar,tau] = allanvar(Omega)
[avar,tau] = allanvar(Omega,m)
[avar,tau] = allanvar(Omega,ptStr)
[avar,tau] = allanvar(___,fs)

Description
Allan variance is used to measure the frequency stability of oscillation for a sequence of data in the
time domain. It can also be used to determine the intrinsic noise in a system as a function of the
averaging time. The averaging time series τ can be specified as τ = m/fs. Here fs is the sampling
frequency of data, and m is a list of ascending averaging factors (such as 1, 2, 4, 8, …).

[avar,tau] = allanvar(Omega) returns the Allan variance avar as a function of averaging time
tau. The default averaging time tau is an octave sequence given as (1, 2, ..., 2floor{log2[(N-1)/2]}), where
N is the number of samples in Omega. If Omega is specified as a matrix, allanvar operates over the
columns of omega.

[avar,tau] = allanvar(Omega,m) returns the Allan variance avar for specific values of tau
defined by m. Since the default frequency fs is assumed to be 1, the output tau is exactly same with
m.

[avar,tau] = allanvar(Omega,ptStr) sets averaging factor m to the specified point
specification, ptStr. Since the default frequency fs is 1, the output tau is exactly equal to the
specified m. ptStr can be specified as 'octave' or 'decade'.

[avar,tau] = allanvar(___,fs) also allows you to provide the sampling frequency fs of the
input data omega in Hz. This input parameter can be used with any of the previous syntaxes.

Examples

Determine Allan Variance of Single Axis Gyroscope

Load gyroscope data from a MAT file, including the sample rate of the data in Hz. Calculate the Allan
variance.

load('LoggedSingleAxisGyroscope','omega','Fs')
[avar,tau] = allanvar(omega,'octave',Fs);

Plot the Allan variance on a loglog plot.

loglog(tau,avar)
xlabel('\tau')
ylabel('\sigma^2(\tau)')
title('Allan Variance')
grid on

1 Functions

1-2

Determine Allan Deviation at Specific Values of τ

Generate sample gyroscope noise, including angle random walk and rate random walk.

numSamples = 1e6;
Fs = 100;
nStd = 1e-3;
kStd = 1e-7;
nNoise = nStd.*randn(numSamples,1);
kNoise = kStd.*cumsum(randn(numSamples,1));
omega = nNoise+kNoise;

Calculate the Allan deviation at specific values of m = τ. The Allan deviation is the square root of the
Allan variance.

m = 2.^(9:18);
[avar,tau] = allanvar(omega,m,Fs);
adev = sqrt(avar);

Plot the Allan deviation on a loglog plot.

loglog(tau,adev)
xlabel('\tau')
ylabel('\sigma(\tau)')

 allanvar

1-3

title('Allan Deviation')
grid on

Input Arguments
Omega — Input data
N-by-1 vector | N-by-M matrix

Input data specified as an N-by-1 vector or an N-by-M matrix. N is the number of samples, and M is
the number of sample sets. If specified as a matrix, allanvar operates over the columns of Omega.
Data Types: single | double

m — Averaging factor
scalar | vector

Averaging factor, specified as a scalar or vector with ascending integer values less than (N-1)/2,
where N is the number of samples in Omega.
Data Types: single | double

ptStr — Point specification of m
'octave' (default) | 'decade'

Point specification of m, specified as 'octave' or 'decade'. Based on the value of ptStr, m is
specified as following:

1 Functions

1-4

• If ptStr is specified as 'octave', m is:

20, 21...2 log2
N − 1

2

• If ptStr is specified as 'decade', m is:

100, 101...10 log10
N − 1

2

N is the number of samples in Omega.

fs — Basic frequency of input data in Hz
scalar

Basic frequency of the input data, Omega, in Hz, specified as a positive scalar.
Data Types: single | double

Output Arguments
avar — Allan variance of input data
vector | matrix

Allan variance of input data at tau, returned as a vector or matrix.

tau — Averaging time of Allan variance
vector | matrix

Averaging time of Allan variance, returned as a vector, or a matrix.

See Also
gyroparams | imuSensor

Introduced in R2019a

 allanvar

1-5

ctrect
Constant turn-rate rectangular target motion model

Syntax
updatedstates = ctrect(states)
updatedstates = ctrect(states,dt)
updatedstates = ctrect(states,w,dt)

Description
updatedstates = ctrect(states) returns the updated rectangular states from the current
rectangular states based on the rectangular target motion model. The default time step is 1 second.

updatedstates = ctrect(states,dt) specifies the time step, dt, in seconds.

updatedstates = ctrect(states,w,dt) additionally specifies the process noise, w.

Examples

Predict Constant Turn-Rate Rectangular State

Define a rectangular state.

state = [1 2 2 30 1 4.7 1.8];

Predict the state dt = 1 second forward using the default syntax.

state = ctrect(state,0.1)

state = 1×7

 1.1731 2.1002 2.0000 30.1000 1.0000 4.7000 1.8000

Predict the state dt = 0.1 second forward without noise.

state = ctrect(state,0.1)

state = 1×7

 1.3461 2.2006 2.0000 30.2000 1.0000 4.7000 1.8000

Predict the state dt = 0.1 second forward with noise.

state = ctrect(state,0.01,0.1)

state = 1×7

 1.5189 2.3014 2.0010 30.3000 1.0010 4.7000 1.8000

1 Functions

1-6

Predict Multiple Constant Turn-Rate Rectangular States

Define a state matrix.

states = [1 3 4;-1 2 10;5 3 1.3;1 1.3 2.1;30 0 -30;4.7 3.4 4.5;1.8 2 3];

Predict the state dt = 1 second ahead.

states = ctrect(states)

states = 7×3

 5.7516 5.9992 5.2528
 0.3625 2.0681 9.7131
 5.0000 3.0000 1.3000
 31.0000 1.3000 -27.9000
 30.0000 0.0000 -30.0000
 4.7000 3.4000 4.5000
 1.8000 2.0000 3.0000

Predict the state dt = 0.1 second ahead without noise.

states = ctrect(states,0.1)

states = 7×3

 6.1732 6.2992 5.3660
 0.6311 2.0749 9.6493
 5.0000 3.0000 1.3000
 34.0000 1.3000 -30.9000
 30.0000 0.0000 -30.0000
 4.7000 3.4000 4.5000
 1.8000 2.0000 3.0000

Predict the state dt = 0.1 second ahead with noise.

states = ctrect(states,0.1*randn(2,3),0.1)

states = 7×3

 6.5805 6.5979 5.4759
 0.9216 2.0816 9.5795
 5.0054 2.9774 1.3032
 37.0009 1.3004 -33.9007
 30.0183 0.0086 -30.0131
 4.7000 3.4000 4.5000
 1.8000 2.0000 3.0000

Input Arguments
states — Current rectangular states
1-by-7 real-valued vector | 7-by-1 real-valued vector | 7-by-N real-valued matrix

 ctrect

1-7

Current rectangular states, specified as a 1-by-7 real-valued vector, 7-by-1 real-valued vector, or a 7-
by-N real-valued matrix, where N is the number of states. The seven dimensional rectangular target
state is defined as [x; y; s; θ; ω; L; W]:

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

s Speed in the heading direction m/s
θ Orientation angle of the

rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

Example: [1;2;2;30;1;4.7;1.8]
Data Types: single | double

dt — Time step
real-valued positive scalar

Time step, specified as a real-valued positive scalar in second.
Data Types: single | double

w — Process noise
real scalar | 2-by-N real-valued matrix

Process noise, specified as a 2-by-N real-valued matrix, where N is the number of states specified in
the states input. If specified as a scalar, it is expanded to a 2-by-N matrix with all elements equal to

1 Functions

1-8

the scalar. The first row of the matrix specifies the process noise in acceleration (m/s2). The second
row specifies the process noise in yaw acceleration (degrees/s2).
Data Types: single | double

Output Arguments
updatedstates — Updated states
1-by-7 real-valued vector | 7-by-1 real-valued vector | 7-by-N real-valued matrix

Updated states, specified as a 1-by-7 real-valued vector, a 7-by-1 real-valued vector, or a 7-by-N real-
valued matrix, where N is the number of states. The dimensions and setups of updatedstates
output are exactly the same as those of the states input.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctrectcorners | ctrectjac | ctrectmeas | ctrectmeasjac | gmphd | initctrectgmphd |
trackerPHD

Introduced in R2019b

 ctrect

1-9

ctrectmeas
Constant turn-rate rectangular target measurement model

Syntax
measurements = ctrectmeas(states,detections)

Description
measurements = ctrectmeas(states,detections) returns the expected measurements from
the current rectangular states and detections.

Examples

Expected Detections Using Rectangular Measurement Model

Load detections and truth generated from a rectangular target.

load('rectangularTargetDetections.mat','detections','truthState');

Generate expected detections from the target's rectangular state and actual detections using
ctrectmeas.

tgtState = [3;48;0;60;0;5;1.9];
zExp = ctrectmeas(tgtState,detections);

Set up visualization environment using theaterPlot.

theaterP = theaterPlot;
stateP = trackPlotter(theaterP,'DisplayName','State','MarkerFaceColor','g');
truthP = trackPlotter(theaterP,'DisplayName','Truth','MarkerFaceColor', 'b');
detP = detectionPlotter(theaterP,'DisplayName','Detections','MarkerFaceColor','r');
expDetP = detectionPlotter(theaterP,'DisplayName','Expected Detections','MarkerFaceColor','y');
l = legend(theaterP.Parent);
l.AutoUpdate = 'on';
hold on;
assignP = plot(theaterP.Parent,NaN,NaN,'-.','DisplayName','Association');

Plot actual and expected detections.

inDets = [detections{:}];
inMeas = horzcat(inDets.Measurement);
detP.plotDetection(inMeas');

zExpPlot = reshape(zExp,3,[]);
expDetP.plotDetection(zExpPlot');

Plot association lines.

zLines = nan(2,numel(detections)*3);
zLines(1,1:3:end) = zExpPlot(1,:);

1 Functions

1-10

zLines(2,1:3:end) = zExpPlot(2,:);
zLines(1,2:3:end) = inMeas(1,:);
zLines(2,2:3:end) = inMeas(2,:);
assignP.XData = zLines(1,:);
assignP.YData = zLines(2,:);

Plot truth and state.

truthPos = [truthState(1:2);0];
truthDims = struct('Length',truthState(6),...
 'Width',truthState(7),...
 'Height', 0,...
 'OriginOffset', [0 0 0]);
truthOrient = quaternion([truthState(4) 0 0],'eulerd', 'ZYX','frame');
truthP.plotTrack(truthPos',truthDims,truthOrient);

statePos = [tgtState(1:2);0];
stateDims = struct('Length',tgtState(6),...
 'Width',tgtState(7),...
 'Height',0,...
 'OriginOffset', [0 0 0]);
stateOrient = quaternion([tgtState(4) 0 0],'eulerd', 'ZYX','frame');
stateP.plotTrack(statePos', stateDims, stateOrient);

 ctrectmeas

1-11

Input Arguments
states — Current rectangular states
7-by-N real-valued matrix

Current rectangular states, specified as a 7-by-N real-valued matrix, where N is the number of states.
The seven-dimensional rectangular target state is defined as [x; y; s; θ; ω; L; W]:

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

s Speed in the heading direction m/s
θ Orientation angle of the

rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

Example: [1;2;2;30;1;4.7;1.8]
Data Types: single | double

detections — Detections of target
1-by-M cell array of objectDetection objects

Detections of target, specified as a 1-by-M cell array of objectDetection objects. The
MeasurementParameters property (that specifies the transformation from the state-space to
measurement-space) for each object must be the same for all the detections in the cell array.

1 Functions

1-12

Output Arguments
measurements — Expected measurements
P-by-N-by-M real-valued array

Expected measurements, returned as a P-by-N-by-M real-valued array. P is the dimension of each
measurement specified in the detections input, N is the number of states specified in the states
input, and M is the number of detections specified in the detections input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctrect | ctrectcorners | ctrectjac | ctrectmeasjac | gmphd | initctrectgmphd |
trackerPHD

Introduced in R2019b

 ctrectmeas

1-13

ctrectmeasjac
Jacobian of constant turn-rate rectangular target measurement model

Syntax
jacobian = ctrectmeasjac(state,detections)

Description
jacobian = ctrectmeasjac(state,detections) returns the Jacobian based on the current
rectangular target state and detections.

Examples

Generate Jacobian for Rectangular Target Model

Load detections generated from a rectangular target.

load('rectangularTargetDetections.mat','detections');

Calculate Jacobian based on the rectangular state of the target and detections.

tgtState = [3;48;0;60;0;5;1.9];
jac = ctrectmeasjac(tgtState,detections);
jac1 = jac(:,:,1)

jac1 = 3×7

 1.0000 0 0 0.0461 0 -0.2500 0.4330
 0 1.0000 0 -0.0075 0 -0.4330 -0.2500
 0 0 0 0 0 0 0

Input Arguments
state — Current rectangular target state
7-by-1 real-valued vector

Current rectangular target state, specified as a 7-by-1 real-valued vector. The seven dimensional
rectangular target state is defined as [x; y; s; θ; ω; L; W]. The meaning of these variables and their
units are:

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

1 Functions

1-14

s Speed in the heading direction m/s
θ Orientation angle of the

rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

Example: [1;2;2;30;1;4.7;1.8]
Data Types: single | double

detections — Detections of target
1-by-M cell array of objectDetection objects

Detections of target, specified as a 1-by-M cell array of objectDetection objects. The
MeasurementParameters property (that specifies the transformation from the state-space to
measurement-space) for each object must be the same for all the detections in the cell array.

Output Arguments
jacobian — Jacobian of measurement model
M-by-7-by-D real-valued array

Jacobian of measurement model, returned as a M-by-7-by-D real-valued array. M is the dimension of
each measurement specified in detections, and D is the number of detections specified in the
detections input.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 ctrectmeasjac

1-15

See Also
ctrect | ctrectcorners | ctrectjac | ctrectmeas | gmphd | initctrectgmphd | trackerPHD

Introduced in R2019b

1 Functions

1-16

ctrectjac
Jacobian of constant turn-rate rectangular target motion model

Syntax
Jx = ctrectjac(state)
Jx = ctrectjac(state,dt)
[Jx,Jw] = ctrectjac(state,w,dt)

Description
Jx = ctrectjac(state) returns the Jacobian matrix of the constant turn-rate rectangular motion
model with respect to the state vector. The default time step is 1 second.

Jx = ctrectjac(state,dt) specifies the time step dt in seconds.

[Jx,Jw] = ctrectjac(state,w,dt) also specifies the process noise w.

Examples

Jacobian of Constant Turn-Rate Rectangular Motion Model

Define a state vector for the model.

state = [1;2;2;30;1;4.7;1.8];

Compute the Jacobian. dt = 1 second.

jac = ctrectjac(state)

jac = 7×7

 1.0000 0 0.8616 -0.0177 -0.0089 0 0
 0 1.0000 0.5075 0.0301 0.0150 0 0
 0 0 1.0000 0 0 0 0
 0 0 0 1.0000 1.0000 0 0
 0 0 0 0 1.0000 0 0
 0 0 0 0 0 1.0000 0
 0 0 0 0 0 0 1.0000

Compute the Jacobian. dt = 0.1 second without noise.

jac = ctrectjac(state,0.1)

jac = 7×7

 1.0000 0 0.0866 -0.0017 -0.0001 0 0
 0 1.0000 0.0501 0.0030 0.0002 0 0
 0 0 1.0000 0 0 0 0
 0 0 0 1.0000 0.1000 0 0

 ctrectjac

1-17

 0 0 0 0 1.0000 0 0
 0 0 0 0 0 1.0000 0
 0 0 0 0 0 0 1.0000

Compute the Jacobian. dt = 0.1 second with noise.

jac = ctrectjac(state,0.01,0.1)

jac = 7×7

 1.0000 0 0.0866 -0.0017 -0.0001 0 0
 0 1.0000 0.0501 0.0030 0.0002 0 0
 0 0 1.0000 0 0 0 0
 0 0 0 1.0000 0.1000 0 0
 0 0 0 0 1.0000 0 0
 0 0 0 0 0 1.0000 0
 0 0 0 0 0 0 1.0000

Input Arguments
state — Current state
1-by-7 real-valued vector

Current state, specified as a 1-by-7 real-valued vector. The sate of the constant-turn rectangular
target model is [x; y; s; θ; ω; L; W]. The meaning of these variables and their units are:

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

s Speed in the heading direction m/s
θ Orientation angle of the

rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

1 Functions

1-18

Example: [1;2;2;30;1;4.7;1.8]
Data Types: single | double

dt — Time step
real-valued positive scalar

Time step, specified as a real-valued positive scalar in second.
Data Types: single | double

w — Process noise
real scalar | 2-element real-valued vector

Process noise, specified as a 2-element real-valued vector. The first element specifies the process
noise in linear acceleration (m/s2). The second element specifies the process noise in yaw acceleration
(degrees/s2).
Data Types: single | double

Output Arguments
Jx — Jacobian matrix with respect to state
7-by-7 matrix

Jacobian matrix with respect to state, returned as a 7-by-7 matrix.
Data Types: double

Jw — Jacobian with respect to process noise
7-by-2 matrix

Jacobian with respect to process noise, returned as a 7-by-2 matrix.
Data Types: double

 ctrectjac

1-19

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctrect | ctrectcorners | ctrectmeas | ctrectmeasjac | gmphd | initctrectgmphd |
trackerPHD

Introduced in R2019b

1 Functions

1-20

jpdaEvents
Feasible joint events for trackerJPDA

Syntax
FJE = jpdaEvents(validationMatrix)

Description
FJE = jpdaEvents(validationMatrix) returns the feasible joint events, FJE, based on the
validation matrix. A validation matrix describes the possible associations between detections and
tracks, whereas a feasible joint event for multi-object tracking is one realization of the associations
between detections and tracks.

Examples

Generate Feasible Joint Events

Define an arbitrary validation matrix for five measurements and six tracks.

 M = [1 1 1 1 1 0 1
 1 0 1 1 0 0 0
 1 0 0 0 1 1 0
 1 1 1 1 0 0 0
 1 1 1 1 1 1 1];

Generate all feasible joint events and count the total number.

 FJE = jpdaEvents(M);
 nFJE = size(FJE,3);

Display a few of the feasible joint events.

 disp([num2str(nFJE) ' feasible joint event matrices were generated.'])

574 feasible joint event matrices were generated.

 toSee = [1:round(nFJE/5):nFJE, nFJE];
 for ii = toSee
 disp("Feasible joint event matrix #" + ii + ":")
 disp(FJE(:,:,ii))
 end

Feasible joint event matrix #1:
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0

Feasible joint event matrix #116:

 jpdaEvents

1-21

 0 0 1 0 0 0 0
 1 0 0 0 0 0 0
 0 0 0 0 1 0 0
 0 1 0 0 0 0 0
 0 0 0 1 0 0 0

Feasible joint event matrix #231:
 0 0 0 0 1 0 0
 0 0 1 0 0 0 0
 0 0 0 0 0 1 0
 1 0 0 0 0 0 0
 0 0 0 0 0 0 1

Feasible joint event matrix #346:
 0 0 0 0 0 0 1
 0 0 0 1 0 0 0
 0 0 0 0 1 0 0
 1 0 0 0 0 0 0
 0 1 0 0 0 0 0

Feasible joint event matrix #461:
 1 0 0 0 0 0 0
 0 0 1 0 0 0 0
 1 0 0 0 0 0 0
 0 0 0 1 0 0 0
 0 0 0 0 0 0 1

Feasible joint event matrix #574:
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 1 0 0 0 0 0 0
 0 0 0 0 0 0 1

Input Arguments
validationMatrix — Validation Matrix
m-by-(n+1) matrix

Validation matrix, specified as an m-by-(n+1) matrix, where m is the number of detections within a
cluster of a sensor scan, and n is the number of tracks maintained in the tracker. The validation
matrix uses the first column to account for the possibility that each detection is clutter or false alarm,
which is commonly referred to as "Track 0" or T0. The validation matrix is a binary matrix listing all
possible detections-to-track associations. If it is possible to assign track Ti to detection Dj, then the (j,
i+1) entry of the validation matrix is 1. Otherwise, the entry is 0.
Data Types: logical

Output Arguments
FJE — Feasible joint events
m-by-(n+1)-by-p array

Feasible joint events, specified as an m-by-(n+1)-by-p array, where m is the number of detections
within a cluster of a sensor scan, n is the number of tracks maintained in the tracker, and p is the

1 Functions

1-22

total number of feasible joint events. Each page (an m-by-(n+1) matrix) of FJE corresponds to one
possible association between all the tracks and detections. The feasible joint event matrix on each
page satisfies:

• The matrix has exactly one "1" value per row.
• Except for the first column, which maps to clutter, there can be at most one "1" per column.

For more details on feasible joint events, see “Feasible Joint Events” on page 1-23.
Data Types: logical

More About
Feasible Joint Events

In the typical workflow for a tracking system, the tracker needs to determine if a detection can be
associated with any of the existing tracks. If the tracker only maintains one track, the assignment can
be done by evaluating the validation gate around the predicted measurement and deciding if the
measurement falls within the validation gate. In the measurement space, the validation gate is a
spatial boundary, such as a 2-D ellipse or a 3-D ellipsoid, centered at the predicted measurement. The
validation gate is defined using the probability information (state estimation and covariance, for
example) of the existing track, such that the correct or ideal detections have high likelihood (97%
probability, for example) of falling within this validation gate.

However, if a tracker maintains multiple tracks, the data association process becomes more
complicated, because one detection can fall within the validation gates of multiple tracks. For
example, in the following figure, tracks T1 and T2 are actively maintained in the tracker, and each of
them has its own validation gate. Since the detection D2 is in the intersection of the validation gates
of both T1 and T2, the two tracks (T1 and T2) are connected and form a cluster. A cluster is a set of
connected tracks and their associated detections.

To represent the association relationship in a cluster, the validation matrix is commonly used. Each
row of the validation matrix corresponds to a detection while each column corresponds to a track. To
account for the eventuality of each detection being clutter, a first column is added and usually
referred to as "Track 0" or T0. If detection Di is inside the validation gate of track Dj, then the (j, i+1)
entry of the validation matrix is 1. Otherwise, it is zero. For the cluster shown in the figure, the
validation matrix Ω is

Ω =
1 1 0
1 1 1
1 0 1

 jpdaEvents

1-23

Note that all the elements in the first column of Ω are 1, because any detection can be clutter or false
alarm. One important step in the logic of joint probabilistic data association (JPDA) is to obtain all the
feasible independent joint events in a cluster. Two assumptions for the feasible joint events are:

• A detection cannot be emitted by more than one track.
• A track cannot be detected more than once by the sensor during a single scan.

Based on these two assumptions, feasible joint events (FJEs) can be formulated. Each FJE is mapped
to an FJE matrix Ωp from the initial validation matrix Ω. For example, with the validation matrix Ω,
eight FJE matrices can be obtained:

Ω1 =
1 0 0
1 0 0
1 0 0

, Ω2 =
0 1 0
1 0 0
1 0 0

, Ω3 =
1 0 0
0 1 0
1 0 0

, Ω4 =
1 0 0
0 0 1
1 0 0

Ω5 =
0 1 0
0 0 1
1 0 0

, Ω6 =
1 0 0
1 0 0
0 0 1

, Ω7 =
0 1 0
1 0 0
0 0 1

, Ω8 =
1 0 0
0 1 0
0 0 1

As a direct consequence of the two assumptions, the Ωp matrices have exactly one "1" value per row.
Also, except for the first column which maps to clutter, there can be at most one "1" per column.
When the number of connected tracks grows in a cluster, the number of FJE increases rapidly. The
jpdaEvents function uses an efficient depth-first search algorithm to generate all the feasible joint
event matrices.

References
[1] Zhou, Bin, and N. K. Bose. "Multitarget tracking in clutter: Fast algorithms for data association."

IEEE Transactions on aerospace and electronic systems 29, no. 2 (1993): 352-363.

[2] Fisher, James L., and David P. Casasent. "Fast JPDA multitarget tracking algorithm." Applied optics
28, no. 2 (1989): 371-376.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This function only supports double precision code generation.

See Also
trackerJPDA

Introduced in R2019a

1 Functions

1-24

insfilter
Create inertial navigation filter

Syntax
filter = insfilter
filter = insfilter('ReferenceFrame',RF)

Description
filter = insfilter returns an insfilterMARG inertial navigation filter object that estimates
pose based on accelerometer, gyroscope, GPS, and magnetometer measurements. See
insfilterMARG for more details.

filter = insfilter('ReferenceFrame',RF) returns an insfilterMARG inertial navigation
filter object that estimates pose relative to a reference frame specified by RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'. See insfilterMARG for
more details.

Examples

Create Default INS Filter

The default INS filter is the insfilterMARG object. Call insfilter with no input arguments to
create the default INS filter.

filter = insfilter

filter =
 insfilterMARG with properties:

 IMUSampleRate: 100 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 State: [22x1 double]
 StateCovariance: [22x22 double]

 Multiplicative Process Noise Variances
 GyroscopeNoise: [1e-09 1e-09 1e-09] (rad/s)²
 AccelerometerNoise: [0.0001 0.0001 0.0001] (m/s²)²
 GyroscopeBiasNoise: [1e-10 1e-10 1e-10] (rad/s)²
 AccelerometerBiasNoise: [0.0001 0.0001 0.0001] (m/s²)²

 Additive Process Noise Variances
 GeomagneticVectorNoise: [1e-06 1e-06 1e-06] uT²
 MagnetometerBiasNoise: [0.1 0.1 0.1] uT²

 insfilter

1-25

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter | insfilterAsync | insfilterErrorState | insfilterMARG |
insfilterNonholonomic

Topics
“Estimate Position and Orientation of a Ground Vehicle”

Introduced in R2018b

1 Functions

1-26

ecompass
Orientation from magnetometer and accelerometer readings

Syntax
orientation = ecompass(accelerometerReading,magnetometerReading)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat)
orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF)

Description
orientation = ecompass(accelerometerReading,magnetometerReading) returns a
quaternion that can rotate quantities from a parent (NED) frame to a child (sensor) frame.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat) specifies the orientation format as quaternion or rotation matrix.

orientation = ecompass(accelerometerReading,magnetometerReading,
orientationFormat,'ReferenceFrame',RF) also allows you to specify the reference frame RF
of the orientation output. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The
default value is 'NED'.

Examples

Determine Declination of Boston

Use the known magnetic field strength and proper acceleration of a device pointed true north in
Boston to determine the magnetic declination of Boston.

Define the known acceleration and magnetic field strength in Boston.

magneticFieldStrength = [19.535 -5.109 47.930];
properAcceleration = [0 0 9.8];

Pass the magnetic field strength and acceleration to the ecompass function. The ecompass function
returns a quaternion rotation operator. Convert the quaternion to Euler angles in degrees.

q = ecompass(properAcceleration,magneticFieldStrength);
e = eulerd(q,'ZYX','frame');

The angle, e, represents the angle between true north and magnetic north in Boston. By convention,
magnetic declination is negative when magnetic north is west of true north. Negate the angle to
determine the magnetic declination.

magneticDeclinationOfBoston = -e(1)

magneticDeclinationOfBoston = -14.6563

 ecompass

1-27

Return Rotation Matrix

The ecompass function fuses magnetometer and accelerometer data to return a quaternion that,
when used within a quaternion rotation operator, can rotate quantities from a parent (NED) frame to
a child frame. The ecompass function can also return rotation matrices that perform equivalent
rotations as the quaternion operator.

Define a rotation that can take a parent frame pointing to magnetic north to a child frame pointing to
geographic north. Define the rotation as both a quaternion and a rotation matrix. Then, convert the
quaternion and rotation matrix to Euler angles in degrees for comparison.

Define the magnetic field strength in microteslas in Boston, MA, when pointed true north.

m = [19.535 -5.109 47.930];
a = [0 0 9.8];

Determine the quaternion and rotation matrix that is capable of rotating a frame from magnetic north
to true north. Display the results for comparison.

q = ecompass(a,m);
quaterionEulerAngles = eulerd(q,'ZYX','frame')

quaterionEulerAngles = 1×3

 14.6563 0 0

r = ecompass(a,m,'rotmat');
theta = -asin(r(1,3));
psi = atan2(r(2,3)/cos(theta),r(3,3)/cos(theta));
rho = atan2(r(1,2)/cos(theta),r(1,1)/cos(theta));
rotmatEulerAngles = rad2deg([rho,theta,psi])

rotmatEulerAngles = 1×3

 14.6563 0 0

Determine Gravity Vector

Use ecompass to determine the gravity vector based on data from a rotating IMU.

Load the inertial measurement unit (IMU) data.

load 'rpy_9axis.mat' sensorData Fs

Determine the orientation of the sensor body relative to the local NED frame over time.

orientation = ecompass(sensorData.Acceleration,sensorData.MagneticField);

To estimate the gravity vector, first rotate the accelerometer readings from the sensor body frame to
the NED frame using the orientation quaternion vector.

1 Functions

1-28

gravityVectors = rotatepoint(orientation,sensorData.Acceleration);

Determine the gravity vector as an average of the recovered gravity vectors over time.

gravityVectorEstimate = mean(gravityVectors,1)

gravityVectorEstimate = 1×3

 0.0000 -0.0000 10.2102

Track Spinning Platform

Fuse modeled accelerometer and gyroscope data to track a spinning platform using both idealized
and realistic data.

Generate Ground-Truth Trajectory

Describe the ground-truth orientation of the platform over time. Use the kinematicTrajectory
System object™ to create a trajectory for a platform that has no translation and spins about its z-axis.

duration = 12;
fs = 100;
numSamples = fs*duration;

accelerationBody = zeros(numSamples,3);

angularVelocityBody = zeros(numSamples,3);
zAxisAngularVelocity = [linspace(0,4*pi,4*fs),4*pi*ones(1,4*fs),linspace(4*pi,0,4*fs)]';
angularVelocityBody(:,3) = zAxisAngularVelocity;

trajectory = kinematicTrajectory('SampleRate',fs);

[~,orientationNED,~,accelerationNED,angularVelocityNED] = trajectory(accelerationBody,angularVelocityBody);

Model Receiving IMU Data

Use an imuSensor System object to mimic data received from an IMU that contains an ideal
magnetometer and an ideal accelerometer.

IMU = imuSensor('accel-mag','SampleRate',fs);
[accelerometerData,magnetometerData] = IMU(accelerationNED, ...
 angularVelocityNED, ...
 orientationNED);

Fuse IMU Data to Estimate Orientation

Pass the accelerometer data and magnetometer data to the ecompass function to estimate
orientation over time. Convert the orientation to Euler angles in degrees and plot the result.

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');

timeVector = (0:numSamples-1).'/fs;

figure(1)

 ecompass

1-29

plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Ideal IMU')

Repeat Experiment with Realistic IMU Sensor Model

Modify parameters of the IMU System object to approximate realistic IMU sensor data. Reset the IMU
and then call it with the same ground-truth acceleration, angular velocity, and orientation. Use
ecompass to fuse the IMU data and plot the results.

IMU.Accelerometer = accelparams(...
 'MeasurementRange',20, ...
 'Resolution',0.0006, ...
 'ConstantBias',0.5, ...
 'AxesMisalignment',2, ...
 'NoiseDensity',0.004, ...
 'BiasInstability',0.5);
IMU.Magnetometer = magparams(...
 'MeasurementRange',200, ...
 'Resolution',0.01);
reset(IMU)

[accelerometerData,magnetometerData] = IMU(accelerationNED,angularVelocityNED,orientationNED);

orientation = ecompass(accelerometerData,magnetometerData);
orientationEuler = eulerd(orientation,'ZYX','frame');

1 Functions

1-30

figure(2)
plot(timeVector,orientationEuler)
legend('z-axis','y-axis','x-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation from Realistic IMU')

Input Arguments
accelerometerReading — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in sensor body coordinate system in m/s2, specified as an N-by-3 matrix. The
columns of the matrix correspond to the x-, y-, and z-axes of the sensor body. The rows in the matrix,
N, correspond to individual samples. The accelerometer readings are normalized before use in the
function.
Data Types: single | double

magnetometerReading — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in sensor body coordinate system in µT, specified as an N-by-3 matrix. The
columns of the matrix correspond to the x-, y-, and z-axes of the sensor body. The rows in the matrix,
N, correspond to individual samples. The magnetometer readings are normalized before use in the
function.

 ecompass

1-31

Data Types: single | double

orientationFormat — Format used to describe orientation
'quaternion' (default) | 'rotmat'

Format used to describe orientation, specified as 'quaternion' or 'rotmat'.
Data Types: char | string

Output Arguments
orientation — Orientation that rotates quantities from global coordinate system to sensor
body coordinate system
N-by-1 vector of quaternions (default) | 3-by-3-by-N array

Orientation that can rotate quantities from a global coordinate system to a body coordinate system,
returned as a vector of quaternions or an array. The size and type of the orientation depends on
the format used to describe orientation:

• 'quaternion' –– N-by-1 vector of quaternions with the same underlying data type as the input
• 'rotmat' –– 3-by-3-by-N array the same data type as the input

Data Types: quaternion | single | double

Algorithms
The ecompass function returns a quaternion or rotation matrix that can rotate quantities from a
parent (NED for example) frame to a child (sensor) frame. For both output orientation formats, the
rotation operator is determined by computing the rotation matrix.

The rotation matrix is first calculated with an intermediary:

R = (a × m) × a a × m a

and then normalized column-wise. a and m are the accelerometerReading input and the
magnetometerReading input, respectively.

To understand the rotation matrix calculation, consider an arbitrary point on the Earth and its
corresponding local NED frame. Assume a sensor body frame, [x,y,z], with the same origin.

1 Functions

1-32

Recall that orientation of a sensor body is defined as the rotation operator (rotation matrix or
quaternion) required to rotate a quantity from a parent (NED) frame to a child (sensor body) frame:

R pparent = pchild

where

• R is a 3-by-3 rotation matrix, which can be interpreted as the orientation of the child frame.
• pparent is a 3-by-1 vector in the parent frame.
• pchild is a 3-by-1 vector in the child frame.

For a stable sensor body, an accelerometer returns the acceleration due to gravity. If the sensor body
is perfectly aligned with the NED coordinate system, all acceleration due to gravity is along the z-
axis, and the accelerometer reads [0 0 1]. Consider the rotation matrix required to rotate a quantity
from the NED coordinate system to a quantity indicated by the accelerometer.

 ecompass

1-33

r11 r21 r31
r12 r22 r32
r13 r23 r33

0
0
1

=
a1
a2
a3

The third column of the rotation matrix corresponds to the accelerometer reading:

r31
r32
r33

=
a1
a2
a3

A magnetometer reading points toward magnetic north and is in the N-D plane. Again, consider a
sensor body frame aligned with the NED coordinate system.

By definition, the E-axis is perpendicular to the N-D plane, therefore N ⨯ D = E, within some
amplitude scaling. If the sensor body frame is aligned with NED, both the acceleration vector from
the accelerometer and the magnetic field vector from the magnetometer lie in the N-D plane.
Therefore m ⨯ a = y, again with some amplitude scaling.

Consider the rotation matrix required to rotate NED to the child frame, [x y z].

r11 r21 r31
r12 r22 r32
r13 r23 r33

0
1
0

=
a1
a2
a3

×
m1
m2
m3

The second column of the rotation matrix corresponds to the cross product of the accelerometer
reading and the magnetometer reading:

1 Functions

1-34

r21
r22
r23

=
a1
a2
a3

×
m1
m2
m3

By definition of a rotation matrix, column 1 is the cross product of columns 2 and 3:

r11
r12
r13

=
r21
r22
r23

×
r31
r32
r33

= a × m × a

Finally, the rotation matrix is normalized column-wise:

Ri j =
Ri j

∑
i = 1

3
Ri j

2
, ∀ j

Note The ecompass algorithm uses magnetic north, not true north, for the NED coordinate system.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter | quaternion

Topics
“Determine Orientation Using Inertial Sensors”

Introduced in R2018b

 ecompass

1-35

https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs

magcal
Magnetometer calibration coefficients

Syntax
[A,b,expmfs] = magcal(D)
[A,b,expmfs] = magcal(D,fitkind)

Description
[A,b,expmfs] = magcal(D) returns the coefficients needed to correct uncalibrated
magnetometer data D.

To produce the calibrated magnetometer data C, use equation C = (D-b)*A. The calibrated data C
lies on a sphere of radius expmfs.

[A,b,expmfs] = magcal(D,fitkind) constrains the matrix A to be the type specified by
fitkind. Use this syntax when only the soft- or hard-iron effect needs to be corrected.

Examples

Correct Data Lying on Ellipsoid

Generate uncalibrated magnetometer data lying on an ellipsoid.

c = [-50; 20; 100]; % ellipsoid center
r = [30; 20; 50]; % semiaxis radii

[x,y,z] = ellipsoid(c(1),c(2),c(3),r(1),r(2),r(3),20);
D = [x(:),y(:),z(:)];

Correct the magnetometer data so that it lies on a sphere. The option for the calibration is set by
default to 'auto'.

[A,b,expmfs] = magcal(D); % calibration coefficients
expmfs % Dipaly expected magnetic field strength in uT

expmfs = 31.0723

C = (D-b)*A; % calibrated data

Visualize the uncalibrated and calibrated magnetometer data.

figure(1)
plot3(x(:),y(:),z(:),'LineStyle','none','Marker','X','MarkerSize',8)
hold on
grid(gca,'on')
plot3(C(:,1),C(:,2),C(:,3),'LineStyle','none','Marker', ...
 'o','MarkerSize',8,'MarkerFaceColor','r')
axis equal
xlabel('uT')

1 Functions

1-36

ylabel('uT')
zlabel('uT')
legend('Uncalibrated Samples', 'Calibrated Samples','Location', 'southoutside')
title("Uncalibrated vs Calibrated" + newline + "Magnetometer Measurements")
hold off

Input Arguments
D — Raw magnetometer data
N-by-3 matrix (default)

Input matrix of raw magnetometer data, specified as a N-by-3 matrix. Each column of the matrix
corresponds to the magnetometer measurements in the first, second and third axes, respectively.
Each row of the matrix corresponds to a single three-axis measurement.
Data Types: single | double

fitkind — Matrix output type
'auto' (default) | 'eye' | 'diag' | 'sym'

Matrix type for output A. The matrix type of A can be constrained to:

• 'eye' – identity matrix
• 'diag' – diagonal

 magcal

1-37

• 'sym' – symmetric
• 'auto' – whichever of the previous options gives the best fit

Output Arguments
A — Correction matrix for soft-iron effect
3-by-3 matrix

Correction matrix for the soft-iron effect, returned as a 3-by-3 matrix.

b — Correction vector for hard-iron effect
3-by-1 vector

Correction vector for the hard-iron effect, returned as a 3-by-1 array.

expmfs — Expected magnetic field strength
scalar

Expected magnetic filed strength, returned as a scalar.

More About
Soft- and Hard-Iron Effects

Because a magnetometer usually rotates through a full range of 3-D rotation, the ideal measurements
from a magnetometer should form a perfect sphere centered at the origin if the magnetic field is
unperturbed. However, due to distorting magnetic fields from the sensor circuit board and the
surrounding environment, the spherical magnetic measurements can be perturbed. In general, two
effects exist.

1 The soft-iron effect is described as the distortion of the ellipsoid from a sphere and the tilt of the
ellipsoid, as shown in the left figure. This effect is caused by disturbances that influence the
magnetic field but may not generate their own magnetic field. For example, metals such as nickel
and iron can cause this kind of distortion.

2 The hard-iron effect is described as the offset of the ellipsoid center from the origin. This effect is
produced by materials that exhibit a constant, additive field to the earth's magnetic field. This
constant additive offset is in addition to the soft-iron effect as shown in the figure on the right.

The underlying algorithm in magcal determines the best-fit ellipsoid to the raw sensor readings and
attempts to "invert" the ellipsoid to produce a sphere. The goal is to generate a correction matrix A to

1 Functions

1-38

account for the soft-iron effect and a vector b to account for the hard-iron effect. The three output
options, 'eye', 'diag' and 'sym' correspond to three parameter-solving algorithms, and the 'auto' option
chooses among these three options to give the best fit.

References
[1] Ozyagcilar, T. "Calibrating an eCompass in the Presence of Hard and Soft-iron Interference."

Freescale Semiconductor Ltd. 1992, pp. 1-17.

See Also
Classes
magparams

System Objects
imuSensor

Introduced in R2019a

 magcal

1-39

monteCarloRun
Monte Carlo realization of tracking scenario

Syntax
recordings = monteCarloRun(scenario,numRuns)
recordings = monteCarloRun(scenario,numRuns,Name,Value)
[recordings,rngs] = monteCarloRun(___)

Description
recordings = monteCarloRun(scenario,numRuns) runs a tracking scenario multiple times and
saves the running recording of every run. Each run, called a realization of the scenario, is with a
different random seed.

recordings = monteCarloRun(scenario,numRuns,Name,Value) specifies options using one
or more name-value pair arguments. Enclose each Name in quotes.

[recordings,rngs] = monteCarloRun(___) also returns the random number generator values
at the beginning of each realization run.

Examples

Run Scenario Twice with Automatic Random Seeds

Load a prerecorded tracking scenario.

 load ATCScenario.mat scenario

Execute two Monte Carlo runs and display the running time.

 tic
 recordings = monteCarloRun(scenario, 2);
 disp("Time to run the scenarios: " + toc + " sec")

Time to run the scenarios: 140.6455 sec

Run the Monte Carlo simulations again using parallel computing.

 tic
 recordings = monteCarloRun(scenario, 2, 'UseParallel', true);
 disp("Time to run the scenarios in parallel: " + toc + " sec")

Time to run the scenarios in parallel: 72.3553 sec

Input Arguments
scenario — Tracking scenario
M-element array of trackingScenario objects | M-element cell array of trackingScneario
objects

1 Functions

1-40

Tracking scenario, specified as an M-element array of trackingScenario objects or an M-element
cell array of trackingScenario objects.

numRuns — Number of Monte Carlo runs
positive integer

Numbers of Monte Carlo runs, specified as a positive integer.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: monteCarloRun(sc,3,'UseParrellel',false)

UseParallel — Enable parallel computing
false (default) | true

Enable parallel computing, specified as true or false. Using parallel computing requires a Parallel
Computing Toolbox™ license and an open parallel pool.

InitialSeeds — Initial random seeds
integer in [0, 2^32-1] | numRuns-element array of integers in [0, 2^32-1]

Initial random seeds for obtaining repeatable results, specified as an integer in [0, 2^32-1] or an
array of integers in [0, 2^32-1]. If specified as an integer, an array of seed values is randomly
generated using the integer as an initial seed. If unspecified, the function uses the current random
number generator to randomly generate an array of initial seeds.

Output Arguments
recordings — Monte Carlo recordings of tracking scenario
M-by-numRuns array of trackingScenarioRecording objects

Monte Carlo recordings of a tracking scenario, returned as a M-by-numRuns array of
trackingScenarioRecording objects.

rngs — Random number generator values
M-by-numRuns array of structures

Random number generator values, returned as a M-by-numRuns array of structures. The fields of
each structure are the same as the output of the rng function.

See Also
rng | trackingScenario | trackingScenarioRecording

Introduced in R2020a

 monteCarloRun

1-41

partitionDetections
Partition detections based on Mahalanobis distance

Syntax
partitions = partitionDetections(detections)
partitions = partitionDetections(detections,tLower,tUpper)
partitions = partitionDetections(detections,tLower,tUpper,'MaxNumPartitions',
maxNumber)
partitions = partitionDetections(detections,allThresholds)

Description
Using multiple distance thresholds, the function separates detections into different detection cells
based on their relative Mahalanobis distances and reports all the possible partitions. A partition of a
set of detections is defined as a division of these detections into nonempty mutually exclusive
detection cells. A detection cell is a group of detections whose distance to at least one other detection
in the cell is less than the distance threshold. In other words, two detections belong to the same
detection cell if their distance is less than the distance threshold.

partitions = partitionDetections(detections) returns possible partitions from
detections, using distance partitioning algorithm. By default, the function considers all real value
Mahalanobis distance thresholds between 0.5 and 6.25.

partitions = partitionDetections(detections,tLower,tUpper) allows you to specify the
lower and upper bounds of the distance thresholds, tLower and tUpper.

partitions = partitionDetections(detections,tLower,tUpper,'MaxNumPartitions',
maxNumber) allows you to specify the maximum number of allowed partitions, maxNumber, in
addition to the lower and upper bounds of the distance thresholds, tLower and tUpper.

partitions = partitionDetections(detections,allThresholds) allows you to specify the
exact thresholds considered for partition.

Examples

Generate Partition from Object Detection

Generate 2-D detections using objectDetection.

rng(2018); % For reproducible results
detections = cell(10,1);
for i = 1:numel(detections)
 id = randi([1 5]);
 detections{i} = objectDetection(0,[id;id] + 0.1*randn(2,1));
 detections{i}.MeasurementNoise = 0.01*eye(2);
end

Extract and display generated position measurements.

1 Functions

1-42

d = [detections{:}];
measurements = [d.Measurement];

figure()
plot(measurements(1,:),measurements(2,:),'x','MarkerSize',10,'MarkerEdgeColor','b')
title('Measurements')
xlabel('x')
ylabel('y')

Generate partitions from the detections and count the number of partitions.

partitions = partitionDetections(detections);
numPartitions = size(partitions,2);

Visualize the partitions. Each color represents a detection cell.

figure()
for i = 1:numPartitions
 numCells = max(partitions(:,i));
 subplot(3,2,i);
 for k = 1:numCells
 ids = partitions(:,i) == k;
 plot(measurements(1,ids),measurements(2,ids),'.','MarkerSize',15);
 hold on;
 end
 title(['Partition ',num2str(i),' (',num2str(k),' Detection cells)']);
end

 partitionDetections

1-43

Input Arguments
detections — Object detections
N-element cell array

Object detections, specified as an N-element cell array of objectDetection objects, where N is the
number of detections. You can create detections directly, or you can obtain detections from the
outputs of sensor objects, such as radarSensor, monostaticRadarSensor, irSensor, and
sonarSensor.
Data Types: cell

tLower — Lower bound of distance thresholds
scalar

Lower bound of distance thresholds, specified as a scalar. This argument sets the lower bound of the
Mahalanobis distance thresholds considered for partition.
Example: 0.05
Data Types: double

tUpper — Upper bound of distance thresholds
scalar

1 Functions

1-44

Upper bound of distance thresholds, specified as a scalar. This argument sets the upper bound of the
Mahalanobis distance thresholds considered for partition.
Example: 0.98
Data Types: double

maxNumber — Maximum number of allowed partitions
positive integer

Maximum number of allowed partitions, specified as a positive integer.
Example: 20
Data Types: double

allThresholds — All thresholds for partitions
M-element vector

All thresholds for partitions, specified as an M element vector. The function calculates partitions
based on each threshold value provided in allThresholds. Note that multiple thresholds can result
in the same partition, and the function output partitions, given as an N-by-Q matrix with Q ≤ M,
only contains unique partitions.
Example: [0.1;0.2;0.35;0.4]
Data Types: double

Output Arguments
partitions — Partitions of detections
N-by-Q matrix

Partitions of detections, specified as an N-by-Q matrix. N is the number of detections, and Q is the
number of partitions. Each column of the matrix represents a valid partition. In each column, the
value of the ith element represents the identity number of the detection cell that the ith detection
belongs to. For example, given a partition matrix P, if P(i,j) = k, then in partition j, detection i belongs
to detection cell k.

References
[1] Granstorm, K., C. Lundquiest, and O. Orguner. " Extended target tracking using a Gaussian-

mixture PHD filter." IEEE Transactions on Aerospace and Electronic Systems. Vol. 48,
Number 4, 2012, pp. 3268–3286.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The code generation configuration must allow recursion.

 partitionDetections

1-45

See Also
objectDetection | trackerPHD

Introduced in R2019a

1 Functions

1-46

randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint on page 1-130 to visualize the
distribution of the random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);

figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

 randrot

1-47

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values

Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.

1 Functions

1-48

Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2019a

 randrot

1-49

angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

 0 0 0
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743
 0 0 0.1743

1 Functions

1-50

Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion

Topics
“Rotations, Orientation, and Quaternions”

 angvel

1-51

Introduced in R2020a

1 Functions

1-52

rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

 96.6345 -119.0274 45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

 rotvecd

1-53

Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | eulerd | rotvec

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-54

eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

 0 0 90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

 eulerd

1-55

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

1 Functions

1-56

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 eulerd

1-57

meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot(___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot(___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
 50 10 5; ...
 45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)

1 Functions

1-58

quatAverage = quaternion
 0.88863 - 0.062598i + 0.27822j + 0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

 45.7876 32.6452 6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on

 meanrot

1-59

Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')

1 Functions

1-60

The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
 'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0 = rotmat(q0,'frame');
r90 = rotmat(q90,'frame');

 meanrot

1-61

rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
 metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
 norm((rSweep(:,:,i) - r90),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3

1 Functions

1-62

 0 0 45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.

q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
 metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
 norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

 meanrot

1-63

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3

 0 0 90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

1 Functions

1-64

Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

References
[1] Markley, F. Landis, Yang Chen, John Lucas Crassidis, and Yaakov Oshman. "Average Quaternions."

Journal of Guidance, Control, and Dynamics. Vol. 30, Issue 4, 2007, pp. 1193-1197.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 meanrot

1-65

slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

 0 0 0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

 45.0000 0 0

1 Functions

1-66

 -45.0000 0 0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0
 9.0000 0 0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis

 slerp

1-67

4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
 T,q180pathEuler(:,1),'r*', ...
 T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
 'Path to 180 degrees', ...
 'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')

1 Functions

1-68

The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

 slerp

1-69

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 345–354.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-70

See Also
Functions
dist | meanrot

Objects
quaternion

Topics
“Lowpass Filter Orientation Using Quaternion SLERP”
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 slerp

1-71

classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
 1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans =
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
 1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans =
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
 1

1 Functions

1-72

bS = single
 2

cS = single
 3

dS = single
 4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans =
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 classUnderlying

1-73

See Also
Functions
compact | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-74

compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

 0.5377 1.8339 -2.2588 0.8622

quat = quaternion(randomParts)

quat = quaternion
 0.53767 + 1.8339i - 2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

 0.5377 1.8339 -2.2588 0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray=2×2 quaternion array
 1 + 2i + 3j + 4k 9 + 10i + 11j + 12k
 5 + 6i + 7j + 8k 13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4

 compact

1-75

 1 2 3 4
 5 6 7 8
 9 10 11 12
 13 14 15 16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-76

conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

 0 1 0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
 0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
 0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
 1 + 0i + 0j + 0k

 conj

1-77

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-78

ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

quatTransposed = quat'

quatTransposed=1×4 quaternion array
 0.53767 - 0.31877i - 3.5784j - 0.7254k 1.8339 + 1.3077i - 2.7694j + 0.063055k -2.2588 + 0.43359i + 1.3499j - 0.71474k 0.86217 - 0.34262i - 3.0349j + 0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 3.5784 - 1.3499i + 0.7254j + 0.71474k
 1.8339 + 0.86217i - 1.3077j + 0.34262k 2.7694 + 3.0349i - 0.063055j - 0.20497k

quatTransposed = quat'

quatTransposed=2×2 quaternion array
 0.53767 + 2.2588i - 0.31877j + 0.43359k 1.8339 - 0.86217i + 1.3077j - 0.34262k
 3.5784 + 1.3499i - 0.7254j - 0.71474k 2.7694 - 3.0349i + 0.063055j + 0.20497k

 ctranspose, '

1-79

Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, .'

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-80

transformMotion
Compute motion quantities between two relatively fixed frames

Syntax
[posS,orientS,velS,accS,angvelS] = transformMotion(posSFromP,orientSFromP,
posP)
[___] = transformMotion(posSFromP,orientSFromP,posP,orientP)
[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP)
[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP)
[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP,
angvelP)

Description
[posS,orientS,velS,accS,angvelS] = transformMotion(posSFromP,orientSFromP,
posP) computes motion quantities of the sensor frame relative to the navigation frame (posS,
orientS, velS, accS, and angvelS) using the position of sensor frame relative to the platform
frame, posSFromP, the orientation of the sensor frame relative to the platform frame,
orientSFromP, and the position of the platform frame relative to the navigation frame, posP. Note
that the position and orientation between the sensor frame and the platform frame are assumed to be
fixed. Also, the unspecified quantities between the navigation frame and the platform frame (such as
orientation, velocity, and acceleration) are assumed to be zero.

[___] = transformMotion(posSFromP,orientSFromP,posP,orientP) additionally specifies
the orientation of the platform frame relative to the navigation frame, orientP. The output
arguments are the same as those of the previous syntax.

[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP) additionally
specifies the velocity of the platform frame relative to the navigation frame, velP. The output
arguments are the same as those of the previous syntax.

[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP)
additionally specifies the acceleration of the platform frame relative to the navigation frame, accP.
The output arguments are the same as those of the previous syntax.

[___] = transformMotion(posSFromP,orientSFromP,posP,orientP,velP,accP,
angvelP) additionally specifies the angular velocity of the platform frame relative to the navigation
frame, angvelP. The output arguments are the same as those of the previous syntax.

Examples

Transform State to Sensor Frame

Define the pose, velocity, and acceleration of the platform frame relative to the navigation frame.

posPlat = [20 -1 0];
orientPlat = quaternion(1, 0, 0, 0);
velPlat = [0 0 0];

 transformMotion

1-81

accPlat = [0 0 0];
angvelPlat = [0 0 1];

Define the position and orientation offset of IMU sensor frame relative to the platform frame.

posPlat2IMU = [1 2 3];
orientPlat2IMU = quaternion([45 0 0], 'eulerd', 'ZYX', 'frame');

Calculate the motion quantities of the sensor frame relative to the navigation frame and print the
results.

[posIMU, orientIMU, velIMU, accIMU, angvelIMU] ...
 = transformMotion(posPlat2IMU, orientPlat2IMU, ...
 posPlat, orientPlat, velPlat, accPlat, angvelPlat);

fprintf('IMU position is:\n');

IMU position is:

fprintf('%.2f %.2f %.2f\n', posIMU);

21.00 1.00 3.00

orientIMU

orientIMU = quaternion
 0.92388 + 0i + 0j + 0.38268k

velIMU

velIMU = 1×3

 -2 1 0

accPlat

accPlat = 1×3

 0 0 0

Input Arguments
posSFromP — Position of sensor frame relative to platform frame
1-by-3 vector of real scalars

Position of the sensor frame relative to the platform frame, specified as a 1-by-3 vector of real scalars.
Example: [1 2 3]

orientSFromP — Orientation of sensor frame relative to platform frame
quaternion | 3-by-3 rotation matrix

Orientation of the sensor frame relative to the platform frame, specified as a quaternion or a 3-by-3
rotation matrix.

1 Functions

1-82

Example: quaternion(1,0,0,0)

posP — Position of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Position of platform frame relative to navigation frame, specified as an N-by-3 matrix of real scalars.
N is the number of position quantities.
Example: [1 2 3]

orientP — Orientation of platform frame relative to navigation frame
N-by-1 array of quaternion | 3-by-3-by-N array of scalars

Orientation of platform frame relative to navigation frame, specified as an N-by-1 array of
quaternions, or a 3-by-3-by-N array of scalars. Each 3-by-3 matrix must be a rotation matrix. N is the
number of orientation quantities.
Example: quaternion(1,0,0,0)

velP — Velocity of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Velocity of platform frame relative to navigation frame, specified as an N-by-3 matrix of real scalars.
N is the number of velocity quantities.
Example: [4 8 6]

accP — Acceleration of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Acceleration of platform frame relative to navigation frame, specified as an N-by-3 matrix of real
scalars. N is the number of acceleration quantities.
Example: [4 8 6]

angvelP — Angular velocity of platform frame relative to navigation frame
N-by-3 matrix of real scalars

Angular velocity of platform frame relative to navigation frame, specified as an N-by-3 matrix of real
scalars. N is the number of angular velocity quantities.
Example: [4 2 3]

Output Arguments
posS — Position of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Position of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real scalars. N
is the number of position quantities specified by the posP input.

orientS — Orientation of sensor frame relative to navigation frame
N-by-1 array of quaternion | 3-by-3-by-N array of scalars

Orientation of sensor frame relative to navigation frame, returned as an N-by-1 array of quaternions,
or a 3-by-3-by-N array of scalars. N is the number of orientation quantities specified by the orientP
input. The returned orientation quantity type is same with the orientP input.

 transformMotion

1-83

velS — Velocity of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Velocity of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real scalars. N
is the number of position quantities specified by the velP input.

accS — Acceleration of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Acceleration of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real
scalars. N is the number of position quantities specified by the accP input.

angvelS — Angular velocity of sensor frame relative to navigation frame
N-by-3 matrix of real scalars

Angular velocity of sensor frame relative to navigation frame, returned as an N-by-3 matrix of real
scalars. N is the number of position quantities specified by the angvelP input.

More About
Motion Quantities Used in transformMotion

The transformMotion function calculates the motion quantities of the sensor frame (S), which is
fixed on a rigid platform, relative to the navigation frame (N) using the mounting information of the
sensor on the platform and the motion information of the platform frame (P).

As shown in the figure, the position and orientation of the platform frame and the sensor frame are
fixed on the platform. The position of the sensor frame relative to the platform frame is pSP, and the
orientation of the sensor frame relative to the platform frame is rSP. Since the two frames are both
fixed, pSP and rSP are constant.

To compute the motion quantities of the sensor frame relative to the navigation frame, the quantities
describing the motion of the platform frame relative to the navigation frame are required. These
quantities include: the platform position (pPN), orientation (rPN), velocity, acceleration, angular
velocity, and angular acceleration relative to the navigation frame. You can specify these quantities
through the function input arguments except the angular acceleration, which is always assumed to be
zero in the function. The unspecified quantities are also assumed to be zero.

1 Functions

1-84

See Also

Introduced in R2020a

 transformMotion

1-85

dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between the quaternion
rotation operators for quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
 1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5×1 quaternion array
 0.92388 + 0i + 0.38268j + 0k
 0.70711 + 0i + 0.70711j + 0k
 6.1232e-17 + 0i + 1j + 0k
 0.70711 + 0i - 0.70711j + 0k
 0.92388 + 0i - 0.38268j + 0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

 45.0000
 90.0000
 180.0000
 90.0000
 45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
 30,5,15; ...

1 Functions

1-86

 30,10,15; ...
 30,15,15];
angles2 = [30,6,15; ...
 31,11,15; ...
 30,16,14; ...
 30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

 6.0000
 6.0827
 6.0827
 6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
 0.72332 - 0.53198i + 0.20056j + 0.3919k

qNegative = -qPositive

qNegative = quaternion
 -0.72332 + 0.53198i - 0.20056j - 0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or

 dist

1-87

• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternion rotation operators.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for θq:
θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). In a rotation operator, z
rotates by p and derotates by q. As p approaches q, the angle of z goes to 0, and the product
approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, angular distance is calculated as:

angularDistance = 2*acos(parts(p*conj(q)));

1 Functions

1-88

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 dist

1-89

euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

 0 0 1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

1 Functions

1-90

rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

 euler

1-91

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-92

exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A=4×1 quaternion array
 16 + 2i + 3j + 13k
 5 + 11i + 10j + 8k
 9 + 7i + 6j + 12k
 4 + 14i + 15j + 1k

Compute the exponential of A.

B = exp(A)

B=4×1 quaternion array
 5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
 -57.359 - 89.189i - 81.081j - 64.865k
 -6799.1 + 2039.1i + 1747.8j + 3495.6k
 -6.66 + 36.931i + 39.569j + 2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array

 exp

1-93

Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
log | power, .^

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-94

ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

B = 2;
C = A.\B

C=2×1 quaternion array
 0.066667 - 0.13333i - 0.2j - 0.26667k
 0.057471 - 0.068966i - 0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A=2×2 quaternion array
 1 + 2i + 3j + 4k 4 + 5i + 6j + 7k
 2 + 3i + 4j + 5k 5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)

 ldivide, .\

1-95

B=2×2 quaternion array
 16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
 5 + 11i + 10j + 8k 4 + 14i + 15j + 1k

C = A.\B

C=2×2 quaternion array
 2.7 - 1.9i - 0.9j - 1.7k 1.5159 - 0.37302i - 0.15079j - 0.02381k
 2.2778 + 0.46296i - 0.57407j + 0.092593k 1.2471 + 0.91379i - 0.33908j - 0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k

1 Functions

1-96

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | norm | rdivide, ./ | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 ldivide, .\

1-97

log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A=3×1 quaternion array
 0.53767 + 0.86217i - 0.43359j + 2.7694k
 1.8339 + 0.31877i + 0.34262j - 1.3499k
 -2.2588 - 1.3077i + 3.5784j + 3.0349k

Compute the logarithmic values of A.

B = log(A)

B=3×1 quaternion array
 1.0925 + 0.40848i - 0.20543j + 1.3121k
 0.8436 + 0.14767i + 0.15872j - 0.62533k
 1.6807 - 0.53829i + 1.473j + 1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array

1 Functions

1-98

Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | power, .^

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 log

1-99

minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
 0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
 1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
 0 + 1i + 1j + 1k

1 Functions

1-100

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | times, .* | uminus, -

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 minus, -

1-101

mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A=4×1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

b = quaternion(randn(1,4))

b = quaternion
 -0.12414 + 1.4897i + 1.409j + 1.4172k

C = A*b

C=4×1 quaternion array
 -6.6117 + 4.8105i + 0.94224j - 4.2097k
 -2.0925 + 6.9079i + 3.9995j - 3.3614k
 1.8155 - 6.2313i - 1.336j - 1.89k
 -4.6033 + 5.8317i + 0.047161j - 2.791k

1 Functions

1-102

Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j

 mtimes, *

1-103

j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-104

norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array

 norm

1-105

Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | normalize | parts

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-106

normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
 2,3,4,1; ...
 3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized=3×1 quaternion array
 0.18257 + 0.36515i + 0.54772j + 0.7303k
 0.36515 + 0.54772i + 0.7303j + 0.18257k
 0.54772 + 0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array

 normalize

1-107

Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-108

ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones(___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones(___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
 1 + 0i + 0j + 0k

 ones

1-109

Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes=3×3 quaternion array
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) =

 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) =

 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
 1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.

1 Functions

1-110

Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes=2×2 quaternion array
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k
 1 + 0i + 0j + 0k 1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans =
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.

 ones

1-111

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
zeros

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-112

parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat=2×1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

 1
 5

qB = 2×1

 2
 6

qC = 2×1

 3
 7

qD = 2×1

 parts

1-113

 4
 8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, d, and d. Each part is the same size as quat.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-114

power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
 1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
 -86 - 52i - 78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

 1 0 2
 3 2 1

C = A.^b

 power, .^

1-115

C=2×3 quaternion array
 1 + 2i + 3j + 4k 1 + 0i + 0j + 0k -28 + 4i + 6j + 8k
 -2110 - 444i - 518j - 592k -124 + 60i + 70j + 80k 5 + 6i + 7j + 8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | log

1 Functions

1-116

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 power, .^

1-117

prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A=3×3 quaternion array
 0.53767 + 2.7694i + 1.409j - 0.30344k 0.86217 + 0.7254i - 1.2075j + 0.8884k -0.43359 - 0.20497i + 0.48889j - 0.8095k
 1.8339 - 1.3499i + 1.4172j + 0.29387k 0.31877 - 0.063055i + 0.71724j - 1.1471k 0.34262 - 0.12414i + 1.0347j - 2.9443k
 -2.2588 + 3.0349i + 0.6715j - 0.78728k -1.3077 + 0.71474i + 1.6302j - 1.0689k 3.5784 + 1.4897i + 0.72689j + 1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B=1×3 quaternion array
 -19.837 - 9.1521i + 15.813j - 19.918k -5.4708 - 0.28535i + 3.077j - 1.2295k -10.69 - 8.5199i - 2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.

1 Functions

1-118

dim = 3;
B = prod(A,dim)

B=2×2 quaternion array
 -2.4847 + 1.1659i - 0.37547j + 2.8068k 0.28786 - 0.29876i - 0.51231j - 4.2972k
 0.38986 - 3.6606i - 2.0474j - 6.047k -1.741 - 0.26782i + 5.4346j + 4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | times, .*

 prod

1-119

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-120

rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A=2×1 quaternion array
 1 + 2i + 3j + 4k
 5 + 6i + 7j + 8k

B = 2;
C = A./B

C=2×1 quaternion array
 0.5 + 1i + 1.5j + 2k
 2.5 + 3i + 3.5j + 4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A=2×2 quaternion array
 16 + 2i + 3j + 13k 9 + 7i + 6j + 12k
 5 + 11i + 10j + 8k 4 + 14i + 15j + 1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)

 rdivide, ./

1-121

B=2×2 quaternion array
 1 + 2i + 3j + 4k 2 + 3i + 4j + 5k
 3 + 4i + 5j + 6k 4 + 5i + 6j + 7k

C = A./B

C=2×2 quaternion array
 2.7 - 0.1i - 2.1j - 1.7k 2.2778 + 0.092593i - 0.46296j - 0.57407k
 1.8256 - 0.081395i + 0.45349j - 0.24419k 1.4524 - 0.5i + 1.0238j - 0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k

1 Functions

1-122

Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ldivide, .\ | norm | times, .*

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 rdivide, ./

1-123

rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

1 Functions

1-124

Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
 0,0,-pi/2],'euler','XYZ','frame');

rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

 0.7071 -0.0000 0
 -0.5000 0.5000 0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')

 rotateframe

1-125

Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

 0.6124 -0.3536 0.7071
 0.5000 0.8660 -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on

1 Functions

1-126

grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

 rotateframe

1-127

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-128

See Also
Functions
rotatepoint

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 rotateframe

1-129

rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])

1 Functions

1-130

Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
 0,0,-pi/2],'euler','XYZ','point');

rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

 -0.0000 0.7071 0
 0.5000 -0.5000 0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')

 rotatepoint

1-131

Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

 0.6124 0.5000 -0.6124
 -0.3536 0.8660 0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on

1 Functions

1-132

grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion

 rotatepoint

1-133

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-134

See Also
Functions
rotateframe

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

 rotatepoint

1-135

rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
 0.8924 + 0.23912i + 0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

 0.7071 -0.0000 0.7071
 0.3536 0.8660 -0.3536
 -0.6124 0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta) 0 sind(theta) ; ...
 0 1 0 ; ...
 -sind(theta) 0 cosd(theta)];

rx = [1 0 0 ; ...
 0 cosd(gamma) -sind(gamma) ; ...
 0 sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

1 Functions

1-136

rotationMatrixVerification = 3×3

 0.7071 0 0.7071
 0.3536 0.8660 -0.3536
 -0.6124 0.5000 0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
 0.8924 + 0.23912i + 0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

 0.7071 -0.0000 -0.7071
 0.3536 0.8660 0.3536
 0.6124 -0.5000 0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta) 0 -sind(theta) ; ...
 0 1 0 ; ...
 sind(theta) 0 cosd(theta)];

rx = [1 0 0 ; ...
 0 cosd(gamma) sind(gamma) ; ...
 0 -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

 0.7071 0 -0.7071
 0.3536 0.8660 0.3536
 0.6124 -0.5000 0.6124

 rotmat

1-137

Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

 0.9524 0.5297 0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
 totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

 0.9524
 0.5297
 0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string

1 Functions

1-138

Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | eulerd | rotvec | rotvecd

Objects
quaternion

 rotmat

1-139

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-140

rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

 1.6866 -2.0774 0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

 rotvec

1-141

Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | eulerd | rotvecd

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-142

times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C=2×1 quaternion array
 -28 + 4i + 6j + 8k
 -124 + 60i + 70j + 80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C=3×3 quaternion array
 0.60169 + 2.4332i - 2.5844j + 0.51646k -0.49513 + 1.1722i + 4.4401j - 1.217k 2.3126 + 0.16856i + 1.0474j - 1.0921k
 -4.2329 + 2.4547i + 3.7768j + 0.77484k -0.65232 - 0.43112i - 1.4645j - 0.90073k -1.8897 - 0.99593i + 3.8331j + 0.12013k

 times, .*

1-143

 -4.4159 + 2.1926i + 1.9037j - 4.0303k -2.0232 + 0.4205i - 0.17288j + 3.8529k -2.9137 - 5.5239i - 1.3676j + 3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
 0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a=1×3 quaternion array
 0 + 0i + 0j + 0k 1 + 0i + 0j + 0k 0.53767 + 1.8339i - 2.2588j + 0.86217k

b = quaternion(randn(4,4))

b=4×1 quaternion array
 0.31877 + 3.5784i + 0.7254j - 0.12414k
 -1.3077 + 2.7694i - 0.063055j + 1.4897k
 -0.43359 - 1.3499i + 0.71474j + 1.409k
 0.34262 + 3.0349i - 0.20497j + 1.4172k

a.*b

ans=4×3 quaternion array
 0 + 0i + 0j + 0k 0.31877 + 3.5784i + 0.7254j - 0.12414k -4.6454 + 2.1636i + 2.9828j + 9.6214k
 0 + 0i + 0j + 0k -1.3077 + 2.7694i - 0.063055j + 1.4897k -7.2087 - 4.2197i + 2.5758j + 5.8136k
 0 + 0i + 0j + 0k -0.43359 - 1.3499i + 0.71474j + 1.409k 2.6421 - 5.32i - 2.3841j - 1.3547k
 0 + 0i + 0j + 0k 0.34262 + 3.0349i - 0.20497j + 1.4172k -7.0663 - 0.76439i - 0.86648j + 7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

1 Functions

1-144

B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

 times, .*

1-145

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
mtimes, * | prod

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-146

transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat=4×1 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k
 1.8339 - 1.3077i + 2.7694j - 0.063055k
 -2.2588 - 0.43359i - 1.3499j + 0.71474k
 0.86217 + 0.34262i + 3.0349j - 0.20497k

quatTransposed = quat.'

quatTransposed=1×4 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k 1.8339 - 1.3077i + 2.7694j - 0.063055k -2.2588 - 0.43359i - 1.3499j + 0.71474k 0.86217 + 0.34262i + 3.0349j - 0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat=2×2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 3.5784 - 1.3499i + 0.7254j + 0.71474k
 1.8339 + 0.86217i - 1.3077j + 0.34262k 2.7694 + 3.0349i - 0.063055j - 0.20497k

quatTransposed = quat.'

quatTransposed=2×2 quaternion array
 0.53767 - 2.2588i + 0.31877j - 0.43359k 1.8339 + 0.86217i - 1.3077j + 0.34262k
 3.5784 - 1.3499i + 0.7254j + 0.71474k 2.7694 + 3.0349i - 0.063055j - 0.20497k

 transpose, .'

1-147

Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-148

uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q=2×2 quaternion array
 0.53767 + 0.31877i + 3.5784j + 0.7254k -2.2588 - 0.43359i - 1.3499j + 0.71474k
 1.8339 - 1.3077i + 2.7694j - 0.063055k 0.86217 + 0.34262i + 3.0349j - 0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R=2×2 quaternion array
 -0.53767 - 0.31877i - 3.5784j - 0.7254k 2.2588 + 0.43359i + 1.3499j - 0.71474k
 -1.8339 + 1.3077i - 2.7694j + 0.063055k -0.86217 - 0.34262i - 3.0349j + 0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion

 uminus, -

1-149

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus, -

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-150

zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros(___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros(___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
 0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros=3×3 quaternion array
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

 zeros

1-151

 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) =

 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) =

 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
 1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros=2×2 quaternion array
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k
 0 + 0i + 0j + 0k 0 + 0i + 0j + 0k

1 Functions

1-152

Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans =
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array

 zeros

1-153

Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion

Topics
“Rotations, Orientation, and Quaternions”

Introduced in R2018b

1 Functions

1-154

constvel
Constant velocity state update

Syntax
updatedstate = constvel(state)
updatedstate = constvel(state,dt)

Description
updatedstate = constvel(state) returns the updated state, state, of a constant-velocity
Kalman filter motion model after a one-second time step.

updatedstate = constvel(state,dt) specifies the time step, dt.

Examples

Update State for Constant-Velocity Motion

Update the state of two-dimensional constant-velocity motion for a time interval of one second.

state = [1;1;2;1];
state = constvel(state)

state = 4×1

 2
 1
 3
 1

Update State for Constant-Velocity Motion with Specified Time Step

Update the state of two-dimensional constant-velocity motion for a time interval of 1.5 seconds.

state = [1;1;2;1];
state = constvel(state,1.5)

state = 4×1

 2.5000
 1.0000
 3.5000
 1.0000

 constvel

1-155

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. For each spatial degree of
motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-velocity process, the state transition matrix after a time step, T, is
block diagonal as shown here.

xk + 1
vx, k + 1
yk + 1

vy, k + 1

=

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk
vxk
yk

vyk

The block for each spatial dimension is:

1 Functions

1-156

1 T
0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

 constvel

1-157

constveljac
Jacobian for constant-velocity motion

Syntax
jacobian = constveljac(state)
jacobian = constveljac(state,dt)

Description
jacobian = constveljac(state) returns the updated Jacobian , jacobian, for a constant-
velocity Kalman filter motion model for a step time of one second. The state argument specifies the
current state of the filter.

jacobian = constveljac(state,dt) specifies the time step, dt.

Examples

Compute State Jacobian for Constant-Velocity Motion

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a one second
update time.

state = [1,1,2,1].';
jacobian = constveljac(state)

jacobian = 4×4

 1 1 0 0
 0 1 0 0
 0 0 1 1
 0 0 0 1

Compute State Jacobian for Constant-Velocity Motion with Specified Time Step

Compute the state Jacobian for a two-dimensional constant-velocity motion model for a half-second
update time.

state = [1;1;2;1];

Compute the state update Jacobian for 0.5 second.

jacobian = constveljac(state,0.5)

jacobian = 4×4

 1.0000 0.5000 0 0

1 Functions

1-158

 0 1.0000 0 0
 0 0 1.0000 0.5000
 0 0 0 1.0000

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. For each spatial degree of
motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
jacobian — Constant-velocity motion Jacobian
real-valued 2N-by-2N matrix

Constant-velocity motion Jacobian, returned as a real-valued 2N-by-2N matrix. N is the number of
spatial degrees of motion.

Algorithms
For a two-dimensional constant-velocity motion, the Jacobian matrix for a time step, T, is block
diagonal:

 constveljac

1-159

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

The block for each spatial dimension has this form:

1 T
0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

1 Functions

1-160

cvmeas
Measurement function for constant velocity motion

Syntax
measurement = cvmeas(state)
measurement = cvmeas(state,frame)
measurement = cvmeas(state,frame,sensorpos)
measurement = cvmeas(state,frame,sensorpos,sensorvel)
measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = cvmeas(state,measurementParameters)

Description
measurement = cvmeas(state) returns the measurement for a constant-velocity Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
tracking filter.

measurement = cvmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cvmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cvmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cvmeas(state,frame,sensorpos,sensorvel,laxes) specifies the local
sensor axes orientation, laxes.

measurement = cvmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
both dimensions. The measurements are in rectangular coordinates.

state = [1;10;2;20];
measurement = cvmeas(state)

measurement = 3×1

 1
 2
 0

 cvmeas

1-161

The z-component of the measurement is zero.

Create Measurement from Constant Velocity Object in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. The measurements are in spherical coordinates.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state = [1;10;2;20];
measurement = cvmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Create Measurement from Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';

1 Functions

1-162

sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cvmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurement = cvmeas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. For each spatial degree of
motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement frame
'rectangular' (default) | 'spherical'

 cvmeas

1-163

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

1 Functions

1-164

Field Description Example
OriginVelocity Velocity offset of the origin of

the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

 cvmeas

1-165

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

 HasElevation
 false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

1 Functions

1-166

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

 cvmeas

1-167

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

1 Functions

1-168

cvmeasjac
Jacobian of measurement function for constant velocity motion

Syntax
measurementjac = cvmeasjac(state)
measurementjac = cvmeasjac(state,frame)
measurementjac = cvmeasjac(state,frame,sensorpos)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cvmeasjac(state,measurementParameters)

Description
measurementjac = cvmeasjac(state) returns the measurement Jacobian for constant-velocity
Kalman filter motion model in rectangular coordinates. state specifies the current state of the
tracking filter.

measurementjac = cvmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cvmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cvmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cvmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant-Velocity Object in Rectangular Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20];
jacobian = cvmeasjac(state)

jacobian = 3×4

 1 0 0 0
 0 0 1 0
 0 0 0 0

 cvmeasjac

1-169

Measurement Jacobian of Constant-Velocity Motion in Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each dimension. Compute the measurement Jacobian with respect to spherical coordinates.

state = [1;10;2;20];
measurementjac = cvmeasjac(state,'spherical')

measurementjac = 4×4

 -22.9183 0 11.4592 0
 0 0 0 0
 0.4472 0 0.8944 0
 0.0000 0.4472 0.0000 0.8944

Measurement Jacobian of Constant-Velocity Object in Translated Spherical Frame

Define the state of an object in 2-D constant-velocity motion. The state is the position and velocity in
each spatial dimension. Compute the measurement Jacobian with respect to spherical coordinates
centered at (5;-20;0) meters.

state = [1;10;2;20];
sensorpos = [5;-20;0];
measurementjac = cvmeasjac(state,'spherical',sensorpos)

measurementjac = 4×4

 -2.5210 0 -0.4584 0
 0 0 0 0
 -0.1789 0 0.9839 0
 0.5903 -0.1789 0.1073 0.9839

Create Measurement Jacobian for Constant-Velocity Object Using Measurement Parameters

Define the state of an object in 2-D constant-velocity motion. The state consists of position and
velocity in each spatial dimension. The measurements are in spherical coordinates with respect to a
frame located at (20;40;0) meters.

state2d = [1;10;2;20];
frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = cvmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×4

 1.2062 0 -0.6031 0
 0 0 0 0

1 Functions

1-170

 -0.4472 0 -0.8944 0
 0.0471 -0.4472 -0.0235 -0.8944

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = cvmeasjac(state2d,measparm)

measurementjac = 4×4

 1.2062 0 -0.6031 0
 0 0 0 0
 -0.4472 0 -0.8944 0
 0.0471 -0.4472 -0.0235 -0.8944

Input Arguments
state — Kalman filter state vector
real-valued 2N-element vector

Kalman filter state vector for constant-velocity motion, specified as a real-valued 2N-element column
vector where N is the number of spatial degrees of freedom of motion. For each spatial degree of
motion, the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx]
2-D [x;vx;y;vy]
3-D [x;vx;y;vy;z;vz]

For example, x represents the x-coordinate and vx represents the velocity in the x-direction. If the
motion model is 1-D, values along the y and z axes are assumed to be zero. If the motion model is 2-D,
values along the z axis are assumed to be zero. Position coordinates are in meters and velocity
coordinates are in meters/sec.
Example: [5;.1;0;-.2;-3;.05]
Data Types: single | double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

 cvmeasjac

1-171

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

1 Functions

1-172

Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The first dimension and meaning depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

 cvmeasjac

1-173

Frame Measurement Jacobian
'spherical' Jacobian of the measurement vector

[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

1 Functions

1-174

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

 cvmeasjac

1-175

Introduced in R2018b

1 Functions

1-176

constacc
Constant-acceleration motion model

Syntax
updatedstate = constacc(state)
updatedstate = constacc(state,dt)

Description
updatedstate = constacc(state) returns the updated state, state, of a constant acceleration
Kalman filter motion model for a step time of one second.

updatedstate = constacc(state,dt) specifies the time step, dt.

Examples

Predict State for Constant-Acceleration Motion

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 1 second later.

state = constacc(state)

state = 6×1

 2.5000
 2.0000
 1.0000
 3.0000
 1.0000
 0

Predict State for Constant-Acceleration Motion With Specified Time Step

Define an initial state for 2-D constant-acceleration motion.

state = [1;1;1;2;1;0];

Predict the state 0.5 s later.

state = constacc(state,0.5)

state = 6×1

 constacc

1-177

 1.6250
 1.5000
 1.0000
 2.5000
 1.0000
 0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Algorithms
For a two-dimensional constant-acceleration process, the state transition matrix after a time step, T,
is block diagonal:

1 Functions

1-178

xk + 1
vxk + 1
axk + 1
yk + 1

vyk + 1
ayk + 1

=

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

xk
vxk
axk
yk

vyk
ayk

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

 constacc

1-179

constaccjac
Jacobian for constant-acceleration motion

Syntax
jacobian = constaccjac(state)
jacobian = constaccjac(state,dt)

Description
jacobian = constaccjac(state) returns the updated Jacobian , jacobian, for a constant-
acceleration Kalman filter motion model. The step time is one second. The state argument specifies
the current state of the filter.

jacobian = constaccjac(state,dt) also specifies the time step, dt.

Examples

Compute State Jacobian for Constant-Acceleration Motion

Compute the state Jacobian for two-dimensional constant-acceleration motion.

Define an initial state and compute the state Jacobian for a one second update time.

state = [1,1,1,2,1,0];
jacobian = constaccjac(state)

jacobian = 6×6

 1.0000 1.0000 0.5000 0 0 0
 0 1.0000 1.0000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 1.0000 0.5000
 0 0 0 0 1.0000 1.0000
 0 0 0 0 0 1.0000

Compute State Jacobian for Constant-Acceleration Motion with Specified Time Step

Compute the state Jacobian for two-dimensional constant-acceleration motion. Set the step time to
0.5 seconds.

state = [1,1,1,2,1,0].';
jacobian = constaccjac(state,0.5)

jacobian = 6×6

 1.0000 0.5000 0.1250 0 0 0

1 Functions

1-180

 0 1.0000 0.5000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 0.5000 0.1250
 0 0 0 0 1.0000 0.5000
 0 0 0 0 0 1.0000

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

Output Arguments
jacobian — Constant-acceleration motion Jacobian
real-valued 3N-by-3N matrix

Constant-acceleration motion Jacobian, returned as a real-valued 3N-by-3N matrix.

Algorithms
For a two-dimensional constant-acceleration process, the Jacobian matrix after a time step, T, is block
diagonal:

 constaccjac

1-181

1 T 1
2T2 0 0 0

0 1 T 0 0 0
0 0 1 0 0 0

0 0 0 1 T 1
2T2

0 0 0 0 1 T
0 0 0 0 0 1

The block for each spatial dimension has this form:

1 T 1
2T2

0 1 T
0 0 1

For each additional spatial dimension, add an identical block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

1 Functions

1-182

constvelmsc
Constant velocity (CV) motion model in MSC frame

Syntax
state = constvelmsc(state,vNoise)
state = constvelmsc(state,vNoise,dt)
state = constvelmsc(state,vNoise,dt,u)

Description
state = constvelmsc(state,vNoise) calculates the state at the next time-step based on
current state and target acceleration noise, vNoise, in the scenario. The function assumes a time
interval, dt, of one second, and zero observer acceleration in all dimensions.

state = constvelmsc(state,vNoise,dt) specifies the time interval, dt. The function assumes
zero observer acceleration in all dimensions.

state = constvelmsc(state,vNoise,dt,u) specifies the observer input, u, during the time
interval, dt.

Examples

Predict Constant Velocity MSC State with Different Inputs

Define a state vector for a 3-D MSC state.

mscState = [0.1;0.01;0.1;0.01;0.001;1];
dt = 0.1;

Predict the state with zero observer acceleration.

mscState = constvelmsc(mscState,zeros(3,1),dt)

mscState = 6×1

 0.1009
 0.0083
 0.1009
 0.0083
 0.0009
 0.9091

Predict the state with [5;3;1] observer acceleration in scenario.

mscState = constvelmsc(mscState,zeros(3,1),dt,[5;3;1])

mscState = 6×1

 0.1017

 constvelmsc

1-183

 0.0067
 0.1017
 0.0069
 0.0008
 0.8329

Predict the state with observer maneuver and unit standard deviation random noise in target
acceleration. Let observer acceleration in the time interval be sin t cos t .

velManeuver = [1 - cos(dt);sin(dt);0];
posManeuver = [-sin(dt);cos(dt) - 1;0];
u = zeros(6,1);
u(1:2:end) = posManeuver;
u(2:2:end) = velManeuver;
mscState = constvelmsc(mscState,randn(3,1),dt,u)

mscState = 6×1

 0.1023
 0.0058
 0.1023
 0.0057
 0.0008
 0.7689

Predict and Measure State of Constant Velocity Target in Modified Spherical Coordinates

Define a state vector for a motion model in 2-D. The time interval is 2 seconds.

mscState = [0.5;0.02;1/1000;-10/1000];
dt = 2;

As modified spherical coordinates (MSC) state is relative, let the observer state be defined by a
constant acceleration model in 2-D.

observerState = [100;10;0.5;20;-5;0.1];

Pre-allocate memory. rPlot is the range for plotting bearing measurements.

observerPositions = zeros(2,10);
targetPositions = zeros(2,10);
azimuthMeasurement = zeros(1,10);
bearingHistory = zeros(2,30);
rPlot = 2000;

Use a loop to predict the state multiple times. Use constvelmsc to create a trajectory with constant
velocity target and measure the angles using the measurement function, cvmeasmsc.

for i = 1:10
 obsAcceleration = observerState(3:3:end);
 % Use zeros(2,1) as process noise to get true predictions
 mscState = constvelmsc(mscState,zeros(2,1),dt,obsAcceleration);

 % Update observer state using constant acceleration model

1 Functions

1-184

 observerState = constacc(observerState,dt);
 observerPositions(:,i) = observerState(1:3:end);

 % Update bearing history with current measurement.
 az = cvmeasmsc(mscState);
 bearingHistory(:,3*i-2) = observerState(1:3:end);
 bearingHistory(:,3*i-1) = observerState(1:3:end) + [rPlot*cosd(az);rPlot*sind(az)];
 bearingHistory(:,3*i) = [NaN;NaN];

 % Use the 'rectangular' frame to get relative positions of the
 % target using cvmeasmsc function.
 relativePosition = cvmeasmsc(mscState,'rectangular');
 relativePosition2D = relativePosition(1:2);
 targetPositions(:,i) = relativePosition2D + observerPositions(:,i);
end

plot(observerPositions(1,:),observerPositions(2,:)); hold on;
plot(targetPositions(1,:),targetPositions(2,:));
plot(bearingHistory(1,:),bearingHistory(2,:),'-.');
title('Constant velocity model in modified spherical coordinates');xlabel('X[m]'); ylabel('Y[m]')
legend('Observer Positions', 'Target Positions', 'Bearings Measurements'); hold off;

Input Arguments
state — Relative state
vector | 2-D matrix

 constvelmsc

1-185

State that is defined relative to an observer in modified spherical coordinates, specified as a vector or
a 2-D matrix. For example, if there is a constant velocity target state, xT, and a constant velocity
observer state, xO, then the state is defined as xT - xO transformed in modified spherical
coordinates.

The two-dimensional version of modified spherical coordinates (MSC) is also referred to as the
modified polar coordinates (MPC). In the case of:

• 2-D space –– State is equal to [az azRate 1/r vr/r]
• 3-D space –– State is equal to [az omega el elRate 1/r vr/r]

If specified as a matrix, states must be concatenated along columns, where each column represents a
state following the convention specified above.

The variables used in the convention are:

• az –– Azimuth angle (rad)
• el –– Elevation angle (rad)
• azRate –– Azimuth rate (rad/s)
• elRate –– Elevation rate (rad/s)
• omega –– azRate × cos(el) (rad/s)
• 1/r –– 1/range (1/m)
• vr/r –– range-rate/range or inverse time-to-go (1/s)

Data Types: single | double

vNoise — Target acceleration noise
vector | matrix

Target acceleration noise in the scenario, specified as a vector of 2 or 3 elements or a matrix with
dimensions corresponding to state. That is, if the dimensions of the state matrix is 6-by-10, then
the acceptable dimensions for vNoise is 3-by-10. If the dimensions of the state matrix is 4-by-10,
then the acceptable dimensions for vNoise is 2-by-10. For more details, see “Orientation, Position,
and Coordinate”.
Data Types: double

dt — Time difference
scalar

Time difference between current state and the time at which the state is to be calculated, specified as
a real finite numeric scalar.
Data Types: single | double

u — Observer input
vector

Observer input, specified as a vector. The observer input can have the following impact on state-
prediction based on its dimensions:

• When the number of elements in u equals the number of elements in state, the input u is
assumed to be the maneuver performed by the observer during the time interval, dt. A maneuver
is defined as motion of the observer higher than first order (or constant velocity).

1 Functions

1-186

• When the number of elements in u equals half the number of elements in state, the input u is
assumed to be constant acceleration of the observer, specified in the scenario frame during the
time interval, dt.

Data Types: double

Output Arguments
state — State at next time step
vector | 2-D matrix | 3-D matrix

State at the next time step, returned as a vector and a matrix of two or three dimensions. The state at
the next time step is calculated based on the current state and the target acceleration noise, vNoise.
Data Types: double

Algorithms
The function provides a constant velocity transition function in modified spherical coordinates (MSC)
using a non-additive noise structure. The MSC frame assumes a single observer and the state is
defined relative to it.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingEKF | trackingMSCEKF

Functions
constvelmscjac

Introduced in R2018b

 constvelmsc

1-187

constvelmscjac
Jacobian of constant velocity (CV) motion model in MSC frame

Syntax
[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise)
[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise,dt)
[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise,dt,u)

Description
[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise) calculates the
Jacobian matrix of the motion model with respect to the state vector and the noise. The input state
defines the current state, and vNoise defines the target acceleration noise in the observer's
Cartesian frame. The function assumes a time interval, dt, of one second, and zero observer
acceleration in all dimensions.

The trackingEKF object allows you to specify the StateTransitionJacobianFcn property. The
function can be used as a StateTransitionJacobianFcn when the HasAdditiveProcessNoise
is set to false.

[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise,dt) specifies the time
interval, dt. The function assumes zero observer acceleration in all dimensions.

[jacobianState,jacobianNoise] = constvelmscjac(state,vNoise,dt,u) specifies the
observer input, u, during the time interval, dt.

Examples

Compute Jacobian of State Transition Function

Define a state vector for 2-D MSC.

state = [0.5;0.01;0.001;0.01];

Calculate the Jacobian matrix assuming dt = 1 second, no observer maneuver, and zero target
acceleration noise.

[jacobianState,jacobianNoise] = constvelmscjac(state,zeros(2,1)) %#ok

jacobianState = 4×4

 1.0000 0.9900 -0.0000 -0.0098
 -0.0000 0.9800 -0.0000 -0.0194
 0.0000 -0.0000 0.9901 -0.0010
 -0.0000 0.0194 -0.0000 0.9800

jacobianNoise = 4×2
10-3 ×

1 Functions

1-188

 -0.2416 0.4321
 -0.4851 0.8574
 -0.0004 -0.0002
 0.8574 0.4851

Calculate the Jacobian matrix, given dt = 0.1 seconds, no observer maneuver, and a unit standard
deviation target acceleration noise.

[jacobianState,jacobianNoise] = constvelmscjac(state,randn(2,1),0.1) %#ok

jacobianState = 4×4

 1.0000 0.0999 0.0067 -0.0001
 -0.0001 0.9980 0.1348 -0.0020
 -0.0000 -0.0000 0.9990 -0.0001
 0.0001 0.0020 0.1351 0.9980

jacobianNoise = 4×2
10-4 ×

 -0.0240 0.0438
 -0.4800 0.8755
 -0.0000 -0.0000
 0.8755 0.4800

Calculate the Jacobian matrix, given dt = 0.1 seconds and observer acceleration = [0.1 0.3] in the 2-D
observer's Cartesian coordinates.

[jacobianState,jacobianNoise] = constvelmscjac(state,randn(2,1),0.1,[0.1;0.3])

jacobianState = 4×4

 1.0000 0.0999 0.0081 -0.0001
 0.0002 0.9980 0.1625 -0.0020
 -0.0000 -0.0000 0.9990 -0.0001
 0.0002 0.0020 -0.1795 0.9980

jacobianNoise = 4×2
10-4 ×

 -0.0240 0.0438
 -0.4800 0.8756
 -0.0000 -0.0000
 0.8756 0.4800

Input Arguments
state — Relative state
vector

 constvelmscjac

1-189

State that is defined relative to an observer in modified spherical coordinates, specified as a vector.
For example, if there is a constant velocity target state, xT, and a constant velocity observer state, xO,
then the state is defined as xT - xO transformed in modified spherical coordinates.

The two-dimensional version of modified spherical coordinates (MSC) is also referred to as the
modified polar coordinates (MPC).

In case the motion is in:

• 2-D space –– State is equal to [az azRate 1/r vr/r]
• 3-D space –– State is equal to [az omega el elRate 1/r vr/r]

The variables used in the convention are:

• az –– Azimuth angle (rad)
• el –– Elevation angle (rad)
• azRate –– Azimuth rate (rad/s)
• elRate –– Elevation rate (rad/s)
• omega –– azRate × cos(el) (rad/s)
• 1/r –– 1/range (1/m)
• vr/r –– range-rate/range or inverse time-to-go (1/s)

Data Types: single | double

vNoise — Target acceleration noise
vector

Target acceleration noise in scenario, specified as a vector of 2 or 3 elements.
Data Types: double

dt — Time difference
scalar

Time difference between the current state and the time at which the state is to be calculated,
specified as a real finite numeric scalar.
Data Types: single | double

u — Observer input
vector | 2-D matrix | 3-D matrix

Observer input, specified as a vector or a matrix. The observer input can have the following impact on
state-prediction based on its dimensions:

• When the number of elements in u equals the number of elements in state, the input u is
assumed to be the maneuver performed by the observer during the time interval, dt. A maneuver
is defined as motion of the observer higher than first order (or constant velocity).

• When the number of elements in u equals half the number of elements in state, the input u is
assumed to be constant acceleration of the observer, specified in the scenario frame during the
time interval, dt.

Data Types: double

1 Functions

1-190

Output Arguments
jacobianState — Jacobian of predicted state
matrix

Jacobian of the predicted state with respect to the previous state, returned as an n-by-n matrix, where
n is the number of states in the state vector.
Data Types: double

jacobianNoise — Jacobian of predicted state
matrix

Jacobian of the predicted state with respect to the noise elements, returned as an n-by-m matrix. The
variable n is the number of states in the state vector, and the variable m is the number of process
noise terms. That is, m = 2 for state in 2-D space, and m = 3 for state in 3-D space.

For example, if the state vector is a 4-by-1 vector in a 2-D space, vNoise must be a 2-by-1 vector, and
jacobianNoise is a 4-by-2 matrix.

If the state vector is a 6-by-1 vector in 3-D space, vNoise must be a 3-by-1 vector, and
jacobianNoise is a 6-by-3 matrix.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingEKF

Functions
constvelmsc

Introduced in R2018b

 constvelmscjac

1-191

cvmeasmsc
Measurement based on constant velocity (CV) model in MSC frame

Syntax
measurement = cvmeasmsc(state)
measurement = cvmeasmsc(state,frame)
measurement = cvmeasmsc(state,frame,laxes)
measurement = cvmeasmsc(state,measurementParameters)

Description
measurement = cvmeasmsc(state) provides the angular measurement (azimuth and elevation) of
the state in the sensor frame described by the state.

Tracking filters require a definition of the MeasurementFcn property. The cvmeasmsc function can
be used as the MeasurementFcn. To use this MeasurementFcn with trackerGNN and
trackerTOMHT, you can use the trackingMSCEKF filter.

measurement = cvmeasmsc(state,frame) provides the measurement in the frame specified. The
allowed values for frame are 'rectangular' and 'spherical'.

measurement = cvmeasmsc(state,frame,laxes) specifies the axes of the sensor's coordinate
system. The laxes input is a 3-by-3 matrix with each column specifying the direction of local x, y and
z axes in the observer's Cartesian frame. The default for laxes is [1 0 0;0 1 0;0 0 1].

measurement = cvmeasmsc(state,measurementParameters) specifies the measurement
parameters as a scalar struct or an array of struct.

Examples

Obtain Measurements in MSC Frame

Using the cvmeasmsc function, you can obtain measurements of the state in the spherical and the
rectangular frames.

Spherical Frame

Obtain the azimuth and elevation measurements from an MSC state.

mscState = [0.5;0;0.3;0;1e-3;1e-2];
cvmeasmsc(mscState)

ans = 2×1

 28.6479
 17.1887

1 Functions

1-192

Rectangular Frame

Obtain the position measurement from an MSC state. Specify the frame as a second input.

cvmeasmsc(mscState,'rectangular')

ans = 3×1

 838.3866
 458.0127
 295.5202

Alternatively, you can specify the frame using measurementParameters.

cvmeasmsc(mscState,struct('Frame','rectangular'))

ans = 3×1

 838.3866
 458.0127
 295.5202

Input Arguments
state — Relative state
vector | matrix

State that is defined relative to an observer in modified spherical coordinates, specified as a vector or
a 2-D matrix. For example, if there is a constant velocity target state, xT, and a constant velocity
observer state, xO, then the state is defined as xT - xO transformed in modified spherical
coordinates.

The two-dimensional version of modified spherical coordinates (MSC) is also referred to as the
modified polar coordinates (MPC). In the case of:

• 2-D space –– State is equal to [az azRate 1/r vr/r].
• 3-D space –– State is equal to [az omega el elRate 1/r vr/r].

The variables used in the convention are:

• az –– Azimuth angle (rad)
• el –– Elevation angle (rad)
• azRate –– Azimuth rate (rad/s)
• elRate –– Elevation rate (rad/s)
• omega –– azRate × cos(el) (rad/s)
• 1/r –– 1/range (1/m)
• vr/r –– range-rate/range or inverse time-to-go (1/s)

If the input state is specified as a matrix, states must be concatenated along columns, where each
column represents a state following the convention specified above. The output is a matrix with the
same number of columns as the input, where each column represents the measurement from the
corresponding state.

 cvmeasmsc

1-193

If the motion model is in 2-D space, values corresponding to elevation are assumed to be zero if
elevation is requested as an output.
Data Types: single | double

frame — Measurement frame
'spherical' (default) | 'rectangular'

Measurement frame, specified as 'spherical' or 'rectangular'. If using the 'rectangular'
frame, the three elements present in the measurement represent x, y, and z position of the target in
the observer's Cartesian frame. If using the 'spherical' frame, the two elements present in the
measurement represent azimuth and elevation measurement of the target. If not specified, the
function provides the measurements in 'spherical' frame.

laxes — Direction of local axes
[1 0 0;0 1 0;0 0 1] (default) | 3-by-3 matrix

Direction of local x, y, and z axes in the scenario, specified as a 3-by-3 matrix. If not specified, laxes
is equal to [1 0 0;0 1 0;0 0 1].
Data Types: double

measurementParameters — Measurement parameters
scalar struct | array of struct

Measurement parameters, specified as a scalar struct or an array of struct. The structures must have
the following fields (or a subset of them):

• Frame –– Either 'rectangular' or 'spherical' or an enumeration with the same values.
Default: 'spherical'.

• Orientation –– A 3-by-3 laxes matrix.
• HasElevation –– A logical scalar, true if elevation is measured. Default: true if state is in 3-D

space, false if state is in 2-D space.
• IsParentToChild –– A logical scalar, true if the orientation is given as a parent to child frame

rotation.

Data Types: struct

Output Arguments
measurement — Measurement from MSC state
vector

Target measurement in MSC frame, returned as a:

• One-element vector –– When HasElevation is set to false, the vector contains azimuth as the
only measurement.

• Two-element vector –– When the frame is set to 'spherical', the function measures the
azimuth and elevation measurements from an MSC state.

• Three-element vector –– When the frame is set to 'rectangular', the function measures the
position measurement from an MSC state.

1 Functions

1-194

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingMSCEKF

Functions
constvelmsc | cvmeasmscjac | initcvmscekf

Introduced in R2018b

 cvmeasmsc

1-195

cvmeasmscjac
Jacobian of measurement using constant velocity (CV) model in MSC frame

Syntax
jacobian = cvmeasmscjac(state)
jacobian = cvmeasmscjac(state,frame)
jacobian = cvmeasmscjac(state,frame,laxes)
jacobian = cvmeasmscjac(state,measurementParameters)

Description
jacobian = cvmeasmscjac(state) calculates the Jacobian with respect to angular measurement
(azimuth and elevation) of the state in the sensor frame. The motion can be either in 2-D or 3-D
space. If motion model is in 2-D space, values corresponding to elevation are assumed to be zero.

The trackingEKF and trackingMSCEKF filters require a definition of the
MeasurementJacobianFcn property. The cvmeasmscjac function can be used as the
MeasurementJacobianFcn. To use this MeasurementFcn with trackerGNN and trackerTOMHT,
you can use the trackingMSCEKF filter.

jacobian = cvmeasmscjac(state,frame) provides the Jacobian measurement in the frame
specified. The allowed values for frame are 'rectangular' and 'spherical'.

jacobian = cvmeasmscjac(state,frame,laxes) specifies the axes of the sensor's coordinate
system. The laxes input is a 3-by-3 matrix with each column specifying the direction of local x, y,
and z axes in the sensor coordinate system. The default for laxes is [1 0 0;0 1 0;0 0 1].

jacobian = cvmeasmscjac(state,measurementParameters) specifies the measurement
parameters as a struct.

Examples

Obtain Jacobian of State Measurements in MSC Frame

Using the cvmeasmscjac function, you can obtain the jacobian of the state measurements in the
spherical and the rectangular frames.

Spherical Frame

Obtain the Jacobian of the azimuth and elevation measurements from an MSC state.

mscState = [0.5;0;0.3;0;1e-3;1e-2];
cvmeasmscjac(mscState)

ans = 2×6

 57.2958 0 0 0 0 0
 0 0 57.2958 0 0 0

1 Functions

1-196

Rectangular Frame

Obtain the Jacobian of the position measurement from an MSC state. Specify the frame as a second
input.

cvmeasmscjac(mscState,'rectangular')

ans = 3×6
105 ×

 -0.0046 0 -0.0026 0 -8.3839 0
 0.0084 0 -0.0014 0 -4.5801 0
 0 0 0.0096 0 -2.9552 0

Alternatively, you can specify the frame using measurementParameters.

cvmeasmscjac(mscState,struct('Frame','rectangular'))

ans = 3×6
105 ×

 -0.0046 0 -0.0026 0 -8.3839 0
 0.0084 0 -0.0014 0 -4.5801 0
 0 0 0.0096 0 -2.9552 0

Input Arguments
state — Relative state
vector

State that is defined relative to an observer in modified spherical coordinates, as a vector. For
example, if there is a target state, xT, and an observer state, xO, the state used by the function is xT
- xO.

The 2-D version of modified spherical coordinates (MSC) is also referred to as the modified polar
coordinates (MPC). In the case of:

• 2-D space –– State equals [az azRate 1/r vr/r].
• 3-D space –– State equals [az omega el elRate 1/r vr/r].

The variables used in the convention are:

• az –– Azimuth angle (rad)
• el –– Elevation angle (rad)
• azRate –– Azimuth rate (rad/s)
• elRate –– Elevation rate (rad/s)
• omega –– azRate × cos(el) (rad/s)
• 1/r –– 1/range (1/m)
• vr/r –– range-rate/range or inverse time-to-go (1/s)

If the motion model is in 2-D space, values corresponding to elevation are assumed to be zero if
elevation is requested as an output.

 cvmeasmscjac

1-197

Data Types: single | double

frame — Measurement frame
'spherical' (default) | 'rectangular'

Measurement frame, specified as 'spherical' or 'rectangular'. If using the 'rectangular'
frame, the three rows present in jacobian represent the Jacobian of the measurements with respect
to x, y, and z position of the target in the sensor's Cartesian frame. If using the 'spherical' frame,
the two rows present in jacobian represent the Jacobian of the azimuth and elevation
measurements of the target. If not specified, the function provides the Jacobian of the measurements
in the 'spherical' frame.

laxes — Direction of local axes
[1 0 0;0 1 0;0 0 1] (default) | 3-by-3 matrix

Direction of local x, y, and z axes in the scenario, specified as a 3-by-3 matrix. Each column of the
matrix specifies the direction of the local x, y, and z axes in the sensor coordinate system. If not
specified, the laxes is equal to [1 0 0;0 1 0;0 0 1].
Data Types: double

measurementParameters — Measurement parameters
struct

Measurement parameters, specified as a struct. The structure must have the following fields (or a
subset of them):

• Frame –– Either 'rectangular' or 'spherical'. Default: 'spherical'.
• Orientation –– A 3-by-3 laxes matrix.
• HasElevation –– A logical scalar, true if elevation is measured. Default: true if state is in 3-D

space, false if state is in 2-D space.
• IsParentToChild –– A logical scalar, true if the orientation is given as a parent to child frame

rotation.

Data Types: struct

Output Arguments
jacobian — Measurement from MSC state
matrix

Target measurement in MSC frame, returned as a:

• One-row matrix –– When HasElevation is set to false.
• Two-row matrix –– When the frame is set to 'spherical', the function measures the azimuth

and elevation measurements from a MSC state.
• Three-row matrix –– When the frame is set to 'rectangular', the function measures the

position measurement from a MSC state.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-198

See Also
Objects
trackingMSCEKF

Functions
constvelmsc | cvmeasmsc | initcvmscekf

Introduced in R2018b

 cvmeasmscjac

1-199

cameas
Measurement function for constant-acceleration motion

Syntax
measurement = cameas(state)
measurement = cameas(state,frame)
measurement = cameas(state,frame,sensorpos)
measurement = cameas(state,frame,sensorpos,sensorvel)
measurement = cameas(state,frame,sensorpos,sensorvel,laxes)
measurement = cameas(state,measurementParameters)

Description
measurement = cameas(state) returns the measurement, for the constant-acceleration Kalman
filter motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = cameas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = cameas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = cameas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = cameas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = cameas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in rectangular coordinates.

state = [1,10,3,2,20,0.5].';
measurement = cameas(state)

measurement = 3×1

 1
 2
 0

1 Functions

1-200

The measurement is returned in three-dimensions with the z-component set to zero.

Create Measurement from Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. The measurements are in spherical coordinates.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive. These results indicate that
the object is moving away from the sensor.

Create Measurement from Accelerating Object in Translated Spherical Frame

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state = [1,10,3,2,20,5].';
measurement = cameas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant-Accelerating Object Using Measurement Parameters

Define the state of an object moving in 2-D constant-acceleration motion. The state consists of
position, velocity, and acceleration in each dimension. The measurements are in spherical coordinates
with respect to a frame located at (20;40;0) meters from the origin.

state2d = [1,10,3,2,20,5].';

 cameas

1-201

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

frame = 'spherical';
sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = cameas(state2d,'spherical',sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

The elevation of the measurement is zero and the range rate is negative. These results indicate that
the object is moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurement = cameas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.

1 Functions

1-202

Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

 cameas

1-203

Field Description Example
OriginPosition Position offset of the origin of

the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

1 Functions

1-204

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

 HasElevation
 false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

'rectangular Specifies the Cartesian position and velocity
coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

 cameas

1-205

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

1 Functions

1-206

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameasjac | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

 cameas

1-207

cameasjac
Jacobian of measurement function for constant-acceleration motion

Syntax
measurementjac = cameasjac(state)
measurementjac = cameasjac(state,frame)
measurementjac = cameasjac(state,frame,sensorpos)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel)
measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = cameasjac(state,measurementParameters)

Description
measurementjac = cameasjac(state) returns the measurement Jacobian, for constant-
acceleration Kalman filter motion model in rectangular coordinates. The state argument specifies
the current state of the filter.

measurementjac = cameasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = cameasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = cameasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = cameasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Accelerating Object in Rectangular Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Construct the measurement Jacobian in rectangular
coordinates.

state = [1,10,3,2,20,5].';
jacobian = cameasjac(state)

jacobian = 3×6

 1 0 0 0 0 0
 0 0 0 1 0 0
 0 0 0 0 0 0

1 Functions

1-208

Measurement Jacobian of Accelerating Object in Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates.

state = [1;10;3;2;20;5];
measurementjac = cameasjac(state,'spherical')

measurementjac = 4×6

 -22.9183 0 0 11.4592 0 0
 0 0 0 0 0 0
 0.4472 0 0 0.8944 0 0
 0.0000 0.4472 0 0.0000 0.8944 0

Measurement Jacobian of Accelerating Object in Translated Spherical Frame

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
measurementjac = cameasjac(state,'spherical',sensorpos)

measurementjac = 4×6

 -2.5210 0 0 -0.4584 0 0
 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5903 -0.1789 0 0.1073 0.9839 0

Create Measurement Jacobian of Accelerating Object Using Measurement Parameters

Define the state of an object in 2-D constant-acceleration motion. The state is the position, velocity,
and acceleration in both dimensions. Compute the measurement Jacobian in spherical coordinates
with respect to an origin at (5;-20;0) meters.

state2d = [1,10,3,2,20,5].';
sensorpos = [5,-20,0].';
frame = 'spherical';
sensorvel = [0;8;0];
laxes = eye(3);
measurementjac = cameasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×6

 -2.5210 0 0 -0.4584 0 0

 cameasjac

1-209

 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5274 -0.1789 0 0.0959 0.9839 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = cameasjac(state2d,measparm)

measurementjac = 4×6

 -2.5210 0 0 -0.4584 0 0
 0 0 0 0 0 0
 -0.1789 0 0 0.9839 0 0
 0.5274 -0.1789 0 0.0959 0.9839 0

Input Arguments
state — Kalman filter state vector
real-valued 3N-element vector

Kalman filter state vector for constant-acceleration motion, specified as a real-valued 3N-element
vector. N is the number of spatial degrees of freedom of motion. For each spatial degree of motion,
the state vector takes the form shown in this table.

Spatial Dimensions State Vector Structure
1-D [x;vx;ax]
2-D [x;vx;ax;y;vy;ay]
3-D [x;vx;ax;y;vy;ay;z;vz;az]

For example, x represents the x-coordinate, vx represents the velocity in the x-direction, and ax
represents the acceleration in the x-direction. If the motion model is in one-dimensional space, the y-
and z-axes are assumed to be zero. If the motion model is in two-dimensional space, values along the
z-axis are assumed to be zero. Position coordinates are in meters. Velocity coordinates are in meters/
second. Acceleration coordinates are in meters/second2.
Example: [5;0.1;0.01;0;-0.2;-0.01;-3;0.05;0]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

1 Functions

1-210

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

 cameasjac

1-211

Field Description Example
HasElevation Logical scalar indicating if

elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-N matrix | real-valued 4-by-N matrix

Measurement Jacobian, specified as a real-valued 3-by-N or 4-by-N matrix. N is the dimension of the
state vector. The interpretation of the rows and columns depends on the frame argument, as
described in this table.

1 Functions

1-212

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

 cameasjac

1-213

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | constacc | constaccjac | constturn | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

1 Functions

1-214

Introduced in R2018b

 cameasjac

1-215

constturn
Constant turn-rate motion model

Syntax
updatedstate = constturn(state)
updatedstate = constturn(state,dt)
updatedstate = constturn(state,dt,w)

Description
updatedstate = constturn(state) returns the updated state, updatedstate, obtained from
the previous state, state, after a one-second step time for motion modelled as constant turn rate.
Constant turn rate means that motion in the x-y plane follows a constant angular velocity and motion
in the vertical z directions follows a constant velocity model.

updatedstate = constturn(state,dt) also specifies the time step, dt.

updatedstate = constturn(state,dt,w) also specifies noise, w.

Examples

Update State for Constant Turn-Rate Motion

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to one second later.

state = [500,0,0,100,12].';
state = constturn(state)

state = 5×1

 489.5662
 -20.7912
 99.2705
 97.8148
 12.0000

Update State for Constant Turn-Rate Motion with Specified Time Step

Define an initial state for 2-D constant turn-rate motion. The turn rate is 12 degrees per second.
Update the state to 0.1 seconds later.

state = [500,0,0,100,12].';
state = constturn(state,0.1)

state = 5×1

1 Functions

1-216

 499.8953
 -2.0942
 9.9993
 99.9781
 12.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1)-by-N matrix

State noise, specified as a scalar or real-valued (D+1)-length -by-N matrix. D is the number of motion
dimensions and N is the number of state vectors. The components are each columns are

 constturn

1-217

[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1)-by-N matrix.
Data Types: single | double

Output Arguments
updatedstate — Updated state vector
real-valued column or row vector | real-valued matrix

Updated state vector, returned as a real-valued vector or real-valued matrix with same number of
elements and dimensions as the input state vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturnjac | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf | initctukf

Objects
trackingEKF | trackingUKF

Introduced in R2018b

1 Functions

1-218

constturnjac
Jacobian for constant turn-rate motion

Syntax
jacobian = constturnjac(state)
jacobian = constturnjac(state,dt)
[jacobian,noisejacobian] = constturnjac(state,dt,w)

Description
jacobian = constturnjac(state) returns the updated Jacobian, jacobian, for constant turn-
rate Kalman filter motion model for a one-second step time. The state argument specifies the
current state of the filter. Constant turn rate means that motion in the x-y plane follows a constant
angular velocity and motion in the vertical z directions follows a constant velocity model.

jacobian = constturnjac(state,dt) specifies the time step, dt.

[jacobian,noisejacobian] = constturnjac(state,dt,w) also specifies noise, w, and
returns the Jacobian, noisejacobian, of the state with respect to the noise.

Examples

Compute State Jacobian for Constant Turn-Rate Motion

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is one second.

state = [500,0,0,100,12];
jacobian = constturnjac(state)

jacobian = 5×5

 1.0000 0.9927 0 -0.1043 -0.8631
 0 0.9781 0 -0.2079 -1.7072
 0 0.1043 1.0000 0.9927 -0.1213
 0 0.2079 0 0.9781 -0.3629
 0 0 0 0 1.0000

Compute State Jacobian for Constant Turn-Rate Motion with Specified Time Step

Compute the Jacobian for a constant turn-rate motion state. Assume the turn rate is 12 degrees/
second. The time step is 0.1 second.

state = [500,0,0,100,12];
jacobian = constturnjac(state,0.1)

 constturnjac

1-219

jacobian = 5×5

 1.0000 0.1000 0 -0.0010 -0.0087
 0 0.9998 0 -0.0209 -0.1745
 0 0.0010 1.0000 0.1000 -0.0001
 0 0.0209 0 0.9998 -0.0037
 0 0 0 0 1.0000

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

dt — Time step interval of filter
1.0 (default) | positive scalar

Time step interval of filter, specified as a positive scalar. Time units are in seconds.
Example: 0.5
Data Types: single | double

w — State noise
scalar | real-valued (D+1) vector

State noise, specified as a scalar or real-valued M-by-(D+1)-length vector. D is the number of motion
dimensions. D is two for 2-D motion and D is three for 3-D motion. The vector components are
[ax;ay;alpha] for 2-D motion or [ax;ay;alpha;az] for 3-D motion. ax, ay, and az are the linear
acceleration noise values in the x-, y-, and z-axes, respectively, and alpha is the angular acceleration
noise value. If specified as a scalar, the value expands to a (D+1) vector.
Data Types: single | double

1 Functions

1-220

Output Arguments
jacobian — Constant turn-rate motion Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion Jacobian, returned as a real-valued 5-by-5 matrix or 7-by-7 matrix
depending on the size of the state vector. The Jacobian is constructed from the partial derivatives of
the state at the updated time step with respect to the state at the previous time step.

noisejacobian — Constant turn-rate motion noise Jacobian
real-valued 5-by-5 matrix | real-valued 7-by-7 matrix

Constant turn-rate motion noise Jacobian, returned as a real-valued 5-by-(D+1) matrix where D is two
for 2-D motion or a real-valued 7-by-(D+1) matrix where D is three for 3-D motion. The Jacobian is
constructed from the partial derivatives of the state at the updated time step with respect to the noise
components.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constvel | constveljac |
ctmeas | ctmeasjac | cvmeas | cvmeasjac | initctekf

Objects
trackingEKF

Introduced in R2018b

 constturnjac

1-221

ctmeas
Measurement function for constant turn-rate motion

Syntax
measurement = ctmeas(state)
measurement = ctmeas(state,frame)
measurement = ctmeas(state,frame,sensorpos)
measurement = ctmeas(state,frame,sensorpos,sensorvel)
measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes)
measurement = ctmeas(state,measurementParameters)

Description
measurement = ctmeas(state) returns the measurement for a constant turn-rate Kalman filter
motion model in rectangular coordinates. The state argument specifies the current state of the
filter.

measurement = ctmeas(state,frame) also specifies the measurement coordinate system,
frame.

measurement = ctmeas(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurement = ctmeas(state,frame,sensorpos,sensorvel) also specifies the sensor
velocity, sensorvel.

measurement = ctmeas(state,frame,sensorpos,sensorvel,laxes) also specifies the local
sensor axes orientation, laxes.

measurement = ctmeas(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Create Measurement from Constant Turn-Rate Motion in Rectangular Frame

Create a measurement from an object undergoing constant turn-rate motion. The state is the position
and velocity in each dimension and the turn-rate. The measurements are in rectangular coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state)

measurement = 3×1

 1
 2
 0

1 Functions

1-222

The z-component of the measurement is zero.

Create Measurement from Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. The measurements are in spherical coordinates.

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical')

measurement = 4×1

 63.4349
 0
 2.2361
 22.3607

The elevation of the measurement is zero and the range rate is positive indicating that the object is
moving away from the sensor.

Create Measurement from Constant Turn-Rate Motion in Translated Spherical Frame

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state = [1;10;2;20;5];
measurement = ctmeas(state,'spherical',[20;40;0])

measurement = 4×1

 -116.5651
 0
 42.4853
 -22.3607

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Create Measurement from Constant Turn-Rate Motion using Measurement Parameters

Define the state of an object moving in 2-D constant turn-rate motion. The state consists of position
and velocity, and the turn rate. The measurements are in spherical coordinates with respect to a
frame located at [20;40;0].

state2d = [1;10;2;20;5];
frame = 'spherical';

 ctmeas

1-223

sensorpos = [20;40;0];
sensorvel = [0;5;0];
laxes = eye(3);
measurement = ctmeas(state2d,frame,sensorpos,sensorvel,laxes)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

The elevation of the measurement is zero and the range rate is negative indicating that the object is
moving toward the sensor.

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes);
measurement = ctmeas(state2d,measparm)

measurement = 4×1

 -116.5651
 0
 42.4853
 -17.8885

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

1 Functions

1-224

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

 ctmeas

1-225

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

1 Functions

1-226

Field Description Example
IsParentToChild Logical scalar indicating if

Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

Output Arguments
measurement — Measurement vector
N-by-1 column vector

Measurement vector, returned as an N-by-1 column vector. The form of the measurement depends
upon which syntax you use.

• When the syntax does not use the measurementParameters argument, the measurement vector
is [x,y,z] when the frame input argument is set to 'rectangular' and [az;el;r;rr] when
the frame is set to 'spherical'.

• When the syntax uses the measurementParameters argument, the size of the measurement
vector depends on the values of the frame, HasVelocity, and HasElevation fields in the
measurementParameters structure.

frame measurement
'spherical' Specifies the azimuth angle, az, elevation

angle, el, range, r, and range rate, rr, of the
object with respect to the local ego vehicle
coordinate system. Positive values for range
rate indicate that an object is moving away
from the sensor.

Spherical measurements

 HasElevation
 false true
HasVeloc
ity

false [az;r] [az;el;r
]

true [az;r;rr
]

[az;el;r
;rr]

Angle units are in degrees, range units are in
meters, and range rate units are in m/s.

 ctmeas

1-227

frame measurement
'rectangular Specifies the Cartesian position and velocity

coordinates of the tracked object with respect
to the ego vehicle coordinate system.

Rectangular measurements

HasVelocity false [x;y;y]
true [x;y;z;vx;v

y;vz]

Position units are in meters and velocity units
are in m/s.

Data Types: double

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

1 Functions

1-228

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeasjac | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

 ctmeas

1-229

Introduced in R2018b

1 Functions

1-230

ctmeasjac
Jacobian of measurement function for constant turn-rate motion

Syntax
measurementjac = ctmeasjac(state)
measurementjac = ctmeasjac(state,frame)
measurementjac = ctmeasjac(state,frame,sensorpos)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel)
measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes)
measurementjac = ctmeasjac(state,measurementParameters)

Description
measurementjac = ctmeasjac(state) returns the measurement Jacobian, measurementjac,
for a constant turn-rate Kalman filter motion model in rectangular coordinates. state specifies the
current state of the track.

measurementjac = ctmeasjac(state,frame) also specifies the measurement coordinate
system, frame.

measurementjac = ctmeasjac(state,frame,sensorpos) also specifies the sensor position,
sensorpos.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel) also specifies the
sensor velocity, sensorvel.

measurementjac = ctmeasjac(state,frame,sensorpos,sensorvel,laxes) also specifies
the local sensor axes orientation, laxes.

measurementjac = ctmeasjac(state,measurementParameters) specifies the measurement
parameters, measurementParameters.

Examples

Measurement Jacobian of Constant Turn-Rate Motion in Rectangular Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Construct the measurement Jacobian in rectangular coordinates.

state = [1;10;2;20;5];
jacobian = ctmeasjac(state)

jacobian = 3×5

 1 0 0 0 0
 0 0 1 0 0
 0 0 0 0 0

 ctmeasjac

1-231

Measurement Jacobian of Constant Turn-Rate Motion in Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates.

state = [1;10;2;20;5];
measurementjac = ctmeasjac(state,'spherical')

measurementjac = 4×5

 -22.9183 0 11.4592 0 0
 0 0 0 0 0
 0.4472 0 0.8944 0 0
 0.0000 0.4472 0.0000 0.8944 0

Measurement Jacobian of Constant Turn-Rate Object in Translated Spherical Frame

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [5;-20;0].

state = [1;10;2;20;5];
sensorpos = [5;-20;0];
measurementjac = ctmeasjac(state,'spherical',sensorpos)

measurementjac = 4×5

 -2.5210 0 -0.4584 0 0
 0 0 0 0 0
 -0.1789 0 0.9839 0 0
 0.5903 -0.1789 0.1073 0.9839 0

Measurement Jacobian of Constant Turn-Rate Object Using Measurement Parameters

Define the state of an object in 2-D constant turn-rate motion. The state is the position and velocity in
each dimension, and the turn rate. Compute the measurement Jacobian with respect to spherical
coordinates centered at [25;-40;0].

state2d = [1;10;2;20;5];
sensorpos = [25,-40,0].';
frame = 'spherical';
sensorvel = [0;5;0];
laxes = eye(3);
measurementjac = ctmeasjac(state2d,frame,sensorpos,sensorvel,laxes)

measurementjac = 4×5

1 Functions

1-232

 -1.0284 0 -0.5876 0 0
 0 0 0 0 0
 -0.4961 0 0.8682 0 0
 0.2894 -0.4961 0.1654 0.8682 0

Put the measurement parameters in a structure and use the alternative syntax.

measparm = struct('Frame',frame,'OriginPosition',sensorpos,'OriginVelocity',sensorvel, ...
 'Orientation',laxes);
measurementjac = ctmeasjac(state2d,measparm)

measurementjac = 4×5

 -1.0284 0 -0.5876 0 0
 0 0 0 0 0
 -0.4961 0 0.8682 0 0
 0.2894 -0.4961 0.1654 0.8682 0

Input Arguments
state — State vector
real-valued 5-element vector | real-valued 7-element vector | 5-by-N real-valued matrix | 7-by-N real-
valued matrix

State vector for a constant turn-rate motion model in two or three spatial dimensions, specified as a
real-valued vector or matrix.

• When specified as a 5-element vector, the state vector describes 2-D motion in the x-y plane. You
can specify the state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega] where x represents the x-coordinate and vx represents the velocity in the
x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction. omega
represents the turn rate.

When specified as a 5-by-N matrix, each column represents a different state vector N represents
the number of states.

• When specified as a 7-element vector, the state vector describes 3-D motion. You can specify the
state vector as a row or column vector. The components of the state vector are
[x;vx;y;vy;omega;z;vz] where x represents the x-coordinate and vx represents the velocity
in the x-direction. y represents the y-coordinate and vy represents the velocity in the y-direction.
omega represents the turn rate. z represents the z-coordinate and vz represents the velocity in
the z-direction.

When specified as a 7-by-N matrix, each column represents a different state vector. N represents
the number of states.

Position coordinates are in meters. Velocity coordinates are in meters/second. Turn rate is in degrees/
second.
Example: [5;0.1;4;-0.2;0.01]
Data Types: double

 ctmeasjac

1-233

frame — Measurement frame
'rectangular' (default) | 'spherical'

Measurement frame, specified as 'rectangular' or 'spherical'. When the frame is
'rectangular', a measurement consists of the x, y, and z Cartesian coordinates of the tracked
object. When specified as 'spherical', a measurement consists of the azimuth, elevation, range,
and range rate of the tracked object.
Data Types: char

sensorpos — Sensor position
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor position with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters.
Data Types: double

sensorvel — Sensor velocity
[0;0;0] (default) | real-valued 3-by-1 column vector

Sensor velocity with respect to the global coordinate system, specified as a real-valued 3-by-1 column
vector. Units are in meters/second.
Data Types: double

laxes — Local sensor coordinate axes
[1,0,0;0,1,0;0,0,1] (default) | 3-by-3 orthogonal matrix

Local sensor coordinate axes, specified as a 3-by-3 orthogonal matrix. Each column specifies the
direction of the local x-, y-, and z-axes, respectively, with respect to the global coordinate system.
Data Types: double

measurementParameters — Measurement parameters
structure | array of structure

Measurement parameters, specified as a structure or an array of structures. The fields of the
structure are:

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

1 Functions

1-234

Field Description Example
OriginPosition Position offset of the origin of

the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

HasRange Logical scalar indicating if
range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

Data Types: struct

 ctmeasjac

1-235

Output Arguments
measurementjac — Measurement Jacobian
real-valued 3-by-5 matrix | real-valued 4-by-5 matrix

Measurement Jacobian, returned as a real-valued 3-by-5 or 4-by-5 matrix. The row dimension and
interpretation depend on value of the frame argument.

Frame Measurement Jacobian
'rectangular' Jacobian of the measurements [x;y;z] with

respect to the state vector. The measurement
vector is with respect to the local coordinate
system. Coordinates are in meters.

'spherical' Jacobian of the measurement vector
[az;el;r;rr] with respect to the state vector.
Measurement vector components specify the
azimuth angle, elevation angle, range, and range
rate of the object with respect to the local sensor
coordinate system. Angle units are in degrees.
Range units are in meters and range rate units
are in meters/second.

More About
Azimuth and Elevation Angle Definitions

Define the azimuth and elevation angles used in Sensor Fusion and Tracking Toolbox.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth angles lie between
–180 and 180 degrees. The elevation angle is the angle between the vector and its orthogonal
projection onto the xy-plane. The angle is positive when going toward the positive z-axis from the xy
plane.

1 Functions

1-236

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | cvmeas | cvmeasjac

Objects
trackingCKF | trackingEKF | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

 ctmeasjac

1-237

Introduced in R2018b

1 Functions

1-238

getTrackPositions
Returns updated track positions and position covariance matrix

Syntax
position = getTrackPositions(tracks,positionSelector)
[position,positionCovariances] = getTrackPositions(tracks,positionSelector)

Description
position = getTrackPositions(tracks,positionSelector) returns a matrix of track
positions. Each row contains the position of a tracked object.

[position,positionCovariances] = getTrackPositions(tracks,positionSelector)
returns a matrix of track positions.

Examples

Find Position and Covariance of 3-D Constant-Velocity Object

Create an extended Kalman filter tracker for 3-D constant-velocity motion.

tracker = trackerTOMHT('FilterInitializationFcn',@initcvekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;3;-7],'ObjectClassID',3);
tracks = step(tracker,detection,0)

tracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 1
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 3
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Obtain the position vector and position covariance for that track

 getTrackPositions

1-239

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0];
[position,positionCovariance] = getTrackPositions(tracks,positionSelector)

position = 1×3

 10.0000 3.0000 -7.0000

positionCovariance = 3×3

 1.0000 -0.0000 0
 -0.0000 1.0000 -0.0000
 0 -0.0000 1.0000

Find Position of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerTOMHT('FilterInitializationFcn',@initcaekf);

Update the tracker with a single detection and get the tracks output.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0)

tracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 1
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [9x1 double]
 StateCovariance: [9x9 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 3
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Obtain the position vector from the track state.

positionSelector = [1 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 1 0 0];
position = getTrackPositions(tracks, positionSelector)

position = 1×3

 10.0000 -20.0000 4.0000

1 Functions

1-240

Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB® struct
types containing sufficient information to obtain the track position vector and, optionally, the position
covariance matrix. At a minimum, the struct must contain a State column vector field and a
positive-definite StateCovariance matrix field. For an example of a track struct used by Sensor
Fusion and Tracking Toolbox, examine the output argument, tracks, returned by the step object
function of trackerGNN.

positionSelector — Position selection matrix
D-by-N real-valued matrix.

Position selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track positions from the state vector. Multiply the state vector by position selector matrix returns
positions. The same selector is applied to all object tracks.

Output Arguments
position — Positions of tracked objects
real-valued M-by-D matrix

Positions of tracked objects at last update time, returned as a real-valued M-by-D matrix. D
represents the number of position elements. M represents the number of tracks.

positionCovariances — Position covariance matrices of tracked objects
real-valued D-by-D-M array

Position covariance matrices of tracked objects, returned as a real-valued D-by-D-M array. D
represents the number of position elements. M represents the number of tracks. Each D-by-D
submatrix is a position covariance matrix for a track.

More About
Position Selector for 2-Dimensional Motion

Show the position selection matrix for two-dimensional motion when the state consists of the position
and velocity.

1 0 0 0
0 0 1 0

Position Selector for 3-Dimensional Motion

Show the position selection matrix for three-dimensional motion when the state consists of the
position and velocity.

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 getTrackPositions

1-241

Position Selector for 3-Dimensional Motion with Acceleration

Show the position selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getTrackVelocities | initcaekf | initcakf | initcaukf | initctekf | initctukf |
initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT

Introduced in R2018b

1 Functions

1-242

getTrackVelocities
Obtain updated track velocities and velocity covariance matrix

Syntax
velocity = getTrackVelocities(tracks,velocitySelector)
[velocity,velocityCovariances] = getTrackVelocities(tracks,velocitySelector)

Description
velocity = getTrackVelocities(tracks,velocitySelector) returns velocities of tracked
objects.

[velocity,velocityCovariances] = getTrackVelocities(tracks,velocitySelector)
also returns the track velocity covariance matrices.

Examples

Find Velocity of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerGNN('FilterInitializationFcn',@initcaekf);

Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4],'ObjectClassID',3);
tracks = step(tracker,detection,0.2);

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
velocity = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

 1.0093 -0.6728 0

Velocity and Covariance of 3-D Constant-Acceleration Object

Create an extended Kalman filter tracker for 3-D constant-acceleration motion.

tracker = trackerGNN('FilterInitializationFcn',@initcaekf);

 getTrackVelocities

1-243

Initialize the tracker with one detection.

detection = objectDetection(0,[10;-20;4],'ObjectClassID',3);
tracks = step(tracker,detection,0);

Add a second detection at a later time and at a different position.

detection = objectDetection(0.1,[10.3;-20.2;4.3],'ObjectClassID',3);
tracks = step(tracker,detection,0.2);

Obtain the velocity vector from the track state.

velocitySelector = [0 1 0 0 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 0 0 0 0 0 0 0 1 0];
[velocity,velocityCovariance] = getTrackVelocities(tracks,velocitySelector)

velocity = 1×3

 1.0093 -0.6728 1.0093

velocityCovariance = 3×3

 70.0685 0 0
 0 70.0685 0
 0 0 70.0685

Input Arguments
tracks — Track data structure
struct array

Tracked object, specified as a struct array. A track struct array is an array of MATLAB struct
types containing sufficient information to obtain the track position vector and, optionally, the position
covariance matrix. At a minimum, the struct must contain a State column vector field and a
positive-definite StateCovariance matrix field. For an example of a track struct used by Sensor
Fusion and Tracking Toolbox, examine the output argument, tracks, returned by the step object
function of trackerGNN.

velocitySelector — Velocity selection matrix
D-by-N real-valued matrix.

Velocity selector, specified as a D-by-N real-valued matrix of ones and zeros. D is the number of
dimensions of the tracker. N is the size of the state vector. Using this matrix, the function extracts
track velocities from the state vector. Multiply the state vector by velocity selector matrix returns
velocities. The same selector is applied to all object tracks.

Output Arguments
velocity — Velocities of tracked objects
real-valued 1-by-D vector | real-valued M-by-D matrix

Velocities of tracked objects at last update time, returned as a 1-by-D vector or a real-valued M-by-D
matrix. D represents the number of velocity elements. M represents the number of tracks.

1 Functions

1-244

velocityCovariances — Velocity covariance matrices of tracked objects
real-valued D-by-D-matrix | real-valued D-by-D-by-M array

Velocity covariance matrices of tracked objects, returned as a real-valued D-by-D-matrix or a real-
valued D-by-D-by-M array. D represents the number of velocity elements. M represents the number of
tracks. Each D-by-D submatrix is a velocity covariance matrix for a track.

More About
Velocity Selector for 2-Dimensional Motion

Show the velocity selection matrix for two-dimensional motion when the state consists of the position
and velocity.

0 1 0 0
0 0 0 1

Velocity Selector for 3-Dimensional Motion

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position and velocity.

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

Velocity Selector for 3-Dimensional Motion with Acceleration

Show the velocity selection matrix for three-dimensional motion when the state consists of the
position, velocity, and acceleration.

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getTrackPositions | initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf
| initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT

Introduced in R2018b

 getTrackVelocities

1-245

initcaabf
Create constant acceleration alpha-beta tracking filter from detection report

Syntax
abf = initcaabf(detection)

Description
abf = initcaabf(detection) initializes a constant acceleration alpha-beta tracking filter for
object tracking based on information provided in detection.

Examples

Creating Constant Acceleration trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initccabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcaabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 6×1

 1
 0
 0
 3
 0
 0

ABF.MeasurementNoise

ans = 2×2

 1.0000 0.2000
 0.2000 2.0000

1 Functions

1-246

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant acceleration alpha-beta tracking filter for object tracking, returned as a trackingABF
object.

Algorithms
• The function computes the process noise matrix assuming a unit standard deviation for the

acceleration change rate.
• You can use this function as the FilterInitializationFcn property of trackers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectDetection | trackingABF | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

 initcaabf

1-247

initcvabf
Create constant velocity tracking alpha-beta filter from detection report

Syntax
abf = initcvabf(detection)

Description
abf = initcvabf(detection) initializes a constant velocity alpha-beta filter for object tracking
based on information provided in detection.

Examples

Creating trackingABF Object from Detection

Create an objectDetection with a position measurement at x=1, y=3 and a measurement noise of [1
0.2; 0.2 2];

detection = objectDetection(0,[1;3],'MeasurementNoise',[1 0.2;0.2 2]);

Use initcvabf to create a trackingABF filter initialized at the provided position and using the
measurement noise defined above.

ABF = initcvabf(detection);

Check the values of the state and measurement noise. Verify that the filter state, ABF.State, has the
same position components as the Detection.Measurement. Verify that the filter measurement
noise, ABF.MeasurementNoise, is the same as the Detection.MeasurementNoise values.

ABF.State

ans = 4×1

 1
 0
 3
 0

ABF.MeasurementNoise

ans = 2×2

 1.0000 0.2000
 0.2000 2.0000

1 Functions

1-248

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
abf — Constant velocity alpha-beta filter
trackingABF object

Constant velocity alpha-beta tracking filter for object tracking, returned as a trackingABF object.

Algorithms
• The function computes the process noise matrix assuming a unit acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectDetection | trackingABF | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

 initcvabf

1-249

initcackf
Create constant acceleration tracking cubature Kalman filter from detection report

Syntax
ckf = initcackf(detection)

Description
ckf = initcackf(detection) initializes a constant acceleration cubature Kalman filter for object
tracking based on information provided in an objectDetection object, detection.

Examples

Create Constant Acceleration Tracking CKF Object from Rectangular Measurements

Create a constant acceleration tracking cubature Kalman filter object, trackingCKF, from an initial
detection report. The detection report is made from an initial 3-D position measurement of the
Kalman filter state in rectangular coordinates. You can obtain the 3-D position measurement using
the constant acceleration measurement function, cameas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initcackf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initcackf(detection)

ckf =
 trackingCKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

 StateTransitionFcn: @constacc
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Check the values of the state and the measurement noise. Verify that the filter state, ckf.State, has
the same position components as the detection measurement, detection.Measurement.

ckf.State

1 Functions

1-250

ans = 9×1

 1
 0
 0
 3
 0
 0
 0
 0
 0

Verify that the filter measurement noise, ckf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

ckf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Copyright 2018 The MathWorks, Inc.

Create Constant Acceleration Tracking CKF Object from Spherical Measurements

Create a constant acceleration tracking cubature Kalman filter object, trackingCKF, from an initial
detection report. The detection report is made from an initial 3-D position measurement of the
Kalman filter state in spherical coordinates. You can obtain the 3-D position measurement using the
constant acceleration measurement function, cameas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1

 initcackf

1-251

 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

Use initcackf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initcackf(detection)

ckf =
 trackingCKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

 StateTransitionFcn: @constacc
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementNoise: [4x4 double]
 HasAdditiveMeasurementNoise: 1

Verify that the filter state produces the same measurement as above.

meas2 = cameas(ckf.State, measParams)

meas2 = 4×1

 30.0000
 5.0000
 100.0000
 4.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
ckf — Constant acceleration cubature Kalman filter
trackingCKF object

Constant acceleration cubature Kalman filter for object tracking, returned as a trackingCKF object.

1 Functions

1-252

Algorithms
• The function computes the process noise matrix assuming a unit standard deviation for the

acceleration change rate.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | constacc | initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf
| initcvkf | initcvukf

Objects
objectDetection | trackingCKF | trackingEKF | trackingKF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initcackf

1-253

initcapf
Create constant acceleration tracking particle filter from detection report

Syntax
pf = initcapf(detection)

Description
pf = initcapf(detection) initializes a constant acceleration particle filter for object tracking
based on information provided in an objectDetection object, detection.

Examples

Create Constant Acceleration Tracking PF Object from Rectangular Measurements

Create a constant acceleration tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in rectangular coordinates. You can obtain the 3-D position measurement using the constant
acceleration measurement function, cameas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initcapf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initcapf(detection)

pf =
 trackingPF with properties:

 State: [9⨯1 double]
 StateCovariance: [9⨯9 double]
 IsStateVariableCircular: [0 0 0 0 0 0 0 0 0]

 StateTransitionFcn: @constacc
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [3x3 double]

 Particles: [9x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]

1 Functions

1-254

 ResamplingMethod: 'multinomial'

Check the values of the state and the measurement noise. Verify that the filter state, pf.State, has
approximately the same position components as the detection measurement,
detection.Measurement.

pf.State

ans = 9×1

 0.9674
 0.3690
 0.3827
 3.0317
 0.3056
 -0.5904
 0.0038
 0.0411
 -0.6815

Verify that the filter measurement noise, pf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

pf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Create Constant Acceleration Tracking PF Object from Spherical Measurements

Create a constant acceleration tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in spherical coordinates. You can obtain the 3-D position measurement using the constant
acceleration measurement function, cameas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

 initcapf

1-255

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

Use initcapf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initcapf(detection)

pf =
 trackingPF with properties:

 State: [9⨯1 double]
 StateCovariance: [9⨯9 double]
 IsStateVariableCircular: [0 0 0 0 0 0 0 0 0]

 StateTransitionFcn: @constacc
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [4x4 double]

 Particles: [9x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]
 ResamplingMethod: 'multinomial'

Verify that the filter state produces approximately the same measurement as
detection.Measurement.

meas2 = cameas(pf.State, detection.MeasurementParameters)

meas2 = 4×1

 29.9188
 5.0976
 99.8303
 4.0255

Input Arguments
detection — Detection report
objectDetection object

1 Functions

1-256

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
pf — Constant acceleration particle filter
trackingPF object

Constant acceleration particle filter for object tracking, returned as a trackingPF object.

Algorithms
• The function configures the filter with 1000 particles. In creating the filter, the function computes

the process noise matrix assuming a unit standard deviation for the acceleration change rate.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | constacc | initcackf | initcaekf | initcakf | initcaukf | initctpf | initcvpf

Objects
objectDetection | trackingEKF | trackingKF | trackingPF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initcapf

1-257

initcvckf
Create constant velocity tracking cubature Kalman filter from detection report

Syntax
ckf = initcvckf(detection)

Description
ckf = initcvckf(detection) initializes a constant velocity cubature Kalman filter for object
tracking based on information provided in an objectDetection object, detection.

Examples

Create Constant Velocity Tracking CKF Object from Rectangular Measurements

Create a constant velocity tracking cubature Kalman filter object, trackingCKF, from an initial
detection report. The detection report is made from an initial 3-D position measurement of the
Kalman filter state in rectangular coordinates. You can obtain the 3-D position measurement using
the constant velocity measurement function, cvmeas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initcvckf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initcvckf(detection)

ckf =
 trackingCKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 StateTransitionFcn: @constvel
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Check the values of the state and the measurement noise. Verify that the filter state, ckf.State, has
the same position components as the detection measurement, detection.Measurement.

ckf.State

1 Functions

1-258

ans = 6×1

 1
 0
 3
 0
 0
 0

Verify that the filter measurement noise, ckf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

ckf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Create Constant Velocity Tracking CKF Object from Spherical Measurements

Create a constant velocity tracking cubature Kalman filter object, trackingCKF, from an initial
detection report. The detection report is made from an initial 3-D position measurement of the
Kalman filter state in spherical coordinates. You can obtain the 3D position measurement using the
constant velocity measurement function, cvmeas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

 initcvckf

1-259

Use initcvckf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initcvckf(detection)

ckf =
 trackingCKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 StateTransitionFcn: @constvel
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementNoise: [4x4 double]
 HasAdditiveMeasurementNoise: 1

Verify that the filter state produces the same measurement as above.

meas2 = cvmeas(ckf.State, measParams)

meas2 = 4×1

 30.0000
 5.0000
 100.0000
 4.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
ckf — Constant velocity cubature Kalman filter for object tracking
trackingCKF object

Constant velocity cubature Kalman filter for object tracking, returned as a trackingCKF object.

Algorithms
• The function computes the process noise matrix assuming a unit acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.

1 Functions

1-260

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constvel | cvmeas | cvmeasjac | initcackf | initcaekf | initcakf | initcaukf | initctckf
| initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackingCKF | trackingEKF | trackingKF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initcvckf

1-261

initcvpf
Create constant velocity tracking particle filter from detection report

Syntax
pf = initcvpf(detection)

Description
pf = initcvpf(detection) initializes a constant velocity particle filter for object tracking based
on information provided in an objectDetection object, detection.

Examples

Create Constant Velocity Tracking PF Object from Rectangular Measurements

Create a constant velocity tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in rectangular coordinates. You can obtain the 3-D position measurement using the constant
velocity measurement function, cvmeas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initcvpf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initcvpf(detection)

pf =
 trackingPF with properties:

 State: [6⨯1 double]
 StateCovariance: [6⨯6 double]
 IsStateVariableCircular: [0 0 0 0 0 0]

 StateTransitionFcn: @constvel
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [3x3 double]

 Particles: [6x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]

1 Functions

1-262

 ResamplingMethod: 'multinomial'

Check the values of the state and the measurement noise. Verify that the filter state, pf.State, has
approximately the same position components as the detection measurement,
detection.Measurement.

pf.State

ans = 6×1

 0.9674
 0.3690
 3.0471
 0.2733
 0.0306
 -0.5904

Verify that the filter measurement noise, pf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

pf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Create Constant Velocity Tracking PF Object from Spherical Measurements

Create a constant velocity tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in spherical coordinates. You can obtain the 3-D position measurement using the constant
velocity measurement function, cvmeas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

detection =
 objectDetection with properties:

 initcvpf

1-263

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

Use initcvpf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initcvpf(detection)

pf =
 trackingPF with properties:

 State: [6⨯1 double]
 StateCovariance: [6⨯6 double]
 IsStateVariableCircular: [0 0 0 0 0 0]

 StateTransitionFcn: @constvel
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [4x4 double]

 Particles: [6x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]
 ResamplingMethod: 'multinomial'

Verify that the filter state produces approximately the same measurement as
detection.Measurement.

meas2 = cvmeas(pf.State, detection.MeasurementParameters)

meas2 = 4×1

 29.9188
 5.0976
 99.8303
 4.0255

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.

1 Functions

1-264

Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
pf — Constant velocity particle filter
trackingPF object

Constant velocity particle filter for object tracking, returned as a trackingPF object.

Algorithms
• The function configures the filter with 1000 particles. In creating the filter, the function computes

the process noise matrix assuming a unit acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constvel | cvmeas | initcapf | initctpf | initcvckf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackingEKF | trackingKF | trackingPF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initcvpf

1-265

initctckf
Create constant turn rate tracking cubature Kalman filter from detection report

Syntax
ckf = initctckf(detection)

Description
ckf = initctckf(detection) initializes a constant turn rate cubature Kalman filter for object
tracking based on information provided in an objectDetection object, detection.

Examples

Create Constant Turn Rate Tracking CKF Object from Rectangular Measurements

Create a turn rate tracking cubature Kalman filter object, trackingCKF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the Kalman filter
state in rectangular coordinates. You can obtain the 3-D position measurement using the constant
turn rate measurement function, ctmeas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initctckf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initctckf(detection)

ckf =
 trackingCKF with properties:

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Check the values of the state and the measurement noise. Verify that the filter state, ckf.State, has
the same position components as the detection measurement, detection.Measurement.

ckf.State

1 Functions

1-266

ans = 7×1

 1
 0
 3
 0
 0
 0
 0

Verify that the filter measurement noise, ckf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

ckf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Create Constant Turn Rate Tracking CKF Object from Spherical Measurements

Create a constant turn rate tracking cubature Kalman filter object, trackingCKF, from an initial
detection report. The detection report is made from an initial 3-D position measurement of the
Kalman filter state in spherical coordinates. You can obtain the 3-D position measurement using the
constant turn rate measurement function, ctmeas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

 initctckf

1-267

Use initctckf to create a trackingCKF filter initialized at the provided position and using the
measurement noise defined above.

ckf = initctckf(detection)

ckf =
 trackingCKF with properties:

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementNoise: [4x4 double]
 HasAdditiveMeasurementNoise: 1

Verify that the filter state produces the same measurement as above.

meas2 = ctmeas(ckf.State, measParams)

meas2 = 4×1

 30.0000
 5.0000
 100.0000
 4.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
ckf — Constant turn rate cubature Kalman filter for object tracking
trackingCKF object

Constant turn rate cubature Kalman filter for object tracking, returned as a trackingCKF object.

Algorithms
• The function computes the process noise matrix assuming a unit acceleration standard deviation

and a unit angular acceleration standard deviation.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.

1 Functions

1-268

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constturn | ctmeas | initcackf | initcaekf | initcakf | initcaukf | initctekf |
initctukf | initcvckf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackingCKF | trackingEKF | trackingKF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initctckf

1-269

initctpf
Create constant turn rate tracking particle filter from detection report

Syntax
pf = initctpf(detection)

Description
pf = initctpf(detection) initializes a constant turn rate particle filter for object tracking based
on information provided in an objectDetection object, detection.

Examples

Create Constant Turn Rate Tracking PF Object from Rectangular Measurements

Create a constant turn rate tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in rectangular coordinates. You can obtain the 3-D position measurement using the constant
turn rate measurement function, ctmeas.

This example uses the coordinates, x = 1, y = 3, z = 0 and a 3-D position measurement noise of
[1 0.2 0; 0.2 2 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);

Use initctpf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initctpf(detection)

pf =
 trackingPF with properties:

 State: [7⨯1 double]
 StateCovariance: [7⨯7 double]
 IsStateVariableCircular: [0 0 0 0 0 0 0]

 StateTransitionFcn: @constturn
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [3x3 double]

 Particles: [7x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]

1 Functions

1-270

 ResamplingMethod: 'multinomial'

Check the values of the state and the measurement noise. Verify that the filter state, pf.State, has
approximately the same position components as the detection measurement,
detection.Measurement.

pf.State

ans = 7×1

 0.9674
 0.3690
 3.0471
 0.2733
 0.3056
 -0.0590
 0.0382

Verify that the filter measurement noise, pf.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

pf.MeasurementNoise

ans = 3×3

 1.0000 0.2000 0
 0.2000 2.0000 0
 0 0 1.0000

Create Constant Turn Rate Tracking PF Object from Spherical Measurements

Create a constant turn rate tracking particle filter object, trackingPF, from an initial detection
report. The detection report is made from an initial 3-D position measurement of the particle filter
state in spherical coordinates. You can obtain the 3D position measurement using the constant turn
rate measurement function, ctmeas.

This example uses the coordinates, az = 30, e1 = 5, r = 100, rr = 4 and a measurement
noise of diag([2.5, 2.5, 0.5, 1].^2).

meas = [30;5;100;4];
measNoise = diag([2.5, 2.5, 0.5, 1].^2);

Use the MeasurementParameters property of the detection object to define the frame. When not
defined, the fields of the MeasurementParameters struct use default values. In this example, sensor
position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters',measParams)

detection =
 objectDetection with properties:

 initctpf

1-271

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

Use initctpf to create a trackingPF filter initialized at the provided position and using the
measurement noise defined above.

pf = initctpf(detection)

pf =
 trackingPF with properties:

 State: [7⨯1 double]
 StateCovariance: [7⨯7 double]
 IsStateVariableCircular: [0 0 0 0 0 0 0]

 StateTransitionFcn: @constturn
 ProcessNoiseSamplingFcn: []
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementLikelihoodFcn: []
 MeasurementNoise: [4x4 double]

 Particles: [7x1000 double]
 Weights: [1x1000 double]
 ResamplingPolicy: [1x1 trackingResamplingPolicy]
 ResamplingMethod: 'multinomial'

Verify that the filter state produces approximately the same measurement as
detection.Measurement.

meas2 = ctmeas(pf.State, detection.MeasurementParameters)

meas2 = 4×1

 29.9188
 5.0976
 99.8303
 4.0255

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.

1 Functions

1-272

Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
pf — Constant turn rate particle filter
trackingPF object

Constant turn rate particle filter for object tracking, returned as a trackingPF object.

Algorithms
• The function configures the filter with 1000 particles. In creating the filter, the function computes

the process noise matrix assuming a unit acceleration standard deviation and a unit angular
acceleration standard deviation.

• You can use this function as the FilterInitializationFcn property of trackerTOMHT and
trackerGNN System objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constturn | ctmeas | initcapf | initctckf | initctekf | initctukf | initcvpf

Objects
objectDetection | trackingEKF | trackingKF | trackingPF | trackingUKF

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 initctpf

1-273

initcaggiwphd
Create constant acceleration ggiwphd filter

Syntax
phd = initcaggiwphd
phd = initcaggiwphd(detections)

Description
phd = initcaggiwphd initializes a constant acceleration ggiwphd filter with no zeros components
in the filter.

phd = initcaggiwphd(detections) initializes a constant acceleration ggiwphd filter based on
information provided in object detections, detections. The function initializes a constant
acceleration state with the same convention as constacc and cameas, [x;vx;ax;y;vy;ay;z;vz;az].

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT system objects.

Examples

Initialize Constant Acceleration ggiwphd filter

Consider an object located at position [1;2;3] with detections uniformly spread around it's extent. The
size of the extent is 1.2, 2.3 and 3.5 in x, y and z directions, respectively.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2018) % Reproducible results
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant acceleration ggiwphd filter with the generated detections.

phd = initcaggiwphd(detections);

Check the filter has the same position estimates as the mean of measurements.

states = phd.States

states = 9×1

 1.2856
 0
 0

1 Functions

1-274

 1.9950
 0
 0
 2.9779
 0
 0

measurementMean = mean(measurements,2)

measurementMean = 3×1

 1.2856
 1.9950
 2.9779

Check the extent and expected number of detections.

extent = phd.ScaleMatrices/(phd.DegreesOfFreedom - 4)

extent = 3×3

 1.4603 0.0885 -0.2403
 0.0885 3.0050 -0.0225
 -0.2403 -0.0225 4.8365

expDetections = phd.Shapes/phd.Rates

expDetections = 20

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
phd — ggiwphd filter
ggiwphd object

ggiwphd filter, returned as a ggiwphd object.

Algorithms
• You can use initcaggiwphd as the FilterInitializationFcn property of

trackingSensorConfiguration.

 initcaggiwphd

1-275

• When detections are provided as input, the function adds one component to the density which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to describe the Inverse-Wishart distribution.
• The function uses the number of detections to describe the Gamma distribution.
• The function configures the process noise of the filter by assuming a unit standard deviation for

the acceleration change rate.
• The function specifies a maximum of 500 components in the filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | initctggiwphd | initcvggiwphd | trackerPHD

Introduced in R2019a

1 Functions

1-276

initctggiwphd
Create constant turn-rate ggiwphd filter

Syntax
phd = initctggiwphd
phd = initctggiwphd(detections)

Description
phd = initctggiwphd initializes a constant turn-rate ggiwphd filter with zero components in the
filter.

phd = initctggiwphd(detections) initializes a constant turn-rate ggiwphd filter based on
information provided in object detections, detections. The function initializes a constant turn-rate
state with the same convention as constturn and ctmeas, [x;vx;y;vy;ω;z;vz], where ω is the turn-
rate.

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT system objects.

Examples

Initialize Constant Turn-Rate ggiwphd filter

Consider an object located at position [1;2;3] with detections uniformly spread around it's extent. The
size of the extent is 1.2, 2.3 and 3.5 in x, y and z directions, respectively.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2018) % Reproducible results
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant turn-rate ggiwphd filter with the generated detections.

phd = initctggiwphd(detections);

Check the values of state in the filter has the same position estimates as the mean of measurements.

states = phd.States

states = 7×1

 1.2856
 0

 initctggiwphd

1-277

 1.9950
 0
 0
 2.9779
 0

measurementMean = mean(measurements,2)

measurementMean = 3×1

 1.2856
 1.9950
 2.9779

Check the extent and expected number of detections.

extent = phd.ScaleMatrices/(phd.DegreesOfFreedom - 4)

extent = 3×3

 1.4603 0.0885 -0.2403
 0.0885 3.0050 -0.0225
 -0.2403 -0.0225 4.8365

expDetections = phd.Shapes/phd.Rates

expDetections = 20

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
phd — ggiwphd filter
ggiwphd object

ggiwphd filter, returned as a ggiwphd object.

Algorithms
• You can use initctggiwphd as the FilterInitializationFcn property of

trackingSensorConfiguration.

1 Functions

1-278

• When detections are provided as input, the function adds one component to the density which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to describe the Inverse-Wishart distribution.
• The function uses the number of detections to describe the Gamma distribution.
• The function configures the process noise of the filter by assuming a unit angular acceleration

standard deviation.
• The function specifies a maximum of 500 components in the filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | initcaggiwphd | initcvggiwphd | trackerPHD

Introduced in R2019a

 initctggiwphd

1-279

initcvggiwphd
Create constant velocity ggiwphd filter

Syntax
phd = initcvggiwphd
phd = initcvggiwphd(detections)

Description
phd = initcvggiwphd initializes a constant velocity ggiwphd filter with zero components in the
filter.

phd = initcvggiwphd(detections) initializes a constant velocity ggiwphd filter based on
information provided in object detections, detections. The function initializes a constant velocity
state with the same convention as constvel and cvmeas, [x;vx;y;vy;z;vz].

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT system objects.

Examples

Initialize Constant Velocity ggiwphd filter

Consider an object located at position [1;2;3] with detections uniformly spread around it's extent. The
size of the extent is 1.2, 2.3 and 3.5 in x, y and z directions, respectively.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2018) % Reproducible results
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant velocity ggiwphd filter with the generated detections.

phd = initcvggiwphd(detections);

Check the values of state in the filter has the same position estimates as the mean of measurements.

states = phd.States

states = 6×1

 1.2856
 0
 1.9950

1 Functions

1-280

 0
 2.9779
 0

measurementMean = mean(measurements,2)

measurementMean = 3×1

 1.2856
 1.9950
 2.9779

Check the extent and expected number of detections.

extent = phd.ScaleMatrices/(phd.DegreesOfFreedom - 4)

extent = 3×3

 1.4603 0.0885 -0.2403
 0.0885 3.0050 -0.0225
 -0.2403 -0.0225 4.8365

expDetections = phd.Shapes/phd.Rates

expDetections = 20

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
phd — ggiwphd filter
ggiwphd object

ggiwphd filter, returned as a ggiwphd object.

Algorithms
• You can use initcvggiwphd as the FilterInitializationFcn property of

trackingSensorConfiguration.
• When detections are provided as input, the function adds one component to the density which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

 initcvggiwphd

1-281

• The function uses the spread of measurements to describe the Inverse-Wishart distribution.
• The function uses the number of detections to describe the Gamma distribution.
• The function configures the process noise of the filter by assuming a unit acceleration standard

deviation.
• The function specifies a maximum of 500 components in the filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | initcaggiwphd | initctggiwphd | trackerPHD

Introduced in R2019a

1 Functions

1-282

initcagmphd
Create constant acceleration gmphd filter

Syntax
phd = initcagmphd
phd = initcagmphd(detections)

Description
phd = initcagmphd initializes a constant acceleration gmphd filter with zero components in the
filter.

phd = initcagmphd(detections) initializes a constant acceleration gmphd filter based on
information provided in object detections, detections. The function initializes a constant
acceleration state with the same convention as constacc and cameas, [x; vx; ax; y; vy; ay; z; vz; az].

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT System objects.

Examples

Initialize Constant Acceleration gmphd Filter for Point Target

Consider a point target located at [1;2;3]. Create detection for the target using
objectDetection.

detection = objectDetection(0,[1;2;3]);

Initialize a constant acceleration gmphd filter using initcagmphd.

phd = initcagmphd(detection);

Illustrate the initial state and the extent setup of the phd filter.

state = phd.States

state = 9×1

 1
 0
 0
 2
 0
 0
 3
 0
 0

 initcagmphd

1-283

extent = phd.HasExtent

extent = logical
 0

Initialize Constant Acceleration gmphd Filter for Extended Object

Consider an extended object located at [1;2;3]. The object's detections are uniformly distributed in x-,
y-, and z-directions with dimensions of 1.2, 2.3, and 3.5, respectively. Generate 20 randomly
distributed detections for the object using objectDetection.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2019);
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant acceleration gmphd filter using initcagmphd.

phd = initcagmphd(detections);

The initial state of the filter is same as the mean of the measurements.

state = phd.States

state = 9×1

 1.1034
 0
 0
 2.5597
 0
 0
 2.4861
 0
 0

mean_measure = mean(measurements,2)

mean_measure = 3×1

 1.1034
 2.5597
 2.4861

By default, the function sets the HasExtent property to true if the number of measurements is
greater than 1.

extent = phd.HasExtent

1 Functions

1-284

extent = logical
 1

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',[1.0 0 0; 0
2.0 0; 0 0 1.5])

Output Arguments
phd — gmphd filter
gmphd object

Gaussian mixture PHD filter, returned as a gmphd object.

Algorithms
• You can use initcagmphd as the FilterInitializationFcn property of

trackingSensorConfiguration.
• When detections are provided as input, the function adds one component to the density, which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to specify the positional covariance.
• The function configures the process noise of the filter by assuming a unit standard deviation for

the acceleration change rate.
• The function specifies a maximum of 500 components in the filter.
• The function sets the HasExtent property of the filter to true if the number of input detections

are greater than one.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gmphd | initctgmphd | initcvgmphd | trackerPHD

Introduced in R2019b

 initcagmphd

1-285

initctgmphd
Create constant turn-rate gmphd filter

Syntax
phd = initctgmphd
phd = initctgmphd(detections)

Description
phd = initctgmphd initializes a constant turn-rate gmphd filter with zero components in the filter.

phd = initctgmphd(detections) initializes a constant turn-rate gmphd filter based on
information provided in object detections, detections. The function initializes a constant turn-rate
state with the same convention as constturn and ctmeas, [x; vx; y; vy; ω; z; vz], where ω is the turn-
rate.

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT System objects.

Examples

Initialize Constant Turn-Rate gmphd Filter for Point Target

Consider a point target located at [1;2;3]. Create detection for the target using
objectDetection.

detection = objectDetection(0,[1;2;3]);

Initialize a constant turn-rate gmphd filter using initctgmphd.

phd = initctgmphd(detection);

Display the initial state and the extent setup of the filter.

state = phd.States

state = 7×1

 1
 0
 2
 0
 0
 3
 0

extent = phd.HasExtent

1 Functions

1-286

extent = logical
 0

Initialize Constant Turn-Rate gmphd Filter for Extended Object

Consider an extended object located at [1;2;3]. The object's detections are uniformly distributed in x-,
y-, and z-directions with dimensions of 1.2, 2.3, and 3.5, respectively. Generate 20 randomly
distributed detections for the object using objectDetection.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2019);
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant turn-rate gmphd filter using initctgmphd.

phd = initctgmphd(detections);

The initial state of the filter is same as the mean of the measurements.

state = phd.States

state = 7×1

 1.1034
 0
 2.5597
 0
 0
 2.4861
 0

mean_measure = mean(measurements,2)

mean_measure = 3×1

 1.1034
 2.5597
 2.4861

By default, the function sets the HasExtent property to true if the number of measurements is
greater than 1.

extent = phd.HasExtent

extent = logical
 1

 initctgmphd

1-287

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',[1.0 0 0; 0
2.0 0; 0 0 1.5])

Output Arguments
phd — gmphd filter
gmphd object

Gaussian mixture PHD filter, returned as a gmphd object.

Algorithms
• You can use initctgmphd as the FilterInitializationFcn property of

trackingSensorConfiguration.
• When detections are provided as input, the function adds one component to the density, which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to specify the positional covariance.
• The function configures the process noise of the filter by assuming a unit acceleration standard

deviation and a unit angular acceleration standard deviation.
• The function specifies a maximum of 500 components in the filter.
• The function sets the HasExtent property of the filter to true if the number of input detections

are greater than one.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gmphd | initcagmphd | initcvgmphd | trackerPHD

Introduced in R2019b

1 Functions

1-288

initcvgmphd
Create constant velocity gmphd filter

Syntax
phd = initcvgmphd
phd = initcvgmphd(detections)

Description
phd = initcvgmphd initializes a constant velocity gmphd filter with zero components in the filter.

phd = initcvgmphd(detections) initializes a constant velocity gmphd filter based on information
provided in object detections, detections. The function initializes a constant velocity state with the
same convention as constvel and cvmeas, [x; vx; y; vy; z; vz].

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT System objects.

Examples

Initialize Constant Velocity gmphd Filter for Point Target

Consider a point target located at [1;2;3]. Create a detection for the target using
objectDetection.

detection = objectDetection(0,[1;2;3]);

Initialize a constant velocity gmphd filter using initcvgmphd.

phd = initcvgmphd(detection);

Display the initial state and the extent setup of the gmphd filter.

state = phd.States

state = 6×1

 1
 0
 2
 0
 3
 0

extent = phd.HasExtent

 initcvgmphd

1-289

extent = logical
 0

Initialize Constant Velocity gmphd Filter for Extended Object

Consider an extended object located at [1;2;3]. The object's detections are uniformly distributed in x-,
y-, and z-directions with dimensions of 1.2, 2.3, and 3.5, respectively. Generate 20 randomly
distributed detections for the object using objectDetection.

detections = cell(20,1);
location = [1;2;3];
dimensions = [1.2;2.3;3.5];
rng(2019);
measurements = location + dimensions.*(-1 + 2*rand(3,20));
for i = 1:20
 detections{i} = objectDetection(0,measurements(:,i));
end

Initialize a constant velocity gmphd filter using initcvgmphd.

phd = initcvgmphd(detections);

The initial state of the filter is same as the mean of the measurements.

state = phd.States

state = 6×1

 1.1034
 0
 2.5597
 0
 2.4861
 0

mean_measure = mean(measurements,2)

mean_measure = 3×1

 1.1034
 2.5597
 2.4861

By default, the function sets the HasExtent property to true if the number of measurements is larger
than 1.

extent = phd.HasExtent

extent = logical
 1

1 Functions

1-290

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',[1.0 0 0; 0
2.0 0; 0 0 1.5])

Output Arguments
phd — gmphd filter
gmphd object

Gaussian mixture PHD filter, returned as a gmphd object.

Algorithms
• You can use initcvgmphd as the FilterInitializationFcn property of

trackingSensorConfiguration.
• When detections are provided as input, the function adds one component to the density, which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to specify the positional covariance.
• The function configures the process noise of the filter by assuming a unit acceleration standard

deviation.
• The function specifies a maximum of 500 components in the filter.
• The function sets the HasExtent property of the filter to true if the number of input detections

are greater than one.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
gmphd | initcagmphd | initctgmphd | trackerPHD

Introduced in R2019b

 initcvgmphd

1-291

initctrectgmphd
Create constant turn-rate rectangular target gmphd filter

Syntax
phd = initctrectgmphd
phd = initctrectgmphd(detections)

Description
phd = initctrectgmphd initializes a constant turn-rate rectangular target gmphd filter with zero
components in the filter.

phd = initctrectgmphd(detections) initializes a constant turn-rate rectangular target gmphd
filter based on information provided in object detections, detections. The function initializes a
constant turn-rate rectangular state with the same convention as ctrect and ctrectmeas, [x; y; s;
θ; ω; L; W]. See “Algorithms” on page 1-293 for the meaning of these variables.

.

Note This initialization function is not compatible with trackerGNN, trackerJPDA, and
trackerTOMHT System objects.

Examples

Initialize gmphd for Rectangular Target

Load detections generated by a rectangular target and the corresponding truth.

load ('rectangularTargetDetections','detections','truthState');

Initialize the filter using detections.

phd = initctrectgmphd(detections);

Display the estimated state and the truth state.

estState = phd.States

estState = 7×1

 -0.0688
 49.2233
 0
 0
 0
 3.3942
 0.9871

1 Functions

1-292

truthState

truthState = 7×1

 0
 50.0000
 0
 30.0000
 0
 4.7000
 1.8000

Input Arguments
detections — Object detections
cell array of objectDetection objects

Object detections, specified as a cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise',[1.0 0 0; 0
2.0 0; 0 0 1.5])

Output Arguments
phd — gmphd filter
gmphd object

Gaussian mixture PHD filter, returned as a gmphd object.

Algorithms
Initialization Process

• You can use initctrectgmphd as the FilterInitializationFcn property of
trackingSensorConfiguration.

• When detections are provided as input, the function adds one component to the density, which
reflects the mean of the detections. When the function is called without any inputs, a filter is
initialized with no components in the density.

• The function uses the spread of measurements to specify the length and width of the rectangle.
• The function configures the process noise of the filter by assuming a unit acceleration and a unit

yaw-acceleration standard deviation.
• The function specifies a maximum of 500 components in the filter.
• The function configures the covariance of the state using a unit covariance in observed

dimensions.

Rectangular Target State

The rectangular target state contains [x; y; s;θ; ω; L; W]:

 initctrectgmphd

1-293

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

s Speed in the heading direction m/s
θ Orientation angle of the

rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctrect | ctrectcorners | ctrectjac | ctrectmeas | ctrectmeasjac | gmphd | initcagmphd |
initctgmphd | initctrectgmphd | trackerPHD

Introduced in R2019b

1 Functions

1-294

ctrectcorners
Corner measurements of constant turn-rate rectangular target

Syntax
zCorners = ctrectcorners(states)
zCorners = ctrectcorners(states,sensorParameters)

Description
zCorners = ctrectcorners(states) returns the positions of the corners for constant turn-rate
rectangular targets in a rectangular frame.

zCorners = ctrectcorners(states,sensorParameters) specifies the parameters of the
sensor that measures the corners of rectangular targets.

Examples

Position of Corners in Sensor Reference Frame

Define sensor reference frame by specifying the sensorParameters input.

sensorPosition = [-5;10;0];
sensorOrientation = rotmat(quaternion([30 0 0],'eulerd','ZYX','frame'),'frame');
sensorParams = struct('Frame','Rectangular', ...
 'OriginPosition',sensorPosition,...
 'Orientation',sensorOrientation);

Define the constant turn-rate state for the rectangle target.

state = [10;5;1.6;30;0.5;4.7;1.8];

Compute corner positions in sensor reference frame.

corners = ctrectcorners(state,sensorParams);

Set up visualization environment using theaterPlot.

% Create a theater plot.
tp = theaterPlot;
% Plot the state using a track plotter.
statePlotter = trackPlotter(tp,'DisplayName','Target State');
% Plot the corners using a detection plotter.
cornerPlotter = detectionPlotter(tp,'DisplayName','Corners');

Compute inputs and plot.

targetPos = [state(1) state(2) 0];
targetOrientation = rotmat(quaternion([state(4) 0 0],'eulerd','ZYX','frame'),'frame');
targetDims = struct('Length',state(6),...
 'Width',state(7),...

 ctrectcorners

1-295

 'Height',5,...
 'OriginOffset',[0 0 0]);

cornerPosGlobal = sensorOrientation*corners(:,:) + sensorPosition;
statePlotter.plotTrack(targetPos,targetDims,targetOrientation);
cornerPlotter.plotDetection(cornerPosGlobal');

Input Arguments
states — Current rectangular target states
7-by-N real-valued matrix

Current rectangular target states, specified as a 7-by-N real-valued matrix, where N is the number of
states. The seven dimensional rectangular state is defined as [x; y; s; θ; ω; L; W]. The meaning of
these variables and their units are:

Variable Meaning Unit
x Position of the rectangle center

in x direction
m

y Position of the rectangle center
in y direction

m

s Speed in the heading direction m/s

1 Functions

1-296

θ Orientation angle of the
rectangle with respect to x
direction

degree

ω Turn-rate degree/s
L Length of the rectangle m
W Width of the rectangle m

Example: [1;2;2;30;1;4.7;1.8]
Data Types: single | double

sensorParameters — Parameters for sensor transform function
structure | array of structures

Parameters for the sensor transform function, returned as a structure or an array of structures. If you
only need to transform the state once, specify it as a structure. If you need to transform the state n
times, specify it as an n-by-1 array of structures. For example, to transform a state from the scenario
frame to the sensor frame, you usually need to first transform the state from the scenario rectangular
frame to the platform rectangular frame, and then transform the state from the platform rectangular
frame to the sensor spherical frame.

The fields of the structure are:

Field Description
Frame Child coordinate frame type, specified as

'Rectangular' or 'Spherical'.
OriginPosition Child frame origin position expressed in the

parent frame, specified as a 3-by-1 vector.
OriginVelocity Child frame origin velocity expressed in the

parent frame, specified as a 3-by-1 vector.

 ctrectcorners

1-297

Orientation Relative orientation between frames, specified as
a 3-by-3 rotation matrix. If the
IsParentToChild property is set to false,
then specify Orientation as the rotation from
the child frame to the parent frame. If the
IsParentToChild property is set to true, then
specify Orientation as the rotation from the
parent frame to the child frame.

IsParentToChild Flag to indicate the direction of rotation between
parent and child frame, specified as true or
false. The default is false. See description of
the Orientation field for details.

HasAzimuth Indicates whether outputs contain azimuth
components, specified as true or false.

HasElevation Indicates whether outputs contain elevation
components, specified as true or false.

HasRange Indicates whether outputs contain range
components, specified as true or false.

HasVelocity Indicates whether outputs contain velocity
components, specified as true or false.

Note that here the scenario frame is the parent frame of the platform frame, and the platform frame
is the parent frame of the sensor frame.

When frame is 'Rectangular', HasVelocity determines if the measurement is returned in the
form of [x; y; z; vx; vy; vz] or [x; y; z].

When frame is 'spherical', the returned measurements are in the order of [azimuth, elevation,
range, range-rate]. The elements of the returned measurements are determined by:

• HasAzimuth — Determines if output contains azimuth measurement.
• HasElevation — Determines if output contains elevation measurement.
• HasRange — Determines if output contains range measurement.
• HasVelocity — Determines if output contains range-rate measurement on the condition that

HasRange is 'true'. If HasRange is 'false', the returned measurement does not contain
range-rate (even though HasVelocity is 'true').

Data Types: struct

Output Arguments
zCorners — States of corners
real-valued M-by-N-by-4 array.

States of corners, returned as a real-valued M-by-N-by-4 array. Each page (an M-by-N matrix) of the
array corresponds to one corner for all the states given in the states input. N is the number of states.
M is the dimension of output specified by the sensorParameters input. If unspecified, the default
value of M is three, which corresponds to 3-D Cartesian position coordinates.

1 Functions

1-298

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ctrect | ctrectjac | ctrectmeas | ctrectmeasjac | gmphd | initctrectgmphd | trackerPHD

Introduced in R2018b

 ctrectcorners

1-299

switchimm
Model conversion function for trackingIMM object

Syntax
x = switchimm(modelType1,x1,modelType2)
x = switchimm(___ ,x2)

Description
x = switchimm(modelType1,x1,modelType2) converts the State or StateCovariance
properties of the trackingIMM object from modelType1 state definition to modelType2 state
definition.

• modelType1 –– Specifies the string name of the current motion model.
• x1 –– Specifies State or StateCovariance corresponding to modelType1.
• modelType2 –– Specifies the string name of the motion model to which x1 needs to be converted.

x = switchimm(___ ,x2) additionally lets you specify the size and type of the output. When not
specified, x has the same data type and dimensionality as x1.

x2 specifies State or StateCovariance corresponding to modelType2.

Examples

Convert State from Constant Acceleration to Constant Velocity

Convert state from constant acceleration model to constant velocity model using the switchimm
function.

Initialization

Set the current model to 'constacc' and the destination model to 'constvel'. The variable x1
defines the state in the current model.

modelType1 = 'constacc';
modelType2 = 'constvel';
x1 = single([1;2;3;4;5;6]);

Conversion

The switchimm function converts the 2-D constant acceleration state input to a 2-D constant velocity
state output. The output has the same dimensionality and data type as the input x1.

x = switchimm(modelType1,x1,modelType2)

x = 4x1 single column vector

 1
 2

1 Functions

1-300

 4
 5

Convert State from Constant Acceleration to Constant Turn

Convert state from constant acceleration model to constant turn model using the switchimm
function. Specify x2 as an input parameter.

Initialization

Set the current model to 'constacc' and the destination model to 'constturn'. The variable x1
defines the state in the current model. The size and data type of the output is determined by the
optional input x2.

modelType1 = 'constacc';
modelType2 = 'constturn';
x1 = [1;2;3;4;5;6];
x2 = [0;0;0;0;0;0;0];

Conversion

The switchimm function converts the 2-D constant acceleration state input to a 3-D constant turn
model state output. The output has the same size and data type as the input x2.

x = switchimm(modelType1,x1,modelType2,x2)

x = 7×1

 1
 2
 4
 5
 0
 0
 0

Input Arguments
modelType1 — Current motion model
'constvel' | 'constacc' | 'constturn'

Current motion model, specified as:

• 'constvel' –– Constant velocity motion model.
• 'constacc' –– Constant-acceleration motion model.
• 'constturn' –– Constant turn-rate motion model.

x1 — State or state covariance of current model
vector | matrix

State vector or state covariance matrix corresponding to the current model in modelType1, specified
as an L-by-1 real vector or an L-by-L real matrix.

 switchimm

1-301

The size of the state vector must fit the motion model. For example, if the modelType is
'constvel', the state vector must be of size 2, 4, or 6. Similarly, if the modelType is 'constacc',
the state vector must be of size 3, 6, or 9. If the modelType is 'constturn', the state vector must
be of size 5, 7, 10, 15, 14, or 21. The relationship between model type, state size, and the space
dimension is given by the following table:

modelType1 Supported Space Dimension State size
'constvel' 1-D, 2-D, 3-D 2 ✕ Space dimension
'constacc' 1-D, 2-D, 3-D 3 ✕ Space dimension
'constturn' 2-D and 3-D 5 for 2-D space and 7 for 3-D

space

The 'constturn' model type supports only 2-D and 3-D spaces, since a turn cannot be made in 1-D
space. If the space dimension is computed to be 1-D, that is, the state size equals 5 or 7, the function
treats the output dimension as 2 and the values corresponding to the second dimension are set to 0.
For example, run the following in the MATLAB command prompt:

switchimm('constvel',rand(2,1),'constturn')

Data Types: single | double

modelType2 — Motion model to which x1 needs to be converted
'constvel' | 'constacc' | 'constturn'

Motion model to which x1 needs to be converted, specified as:

• 'constvel' –– Constant velocity motion model.
• 'constacc' –– Constant-acceleration motion model.
• 'constturn' –– Constant turn-rate motion model.

x2 — Specify size and type of output state or state covariance
vector | matrix

The optional input x2 has the same size and data type as the output state vector or the state
covariance matrix, x. The variable x2 does not contain the actual output state information, but only
holds the size and the data type of the output state. For example, when x2 is set to [0;0;0;0;0;0;0], the
function determines the output state vector to be a vector of size 7 with a data type of double.

The size of the state vector must fit the motion model. For example, if the modelType is
'constvel', the state vector must be of size 2, 4, or 6. Similarly, if the modelType is 'constacc',
the state vector must be of size 3, 6, or 9. The relationship between model type, state size, and the
space dimension is given by the following table:

modelType1 Supported Space Dimension State size
'constvel' 1-D, 2-D, 3-D 2 ✕ Space dimension
'constacc' 1-D, 2-D, 3-D 3 ✕ Space dimension
'constturn' 2-D and 3-D 5 for 2-D space and 7 for 3-D

space

Example: [0;0;0;0;0;0;0]
Data Types: single | double

1 Functions

1-302

Output Arguments
x — State or state covariance corresponding to modelType2
vector | matrix

State vector or state covariance matrix, corresponding to the motion model specified in modelType2.

The relationship between model type, state size, and the space dimension is given by the following
table:

modelType1 Supported Space Dimension State size
'constvel' 1-D, 2-D, 3-D 2 ✕ Space dimension
'constacc' 1-D, 2-D, 3-D 3 ✕ Space dimension
'constturn' 2-D and 3-D 5 for 2-D space and 7 for 3-D

space

If x2 is not specified:

Given modelType1 and x1, the function determines the input state dimension based on the
relationship specified in the table. For example, if modelType1 is 'constvel', and x1 is a 4-by-1
vector, the input state dimension is given by 4/2, which equals 2.

If modelType1 is 'constacc' and x1 is a 6-by-1 vector, the input state dimension is given by 6/3,
which equals 2.

In this case when x2 is not specified, the output x has the same data type as x1 and the dimension is
calculated using modelType1 and x1.

If x2 is specified:

The function calculates the output space dimension using modelType2 and x2. For example, if
modelType2 is 'constacc' and x2 is a 6-by-1 vector, the output state dimension is given by 6/3,
which equals 2.

The output x has the same data type and dimensionality as x2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackingIMM

Functions
constacc | constturn | constvel | initcvmscekf

Introduced in R2018b

 switchimm

1-303

initcvmscekf
Constant velocity trackingMSCEKF initialization

Syntax
mscekf = initcvmscekf(detection)
mscekf = initcvmscekf(detection,rangeEstimation)

Description
mscekf = initcvmscekf(detection) initializes a trackingMSCEKF class (extended Kalman
filter for tracking in modified spherical coordinates) based on information provided in an
objectDetection object, detection. The function assumes a target range of 3e4 units and a
range-covariance of 1e10 units2.

The trackingMSCEKF object can be used with trackers for tracking targets with angle-only
measurements from a single observer.

mscekf = initcvmscekf(detection,rangeEstimation) allows specifying the range
information to the filter. The rangeEstimation variable is a two-element vector, where the first
element specifies the range of the target, and the second element specifies the standard deviation in
range.

Examples

Initialize a trackingMSCEKF Object Using Angle-Only Detection

Create an angle-only detection.

detection = objectDetection(0,[30;20],'MeasurementParameters',...
 struct('Frame','Spherical','HasRange',false));

Use initcvmscekf to create a trackingMSCEKF filter initialized using the angle-only detection.

filter = initcvmscekf(detection)

filter =
 trackingMSCEKF with properties:

 State: [6×1 double]
 StateCovariance: [6×6 double]

 StateTransitionFcn: @constvelmsc
 StateTransitionJacobianFcn: @constvelmscjac
 ProcessNoise: [3×3 double]
 HasAdditiveProcessNoise: 0
 ObserverInput: [3×1 double]

 MeasurementFcn: @cvmeasmsc
 MeasurementJacobianFcn: @cvmeasmscjac

1 Functions

1-304

 MeasurementNoise: [2×2 double]
 HasAdditiveMeasurementNoise: 1

Initialize trackingMSCEKF Object with Detection from Rotating Sensor

Create measurement parameters for subsequent rotation.

measParamSensorToPlat = struct('Frame','Spherical','HasRange',false,...
'Orientation',rotmat(quaternion([0 0 30],'rotvecd'),'frame'))

measParamSensorToPlat = struct with fields:
 Frame: 'Spherical'
 HasRange: 0
 Orientation: [3×3 double]

measParamPlatToScenario = struct('Frame','Rectangular','HasRange',false,...
'Orientation',rotmat(quaternion([30 0 0],'rotvecd'),'frame'))

measParamPlatToScenario = struct with fields:
 Frame: 'Rectangular'
 HasRange: 0
 Orientation: [3×3 double]

measParam = [measParamSensorToPlat;measParamPlatToScenario];
detection = objectDetection(0,[30;20],'MeasurementParameters',measParam);

Initialize a filter.

filter = initcvmscekf(detection);

Check that filter's measurement is same as detection.

cvmeasmsc(filter.State,measParam)

ans = 2×1

 30.0000
 20.0000

Track a Constant Velocity Target Using trackerGNN

Consider a scenario when the target is moving at a constant velocity along and the observer is
moving at a constant acceleration. Define target's initial state using a constant velocity model.

tgtState = [2000;-3;500;-5;0;0];

Define observer's initial state using a constant acceleration model.

observerState = [0;2;0;490;-10;0.2;0;0;0];

 initcvmscekf

1-305

Create a trackerGNN object to use with initcvmscekf with some prior information about range
and range-covariance.

range = 1000;
rangeStdDev = 1e3;
rangeEstimate = [range rangeStdDev];
tracker = trackerGNN('FilterInitializationFcn',@(det)initcvmscekf(det,rangeEstimate));

Simulate synthetic data by using measurement models. Get az and el information using the cvmeas
function.

syntheticParams = struct('Frame','Spherical','HasRange',false,...
 'OriginPosition',observerState(1:3:end));
meas = cvmeas(tgtState,syntheticParams);

Create an angle-only objectDetection to simulate synthetic detection.

detection = objectDetection(0,meas,'MeasurementParameters',...
 struct('Frame','Spherical','HasRange',false),'MeasurementNoise',0.033*eye(2));

Create trackPlotter and platformPlotter to visualize the scenario.

tp = theaterPlot('XLimits',[0 2500],'YLimits',[0 1000]);
targetPlotter = platformPlotter(tp,'DisplayName','Target','MarkerFaceColor','k');
observerPlotter = platformPlotter(tp,'DisplayName', 'Observer','MarkerFaceColor','r');
trkPlotter = trackPlotter(tp,'DisplayName','Track','MarkerFaceColor','g','HistoryDepth',50);
tgtTrajPlotter = trajectoryPlotter(tp,'DisplayName','Target Trajectory','Color','k');
obsTrajPlotter = trajectoryPlotter(tp,'DisplayName','Observer Trajectory','Color','r');

1 Functions

1-306

Run the tracker.

time = 0; dT = 0.1;
tgtPoses = [];
obsPoses = [];
while time < 50
 [confTracks,tentTracks,allTracks] = tracker(detection,time);
 for i = 1:numel(allTracks)
 setTrackFilterProperties(tracker,allTracks(i).TrackID,'ObserverInput',observerState(3:3:end));
 end

 % Update synthetic detection.
 observerState = constacc(observerState,dT);
 tgtState = constvel(tgtState,dT);
 syntheticParams.OriginPosition = observerState(1:3:end);
 detection.Measurement = cvmeas(tgtState,syntheticParams);
 time = time + dT;
 detection.Time = time;

 % Update plots
 tgtPoses = [tgtPoses;tgtState(1:2:end)']; %#ok
 obsPoses = [obsPoses;observerState(1:3:end)']; %#ok
 targetPlotter.plotPlatform(tgtState(1:2:end)');
 observerPlotter.plotPlatform(observerState(1:3:end)');
 tgtTrajPlotter.plotTrajectory({tgtPoses});
 obsTrajPlotter.plotTrajectory({obsPoses});
 % Plot the first track as there are no false alarms, this should be
 % the target.
 % Get positions from the MSC state of the track.
 cartState = cvmeasmsc(allTracks(i).State,'rectangular') + observerState(1:3:end);
 trkPlotter.plotTrack(cartState');
end

 initcvmscekf

1-307

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

rangeEstimation — Range information
two-element vector

Range information, specified as a two-element vector, where the first element specifies the range of
the target, and the second element specifies the standard deviation in range.
Data Types: single | double

Output Arguments
mscekf — Constant velocity tracking extended Kalman filter in MSC frame
trackingMSCEKF object

Constant velocity tracking extended Kalman filter in an MSC frame, returned as a trackingMSCEKF
object.

1 Functions

1-308

Algorithms
• The function configures the filter with process noise assuming a unit target acceleration standard

deviation.
• The function configures the covariance of the state in an MSC frame by using a linear

transformation of covariance in a Cartesian frame.
• You can use this function as the FilterInitializationFcn property of trackerTOMHT and

trackerGNN System objects.
• The function initializes the ObserverInput of the trackingMSCEKF class with zero observer

acceleration in all directions. You must use the setTrackFilterProperties function of the
trackers to update the ObserverInput.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
constvelmsc | constvelmscjac | cvmeasmsc | cvmeasmscjac

Objects
objectDetection | trackingMSCEKF

Introduced in R2018b

 initcvmscekf

1-309

initapekf
Constant velocity angle-parameterized EKF initialization

Syntax
filter = initapekf(detection)
filter = initapekf(detection,numFilters)
filter = initapekf(detection,numFilters,angleLimits)

Description
filter = initapekf(detection) configures the filter with 10 extended Kalman filters (EKFs).
The function configures the process noise with unit standard deviation in acceleration.

The angle-parameterized extended Kalman filter (APEKF) is a Gaussian-sum filter (trackingGSF)
with multiple EKFs, each initialized at an estimated angular position of the target. Angle-
parametrization is a commonly used technique to initialize a filter from a range-only detection.

filter = initapekf(detection,numFilters) specifies the number of EKFs in the filter.

filter = initapekf(detection,numFilters,angleLimits) specifies the limits on angular
position of the target.

Examples

Initialize APEKF from Range Only Detection and Visualize Filter

The APEKF is a special type of filter that can be initialized using range-only measurements. When the
'Frame' is set to 'spherical', the detection has [azimuth elevation range range-rate]
measurements. Specify the measurement parameters appropriately to define a range-only
measurement.

measParam = struct('Frame','Spherical','HasAzimuth',false,'HasElevation',false,'HasVelocity',false,'OriginPosition',[100;10;0]);

The objectDetection class defines an interface to the range-only detection measured by the
sensor. The MeasurementParameters field of objectDetection carries information about what
the sensor is measuring.

detection = objectDetection(0,100,'MeasurementNoise',100,'MeasurementParameters',measParam)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: 100
 MeasurementNoise: 100
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

1 Functions

1-310

The initapekf function uses the range-only detection to initialize the APEKF.

apekf = initapekf(detection) %#ok

apekf =
 trackingGSF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 TrackingFilters: {10x1 cell}
 ModelProbabilities: [10x1 double]

 MeasurementNoise: 100

You can also initialize the APEKF with 10 filters and to operate within the angular limits of [-30 30]
degrees.

angleLimits = [-30 30];
numFilters = 10;
apekf = initapekf(detection, numFilters, angleLimits)

apekf =
 trackingGSF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 TrackingFilters: {10x1 cell}
 ModelProbabilities: [10x1 double]

 MeasurementNoise: 100

You can also specify the initapekf function as a FilterInitializationFcn to the trackerGNN
object.

funcHandle = @(detection)initapekf(detection,numFilters,angleLimits)

funcHandle = function_handle with value:
 @(detection)initapekf(detection,numFilters,angleLimits)

tracker = trackerGNN('FilterInitializationFcn',funcHandle);

Visualize the filter.

tp = theaterPlot;
componentPlot = trackPlotter(tp,'DisplayName','Individual sums','MarkerFaceColor','r');
sumPlot = trackPlotter(tp,'DisplayName','Mixed State','MarkerFaceColor','g');

indFilters = apekf.TrackingFilters;
pos = zeros(numFilters,3);
cov = zeros(3,3,numFilters);
for i = 1:numFilters
 pos(i,:) = indFilters{i}.State(1:2:end);
 cov(1:3,1:3,i) = indFilters{i}.StateCovariance(1:2:end,1:2:end);
end

 initapekf

1-311

componentPlot.plotTrack(pos,cov);

mixedPos = apekf.State(1:2:end)';
mixedPosCov = apekf.StateCovariance(1:2:end,1:2:end);
sumPlot.plotTrack(mixedPos,mixedPosCov);

Initialize APEKF from Azimuth and Range Detection and Visualize Filter

Create an angle-parameterized EKF from an [az r] detection.

measParam = struct('Frame','Spherical','HasAzimuth',true,'HasElevation',false,'HasVelocity',false,'OriginPosition',[100;10;0]);

The objectDetection class defines an interface to the range-only detection measured by the
sensor. The MeasurementParameters field of objectDetection carries information about what
the sensor is measuring.

det = objectDetection(0,[30;100],'MeasurementParameters',measParam,'MeasurementNoise',10);

The initapekf function parameterizes the apekf filter on the elevation measurement.

numFilters = 10;
apekf = initapekf(det,numFilters,[-30 30]);
indFilters = apekf.TrackingFilters;
pos = zeros(numFilters,3);
cov = zeros(3,3,numFilters);

1 Functions

1-312

for i = 1:numFilters
 pos(i,:) = indFilters{i}.State(1:2:end);
 cov(1:3,1:3,i) = indFilters{i}.StateCovariance(1:2:end,1:2:end);
end

Visualize the filter.

tp = theaterPlot;
componentPlot = trackPlotter(tp,'DisplayName','Individual sums','MarkerFaceColor','r');
sumPlot = trackPlotter(tp,'DisplayName','Mixed State','MarkerFaceColor','g');
componentPlot.plotTrack(pos,cov);
mixedPos = apekf.State(1:2:end)';
mixedPosCov = apekf.StateCovariance(1:2:end,1:2:end);
sumPlot.plotTrack(mixedPos,mixedPosCov);
view(3);

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

 initapekf

1-313

numFilters — Number of EKFs
10 (default) | positive integer

Number of EKFs each initialized at an estimated angular position of the target, specified as a positive
integer. When not specified, the default number of EKFs is 10.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

angleLimits — Angular limits of target
two-element vector

Angular limits of the target, specified as a two-element vector. The two elements in the vector
represent the lower and upper limits of the target angular position.

When the function detects:

• Range measurements –– Default angular limits are [–180 180].
• Azimuth and range measurements –– Default angular limits are [–90 90].

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
filter — Constant velocity angle-parameterized EKF
trackingGSF object

Constant velocity angle-parameterized extended Kalman filter (EKF), returned as a trackingGSF
object.

Algorithms
The function can support the following types of measurements in the detection.

• Range measurements –– Parameterization is done on the azimuth of the target, and the angular
limits are [–180 180] by default.

• Azimuth and range measurements –– Parameterization is done on the elevation of the target, and
the angular limits are [–90 90] by default.

References
[1] Ristic, Branko, Sanjeev Arulampalam, and James McCarthy. "Target motion analysis using range-

only measurements: algorithms, performance and application to ISAR data." Signal
Processing 82, no. 2 (2002): 273-296.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-314

See Also
Functions
initcvekf

Objects
objectDetection | trackingEKF | trackingGSF

Introduced in R2018b

 initapekf

1-315

initrpekf
Constant velocity range-parameterized EKF initialization

Syntax
filter = initrpekf(detection)
filter = initrpekf(detection,numFilters)
filter = initrpekf(detection,numFilters,rangeLimits)

Description
filter = initrpekf(detection) configures the filter with 6 extended Kalman filters (EKFs),
and the target range is assumed to be within 1e3 and 1e5 scenario units. The function configures the
process noise with unit standard deviation in acceleration.

The range-parameterized extended Kalman filter (RPEKF) is a Gaussian-sum filter (trackingGSF)
with multiple EKFs, each initialized at an estimated range of the target. Range-parameterization is a
commonly used technique to initialize a filter from an angle-only detection.

filter = initrpekf(detection,numFilters) specifies the number of EKFs in the filter.

filter = initrpekf(detection,numFilters,rangeLimits) specifies the range limits of the
target.

Examples

Initialize RPEKF from Angle-only Detection and Visualize Filter

The RPEKF is a special type of filter that can be initialized using angle-only measurements, that is,
azimuth and/or elevation. When the 'Frame' is set to 'spherical' and 'HasRange' is set to
'false', the detection has [azimuth elevation] measurements. Specify the measurement parameters
appropriately to define an angle-only measurement with no range information.

measParam = struct('Frame','spherical','HasRange',false,'OriginPosition',[100;10;0]);

The objectDetection class defines an interface to the angle-only detection measured by the
sensor. The MeasurementParameters field of objectDetection carries information about what
the sensor is measuring.

detection = objectDetection(0,[30;30],'MeasurementParameters',measParam,'MeasurementNoise',2*eye(2));

The initrpekf function uses the angle-only detection to initialize the RPEKF.

rpekf = initrpekf(detection) %#ok

rpekf =
 trackingGSF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

1 Functions

1-316

 TrackingFilters: {6x1 cell}
 ModelProbabilities: [6x1 double]

 MeasurementNoise: [2x2 double]

You can also initialize the RPEKF with 10 filters and to operate within the range limits of [1000,
10,000] scenario units.

rangeLimits = [1000 10000];
numFilters = 10;
rpekf = initrpekf(detection, numFilters, rangeLimits)

rpekf =
 trackingGSF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 TrackingFilters: {10x1 cell}
 ModelProbabilities: [10x1 double]

 MeasurementNoise: [2x2 double]

You can also specify the initrpekf function as a FilterInitializationFcn to the trackerGNN
object.

funcHandle = @(detection)initrpekf(detection,numFilters,rangeLimits)

funcHandle = function_handle with value:
 @(detection)initrpekf(detection,numFilters,rangeLimits)

tracker = trackerGNN('FilterInitializationFcn',funcHandle)

tracker =
 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: [function_handle]
 Assignment: 'MatchPairs'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumSensors: 20

 TrackLogic: 'History'
 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

 initrpekf

1-317

Visualize the filter.

tp = theaterPlot;
componentPlot = trackPlotter(tp,'DisplayName','Individual sums','MarkerFaceColor','r');
sumPlot = trackPlotter(tp,'DisplayName','Mixed State','MarkerFaceColor','g');

indFilters = rpekf.TrackingFilters;
pos = zeros(numFilters,3);
cov = zeros(3,3,numFilters);
for i = 1:numFilters
 pos(i,:) = indFilters{i}.State(1:2:end);
 cov(1:3,1:3,i) = indFilters{i}.StateCovariance(1:2:end,1:2:end);
end
componentPlot.plotTrack(pos,cov);

mixedPos = rpekf.State(1:2:end)';
mixedPosCov = rpekf.StateCovariance(1:2:end,1:2:end);
sumPlot.plotTrack(mixedPos,mixedPosCov);

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.

1 Functions

1-318

Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

numFilters — Number of EKFs
6 (default) | positive integer

Number of EKFs each initialized at an estimated range of the target, specified as a positive integer.
When not specified, the default number of EKFs is 6.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

rangeLimits — Range limits of target
[1e3 1e5] (default) | two-element vector

Range limits of the target, specified as a two-element vector. The two elements in the vector
represent the lower and upper limits of the target range. When not specified, the default range limits
are [1e3 1e5] scenario units.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
filter — Constant velocity range-parameterized EKF
trackingGSF object

Constant velocity range-parameterized extended Kalman filter (EKF), returned as a trackingGSF
object.

References
[1] Peach, N. "Bearings-only tracking using a set of range-parameterised extended Kalman filters."

IEE Proceedings-Control Theory and Applications 142, no. 1 (1995): 73-80.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initapekf | initcvekf | initcvmscekf

Objects
objectDetection | trackingEKF | trackingGSF

Introduced in R2018b

 initrpekf

1-319

initekfimm
Initialize trackingIMM object

Syntax
imm = initekfimm(detection)

Description
imm = initekfimm(detection) initializes a constant velocity (CV), constant acceleration (CA),
and a constant turn (CT) trackingIMM (imm) object based on information provided in an
objectDetection object, detection.

Examples

Detection with Position Measurement in Rectangular Frame

A 3-D position measurement in rectangular frame is provided. For example, x = 1, y = 3, and z = 0.
Use a 3-D position measurement noise [1 0.4 0; 0.4 4 0; 0 0 1].

detection = objectDetection(0, [1;3;0], 'MeasurementNoise', [1 0.4 0; 0.4 4 0; 0 0 1]);

Use initekfimm to create a trackingIMM filter initialized at the provided position and using the
measurement noise defined above.

imm = initekfimm(detection);

Check the values of the state and measurement noise. Verify that the filter state, imm.State, has the
same position components as detection measurement, detection.Measurement.

imm.State

ans = 6×1

 1
 0
 3
 0
 0
 0

Verify that the filter measurement noise, imm.MeasurementNoise, is the same as the
detection.MeasurementNoise values.

imm.MeasurementNoise

ans = 3×3

 1.0000 0.4000 0
 0.4000 4.0000 0

1 Functions

1-320

 0 0 1.0000

Detection with Position Measurement in Spherical Frame

A 3-D position measurement in spherical frame is provided. For example: az = 40, el = 6, r =
100, rr = 5. Measurement noise is diag([2.5, 2.5, 0.5, 1].^2).

meas = [40;6;100;5];
measNoise = diag([2.5,2.5,0.5,1].^2);

Use the MeasurementParameters to define the frame. You can leave out other fields of the
MeasurementParameters struct, and they will be completed by default values. In this example,
sensor position, sensor velocity, orientation, elevation, and range rate flags are default.

measParams = struct('Frame','spherical');
detection = objectDetection(0,meas,'MeasurementNoise',measNoise,...
 'MeasurementParameters', measParams);

Use initekfimm to create a trackingIMM filter initialized at the provided position and using the
measurement noise defined above.

imm = initekfimm(detection)

imm =
 trackingIMM with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 TrackingFilters: {3x1 cell}
 ModelConversionFcn: @switchimm
 TransitionProbabilities: [3x3 double]

 MeasurementNoise: [4x4 double]
 ModelProbabilities: [3x1 double]

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
imm — trackingIMM object
trackingIMM object

 initekfimm

1-321

Constant velocity (CV), constant acceleration (CA), and a constant turn (CT) trackingIMM (imm)
object based on information provided in detection, returned as a trackingIMM object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
objectDetection | trackingIMM

Functions
initcaekf | initctekf | initcvekf

Introduced in R2018b

1 Functions

1-322

initcaekf
Create constant-acceleration extended Kalman filter from detection report

Syntax
filter = initcaekf(detection)

Description
filter = initcaekf(detection) creates and initializes a constant-acceleration extended
Kalman filter from information contained in a detection report. For more information about the
extended Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Acceleration Extended Kalman Filter

Create and initialize a 3-D constant-acceleration extended Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200;30;0) , of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;0],'MeasurementNoise',2.1*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display its properties.

filter = initcaekf(detection)

filter =
 trackingEKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

 StateTransitionFcn: @constacc
 StateTransitionJacobianFcn: @constaccjac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementJacobianFcn: @cameasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State

 initcaekf

1-323

ans = 9×1

 -200
 0
 0
 -30
 0
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

 2.1000 0 0 0 0 0 0 0 0
 0 100.0000 0 0 0 0 0 0 0
 0 0 100.0000 0 0 0 0 0 0
 0 0 0 2.1000 0 0 0 0 0
 0 0 0 0 100.0000 0 0 0 0
 0 0 0 0 0 100.0000 0 0 0
 0 0 0 0 0 0 2.1000 0 0
 0 0 0 0 0 0 0 100.0000 0
 0 0 0 0 0 0 0 0 100.0000

Create 3D Constant Acceleration EKF from Spherical Measurement

Initialize a 3D constant-acceleration extended Kalman filter from an initial detection report made
from an initial measurement in spherical coordinates. If you want to use spherical coordinates, then
you must supply a measurement parameter structure as part of the detection report with the Frame
field set to 'spherical'. Set the azimuth angle of the target to 45∘, the elevation to 22∘, the range
to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to true.
Then, the measurement vector consists of azimuth, elevation, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',true);
meas = [45;22;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

1 Functions

1-324

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcaekf(detection);

Display the state vector.

disp(filter.State)

 680.6180
 -2.6225
 0
 615.6180
 2.3775
 0
 364.6066
 -1.4984
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration-rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 initcaekf

1-325

See Also
Functions
initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-326

initcakf
Create constant-acceleration linear Kalman filter from detection report

Syntax
filter = initcakf(detection)

Description
filter = initcakf(detection) creates and initializes a constant-acceleration linear Kalman
filter from information contained in a detection report. For more information about the linear
Kalman filter, see trackingKF.

Examples

Initialize 2-D Constant-Acceleration Linear Kalman Filter

Create and initialize a 2-D constant-acceleration linear Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (10,−5), of the object position. Assume
uncorrelated measurement noise.

detection = objectDetection(0,[10;-5],'MeasurementNoise',eye(2), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',5});

Create the new filter from the detection report.

filter = initcakf(detection);

Show the filter state.

filter.State

ans = 6×1

 10
 0
 0
 -5
 0
 0

Show the state transition model.

filter.StateTransitionModel

ans = 6×6

 1.0000 1.0000 0.5000 0 0 0

 initcakf

1-327

 0 1.0000 1.0000 0 0 0
 0 0 1.0000 0 0 0
 0 0 0 1.0000 1.0000 0.5000
 0 0 0 0 1.0000 1.0000
 0 0 0 0 0 1.0000

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcaukf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-328

initcaukf
Create constant-acceleration unscented Kalman filter from detection report

Syntax
filter = initcaukf(detection)

Description
filter = initcaukf(detection) creates and initializes a constant-acceleration unscented
Kalman filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Acceleration Unscented Kalman Filter

Create and initialize a 3-D constant-acceleration unscented Kalman filter object from an initial
detection report.

Create the detection report from an initial 3-D measurement, (-200,-30,5), of the object position.
Assume uncorrelated measurement noise.

detection = objectDetection(0,[-200;-30;5],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initcaukf(detection)

filter =
 trackingUKF with properties:

 State: [9x1 double]
 StateCovariance: [9x9 double]

 StateTransitionFcn: @constacc
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cameas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

Show the state.

 initcaukf

1-329

filter.State

ans = 9×1

 -200
 0
 0
 -30
 0
 0
 5
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 9×9

 2 0 0 0 0 0 0 0 0
 0 100 0 0 0 0 0 0 0
 0 0 100 0 0 0 0 0 0
 0 0 0 2 0 0 0 0 0
 0 0 0 0 100 0 0 0 0
 0 0 0 0 0 100 0 0 0
 0 0 0 0 0 0 2 0 0
 0 0 0 0 0 0 0 100 0
 0 0 0 0 0 0 0 0 100

Create 3D Constant Acceleration UKF from Spherical Measurement

Initialize a 3D constant-acceleration unscented Kalman filter from an initial detection report made
from a measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45∘, and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement structure. Set 'HasVelocity' and 'HasElevation' to false. Then, the
measurement vector consists of azimuth angle and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
 'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

1 Functions

1-330

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [2x1 double]
 MeasurementNoise: [2x2 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcaukf(detection);

Display the state vector.

disp(filter.State)

 732.1068
 0
 0
 667.1068
 0
 0
 -10.0000
 0
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration rate standard deviation of 1 m/s3.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

 initcaukf

1-331

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initctekf | initctukf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-332

initctekf
Create constant turn-rate extended Kalman filter from detection report

Syntax
filter = initctekf(detection)

Description
filter = initctekf(detection) creates and initializes a constant-turn-rate extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

Examples

Initialize 2-D Constant Turn-Rate Extended Kalman Filter

Create and initialize a 2-D constant turn-rate extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 2-D measurement, (-250,-40), of the object position.
Assume uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctekf(detection)

filter =
 trackingEKF with properties:

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 StateTransitionJacobianFcn: @constturnjac
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementJacobianFcn: @ctmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the state.

 initctekf

1-333

filter.State

ans = 7×1

 -250
 0
 -40
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

 2 0 0 0 0 0 0
 0 100 0 0 0 0 0
 0 0 2 0 0 0 0
 0 0 0 100 0 0 0
 0 0 0 0 100 0 0
 0 0 0 0 0 2 0
 0 0 0 0 0 0 100

Create 2-D Constant Turnrate EKF from Spherical Measurement

Initialize a 2-D constant-turnrate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees, the range to 1000 meters,
and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0

1 Functions

1-334

 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initctekf(detection);

Filter state vector.

disp(filter.State)

 732.1068
 -2.8284
 667.1068
 2.1716
 0
 -10.0000
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a trackerGNN or
trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 initctekf

1-335

See Also
Functions
initcaekf | initcakf | initcaukf | initctukf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-336

initctukf
Create constant turn-rate unscented Kalman filter from detection report

Syntax
filter = initctukf(detection)

Description
filter = initctukf(detection) creates and initializes a constant-turn-rate unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 2-D Constant Turn-Rate Unscented Kalman Filter

Create and initialize a 2-D constant turn-rate unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 2D measurement, (-250,-40), of the object position. Assume
uncorrelated measurement noise.

Extend the measurement to three dimensions by adding a z-component of zero.

detection = objectDetection(0,[-250;-40;0],'MeasurementNoise',2.0*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Car',2});

Create the new filter from the detection report and display the filter properties.

filter = initctukf(detection)

filter =
 trackingUKF with properties:

 State: [7x1 double]
 StateCovariance: [7x7 double]

 StateTransitionFcn: @constturn
 ProcessNoise: [4x4 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @ctmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

 initctukf

1-337

Show the filter state.

filter.State

ans = 7×1

 -250
 0
 -40
 0
 0
 0
 0

Show the state covariance matrix.

filter.StateCovariance

ans = 7×7

 2 0 0 0 0 0 0
 0 100 0 0 0 0 0
 0 0 2 0 0 0 0
 0 0 0 100 0 0 0
 0 0 0 0 100 0 0
 0 0 0 0 0 2 0
 0 0 0 0 0 0 100

Create 2-D Constant Turn-rate UKF from Spherical Measurement

Initialize a 2-D constant turn-rate extended Kalman filter from an initial detection report made from
an initial measurement in spherical coordinates. If you want to use spherical coordinates, then you
must supply a measurement parameter structure as part of the detection report with the Frame field
set to 'spherical'. Set the azimuth angle of the target to 45 degrees and the range to 1000 meters.

frame = 'spherical';
sensorpos = [25,-40,-10].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasVelocity' and 'HasElevation' to
false. Then, the measurement consists of azimuth and range.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',false, ...
 'HasElevation',false);
meas = [45;1000];
measnoise = diag([3.0,2].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

1 Functions

1-338

 Time: 0
 Measurement: [2x1 double]
 MeasurementNoise: [2x2 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initctukf(detection);

Filter state vector.

disp(filter.State)

 732.1068
 0
 667.1068
 0
 0
 -10.0000
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step. The function

assumes an acceleration standard deviation of 1 m/s2, and a turn-rate acceleration standard
deviation of 1°/s2.

• You can use this function as the FilterInitializationFcn property of a trackerGNN or
trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 initctukf

1-339

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initcvekf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-340

initcvekf
Create constant-velocity extended Kalman filter from detection report

Syntax
filter = initcvekf(detection)

Description
filter = initcvekf(detection) creates and initializes a constant-velocity extended Kalman
filter from information contained in a detection report. For more information about the extended
Kalman filter, see trackingEKF.

Examples

Initialize 3-D Constant-Velocity Extended Kalman Filter

Create and initialize a 3-D constant-velocity extended Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',1.5*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report.

filter = initcvekf(detection)

filter =
 trackingEKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 StateTransitionFcn: @constvel
 StateTransitionJacobianFcn: @constveljac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementJacobianFcn: @cvmeasjac
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

Show the filter state.

filter.State

ans = 6×1

 initcvekf

1-341

 10
 0
 20
 0
 -5
 0

Show the state covariance.

filter.StateCovariance

ans = 6×6

 1.5000 0 0 0 0 0
 0 100.0000 0 0 0 0
 0 0 1.5000 0 0 0
 0 0 0 100.0000 0 0
 0 0 0 0 1.5000 0
 0 0 0 0 0 100.0000

Create 3-D Constant Velocity EKF from Spherical Measurement

Initialize a 3-D constant-velocity extended Kalman filter from an initial detection report made from a
3-D measurement in spherical coordinates. If you want to use spherical coordinates, then you must
supply a measurement parameter structure as part of the detection report with the Frame field set to
'spherical'. Set the azimuth angle of the target to 45 degrees, the elevation to -10 degrees, the
range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);
measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',true);
meas = [45;-10;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [4x1 double]
 MeasurementNoise: [4x4 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcvekf(detection);

1 Functions

1-342

Filter state vector.

disp(filter.State)

 721.3642
 -2.7855
 656.3642
 2.2145
 -173.6482
 0.6946

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Extended Kalman filter
trackingEKF object

Extended Kalman filter, returned as a trackingEKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvkf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

 initcvekf

1-343

initcvkf
Create constant-velocity linear Kalman filter from detection report

Syntax
filter = initcvkf(detection)

Description
filter = initcvkf(detection) creates and initializes a constant-velocity linear Kalman filter
from information contained in a detection report. For more information about the linear Kalman
filter, see trackingKF.

Examples

Initialize 2-D Constant-Velocity Linear Kalman Filter

Create and initialize a 2-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 2-D measurement, (10,20), of the object position.

detection = objectDetection(0,[10;20],'MeasurementNoise',[1 0.2; 0.2 2], ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Yellow Car',5});

Create the new track from the detection report.

filter = initcvkf(detection)

filter =
 trackingKF with properties:

 State: [4x1 double]
 StateCovariance: [4x4 double]

 MotionModel: '2D Constant Velocity'
 ControlModel: []
 ProcessNoise: [4x4 double]

 MeasurementModel: [2x4 double]
 MeasurementNoise: [2x2 double]

Show the state.

filter.State

ans = 4×1

 10
 0
 20

1 Functions

1-344

 0

Show the state transition model.

filter.StateTransitionModel

ans = 4×4

 1 1 0 0
 0 1 0 0
 0 0 1 1
 0 0 0 1

Initialize 3-D Constant-Velocity Linear Kalman Filter

Create and initialize a 3-D linear Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',eye(3), ...
 'SensorIndex', 1,'ObjectClassID',1,'ObjectAttributes',{'Green Car', 5});

Create the new filter from the detection report and display its properties.

filter = initcvkf(detection)

filter =
 trackingKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 MotionModel: '3D Constant Velocity'
 ControlModel: []
 ProcessNoise: [6x6 double]

 MeasurementModel: [3x6 double]
 MeasurementNoise: [3x3 double]

Show the state.

filter.State

ans = 6×1

 10
 0
 20
 0
 -5
 0

Show the state transition model.

 initcvkf

1-345

filter.StateTransitionModel

ans = 6×6

 1 1 0 0 0 0
 0 1 0 0 0 0
 0 0 1 1 0 0
 0 0 0 1 0 0
 0 0 0 0 1 1
 0 0 0 0 0 1

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Linear Kalman filter
trackingKF object

Linear Kalman filter, returned as a trackingKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvukf

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-346

initcvukf
Create constant-velocity unscented Kalman filter from detection report

Syntax
filter = initcvukf(detection)

Description
filter = initcvukf(detection) creates and initializes a constant-velocity unscented Kalman
filter from information contained in a detection report. For more information about the
unscented Kalman filter, see trackingUKF.

Examples

Initialize 3-D Constant-Velocity Unscented Kalman Filter

Create and initialize a 3-D constant-velocity unscented Kalman filter object from an initial detection
report.

Create the detection report from an initial 3-D measurement, (10,200,−5), of the object position.

detection = objectDetection(0,[10;200;-5],'MeasurementNoise',1.5*eye(3), ...
 'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report and display the filter properties.

filter = initcvukf(detection)

filter =
 trackingUKF with properties:

 State: [6x1 double]
 StateCovariance: [6x6 double]

 StateTransitionFcn: @constvel
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 MeasurementFcn: @cvmeas
 MeasurementNoise: [3x3 double]
 HasAdditiveMeasurementNoise: 1

 Alpha: 1.0000e-03
 Beta: 2
 Kappa: 0

Display the state.

filter.State

 initcvukf

1-347

ans = 6×1

 10
 0
 200
 0
 -5
 0

Show the state covariance.

filter.StateCovariance

ans = 6×6

 1.5000 0 0 0 0 0
 0 100.0000 0 0 0 0
 0 0 1.5000 0 0 0
 0 0 0 100.0000 0 0
 0 0 0 0 1.5000 0
 0 0 0 0 0 100.0000

Create Constant Velocity UKF from Spherical Measurement

Initialize a constant-velocity unscented Kalman filter from an initial detection report made from an
initial measurement in spherical coordinates. Because the object lies in the x-y plane, no elevation
measurement is made. If you want to use spherical coordinates, then you must supply a measurement
parameter structure as part of the detection report with the Frame field set to 'spherical'. Set the
azimuth angle of the target to 45 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the
measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
 'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
 'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
 measnoise,'MeasurementParameters',measparms)

detection =
 objectDetection with properties:

 Time: 0
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1

1 Functions

1-348

 ObjectClassID: 0
 MeasurementParameters: [1x1 struct]
 ObjectAttributes: {}

filter = initcvukf(detection);

Display filter state vector.

disp(filter.State)

 732.1068
 -2.8284
 667.1068
 2.1716
 0
 0

Input Arguments
detection — Detection report
objectDetection object

Detection report, specified as an objectDetection object.
Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0;
0 2.0 0; 0 0 1.5])

Output Arguments
filter — Unscented Kalman filter
trackingUKF object

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms
• The function computes the process noise matrix assuming a one-second time step and an

acceleration standard deviation of 1 m/s2.
• You can use this function as the FilterInitializationFcn property of a trackerGNN or

trackerTOMHT object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
initcaekf | initcakf | initcaukf | initctekf | initctukf | initcvekf | initcvkf

 initcvukf

1-349

Objects
objectDetection | trackerGNN | trackerTOMHT | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

1 Functions

1-350

clone
Create duplicate tracking filter

Syntax
filterClone = clone(filter)

Description
filterClone = clone(filter) creates a copy of a tracking filter that has the same property
values as the original filter.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingABF object |
trackingCKF object | trackingIMM object | trackingGSF object | trackingPF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

Output Arguments
filterClone — Cloned filter
tracking filter object

Cloned filter, returned as a tracking filter object of the same type as filter. The cloned filter has the
same properties as the original filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 clone

1-351

See Also
correct | correctjpda | distance | initialize | likelihood | predict | residual

Introduced in R2018b

1 Functions

1-352

correct
Correct state and state estimation error covariance using tracking filter

Syntax
[xcorr,Pcorr] = correct(filter,zmeas)

[xcorr,Pcorr] = correct(filter,zmeas,measparams)

[xcorr,Pcorr] = correct(filter,zmeas,zcov)

[xcorr,Pcorr,zcorr] = correct(filter,zmeas)
[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov)

correct(filter, ___)
xcorr = correct(filter, ___)

Description
[xcorr,Pcorr] = correct(filter,zmeas) returns the corrected state, xcorr, and the
corrected state estimation error covariance, Pcorr, for the next time step of the input tracking filter
based on the current measurement, zmeas. The corrected values overwrite the internal state and
state estimation error covariance of filter.

[xcorr,Pcorr] = correct(filter,zmeas,measparams) specifies additional parameters used
by the measurement function that is defined in the MeasurementFcn property of filter. You can
return any of the outputs from preceding syntaxes.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correct(filter,zmeas,zcov) specifies additional measurement covariance,
zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas) also returns the correction of
measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correct(filter,zmeas,zcov) returns the correction of
measurements, zcorr, and also specifies additional measurement covariance, zcov, used in the
MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

correct(filter, ___) updates filter with the corrected state and state estimation error
covariance without returning the corrected values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xcorr = correct(filter, ___) updates filter with the corrected state and state estimation
error covariance but returns only the corrected state, xcorr.

 correct

1-353

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
 'StateTransitionJacobianFcn',@constveljac, ...
 'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 0 0
 4.7500 3.7500 0 0
 0 0 11.7500 4.7500
 0 0 4.7500 3.7500

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingABF object |
trackingCKF object | trackingIMM object | trackingGSF object | trackingPF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter

1 Functions

1-354

• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

zmeas — Measurement of filter
vector | matrix

Measurement of the tracked object, specified as a vector or matrix.
Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the
MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correct:

[xcorr,Pcorr] = correct(filter,frame,sensorpos,sensorvel)

The correct function internally calls the following:

meas = cameas(state,frame,sensorpos,sensorvel)

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

Output Arguments
xcorr — Corrected state of filter
vector | matrix

Corrected state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Pcorr — Corrected state covariance of filter
vector | matrix

Corrected state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zcorr — Corrected measurement of filter
vector | matrix

Corrected measurement of the filter, specified as a vector or matrix. You can return zcorr only when
filter is a trackingABF object.

 correct

1-355

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correctjpda | distance | initialize | likelihood | predict | residual

Introduced in R2018b

1 Functions

1-356

correctjpda
Correct state and state estimation error covariance using tracking filter and JPDA

Syntax
[xcorr,Pcorr] = correctjpda(filter,zmeas)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams)

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs)
[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov)

correctjpda(filter, ___)
xcorr = correctjpda(filter, ___)

Description
[xcorr,Pcorr] = correctjpda(filter,zmeas) returns the corrected state, xcorr, and the
corrected state estimation error covariance, Pcorr, for the next time step of the input tracking filter.
The corrected values are based on a set of measurements, zmeas, and their joint probabilistic data
association coefficients, jpdacoeffs. These values overwrite the internal state and state estimation
error covariance of filter.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,measparams) specifies
additional parameters used by the measurement function that is defined in the MeasurementFcn
property of the tracking filter object.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

[xcorr,Pcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) specifies additional
measurement covariance, zcov, used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingKF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs) also returns the
correction of measurements, zcorr.

You can use this syntax only when filter is a trackingABF object.

[xcorr,Pcorr,zcorr] = correctjpda(filter,zmeas,jpdacoeffs,zcov) returns the
correction of measurements, zcorr, and also specifies additional measurement covariance, zcov,
used in the MeasurementNoise property of filter.

You can use this syntax only when filter is a trackingABF object.

correctjpda(filter, ___) updates filter with the corrected state and state estimation error
covariance without returning the corrected values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

 correctjpda

1-357

xcorr = correctjpda(filter, ___) updates filter with the corrected state and state
estimation error covariance but returns only the corrected state, xcorr.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingABF object |
trackingCKF object | trackingIMM object | trackingGSF object | trackingPF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

zmeas — Measurements
M-by-N matrix

Measurements, specified as an M-by-N matrix, where M is the dimension of a single measurement,
and N is the number of measurements.
Data Types: single | double

jpdacoeffs — Joint probabilistic data association coefficients
(N+1)-element vector

Joint probabilistic data association coefficients, specified as an (N+1)-element vector. The ith (i = 1,
…, N) element of jpdacoeffs is the joint probability that the ith measurement in zmeas is
associated with the filter. The last element of jpdacoeffs corresponds to the probability that no
measurement is associated with the filter. The sum of all elements of jpdacoeffs must equal 1.
Data Types: single | double

zcov — Measurement covariance
M-by-M matrix

Measurement covariance, specified as an M-by-M matrix, where M is the dimension of the
measurement. The same measurement covariance matrix is assumed for all measurements in zmeas.
Data Types: single | double

measparams — Measurement parameters
comma-separated list of arguments

Measurement function arguments, specified as a comma-separated list of arguments. These
arguments are the same ones that are passed into the measurement function specified by the

1 Functions

1-358

MeasurementFcn property of the tracking filter. If filter is a trackingKF or trackingABF
object, then you cannot specify measparams.

Suppose you set MeasurementFcn to @cameas, and then call correctjpda:

[xcorr,Pcorr] = correctjpda(filter,frame,sensorpos,sensorvel)

The correctjpda function internally calls the following:

meas = cameas(state,frame,sensorpos,sensorvel)

Output Arguments
xcorr — Corrected state
P-element vector

Corrected state, returned as a P-element vector, where P is the dimension of the estimated state. The
corrected state represents the a posteriori estimate of the state vector, taking into account the
current measurements and their associated probabilities.

Pcorr — Corrected state error covariance
positive-definite P-by-P matrix

Corrected state error covariance, returned as a positive-definite P-by-P matrix, where P is the
dimension of the state estimate. The corrected state covariance matrix represents the a posteriori
estimate of the state covariance matrix, taking into account the current measurements and their
associated probabilities.

zcorr — Corrected measurements
M-by-N matrix

Corrected measurements, returned as an M-by-N matrix, where M is the dimension of a single
measurement, and N is the number of measurements. You can return zcorr only when filter is a
trackingABF object.

More About
JPDA Correction Algorithm for Discrete Extended Kalman Filter

In the measurement update of a regular Kalman filter, the filter usually only needs to update the state
and covariance based on one measurement. For instance, the equations for measurement update of a
discrete extended Kalman filter can be given as

xk+ = xk−+ Kk(y − h(xk−))
Pk+ = Pk−− KkSkKkT

where xk
− and xk

+ are the a priori and a posteriori state estimates, respectively, Kk is the Kalman gain,
y is the actual measurement, and h(xk

−) is the predicted measurement. Pk
− and Pk

+ are the a priori
and a posteriori state error covariance matrices, respectively. The innovation matrix Sk is defined as

Sk = HkPk−HkT

where Hk is the Jacobian matrix for the measurement function h.

 correctjpda

1-359

In the workflow of a JPDA tracker, the filter needs to process multiple probable measurements yi (i =
1, …, N) with varied probabilities of association βi (i = 0, 1, …, N). Note that β0 is the probability that
no measurements is associated with the filter. The measurement update equations for a discrete
extended Kalman filter used for a JPDA tracker are

xk+ = xk−+ Kk ∑
i = 1

N
βi yi− h(xk−)

Pk+ = Pk−− (1− β0)KkSkKkT + Pk

where

Pk = Kk ∑
i = 1

N
βi yi− h(xk−) yi− h(xk−) T − δy δy T KkT

and

δy = ∑
j = 1

N
β j y j− h(xk−)

Note that these equations only apply to trackingEKF and are not the exact equations used in other
tracking filters.

References
[1] Fortmann, T., Y. Bar-Shalom, and M. Scheffe. "Sonar Tracking of Multiple Targets Using Joint

Probabilistic Data Association." IEEE Journal of Ocean Engineering. Vol. 8, Number 3, 1983,
pp. 173–184.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

correctjpda supports only double-precision code generation, not single-precision.

See Also
clone | correct | distance | initialize | likelihood | predict | residual | trackerJPDA

Introduced in R2019a

1 Functions

1-360

distance
Distances between current and predicted measurements of tracking filter

Syntax
dist = distance(filter,zmeas)
dist = distance(filter,zmeas,measparams)

Description
dist = distance(filter,zmeas) computes the normalized distances between one or more
current object measurements, zmeas, and the corresponding predicted measurements computed by
the input filter. Use this function to assign measurements to tracks.

This distance computation takes into account the covariance of the predicted state and the
measurement noise.

dist = distance(filter,zmeas,measparams) specifies additional parameters that are used by
the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingABF object |
trackingCKF object | trackingIMM object | trackingGSF object | trackingPF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

zmeas — Measurements of tracked objects
matrix

Measurements of tracked objects, specified as a matrix. Each row of the matrix contains a
measurement vector.

 distance

1-361

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the filter. If filter is
a trackingKF or trackingABF object, then you cannot specify measparams.

Suppose you set the MeasurementFcn property of filter to @cameas, and then set these values:

measurementParams = {frame,sensorpos,sensorpos}

The distance function internally calls the following:

cameas(state,frame,sensorpos,sensorvel)

Output Arguments
dist — Distances between measurements
row vector

Distances between measurements, returned as a row vector. Each element corresponds to a distance
between the predicted measurement in the input filter and a measurement contained in a row of
zmeas.

Algorithms
The distance function computes the normalized distance between the filter object and a set of
measurements. This distance computation is a variant of the Mahalanobis distance and takes into
account the residual (the difference between the object measurement and the value predicted by the
filter), the residual covariance, and the measurement noise.

Consider an extended Kalman filter with state x and measurement z. The equations used to compute
the residual, zres, and the residual covariance, S, are

zres = z – h(x),
S = R + HPHT,

where:

• h is the measurement function defined in the MeasurementFcn property of the filter.
• R is the measurement noise covariance defined in the MeasurementNoise property of the filter.
• H is the Jacobian of the measurement function defined in the MeasurementJacobianFcn

property of the filter.

The residual covariance calculation for other filters can vary slightly from the one shown because
tracking filters have different ways of propagating the covariance to the measurement space. For
example, instead of using the Jacobian of the measurement function to propagate the covariance,
unscented Kalman filters sample the covariance, and then propagate the sampled points.

The equation for the Mahalanobis distance, d2, is
d2 = zres

TS–1z,

The distance function computes the normalized distance, dn, as
dn = d2 + log(|S|),

1 Functions

1-362

where log(|S|) is the logarithm of the determinant of residual covariance S.

The log(|S|) term accounts for tracks that are coasted, meaning that they are predicted but have not
had an update for a long time. Tracks in this state can make S very large, resulting in a smaller
Mahalanobis distance relative to the updated tracks. This difference in distance values can cause the
coasted tracks to incorrectly take detections from the updated tracks. The log(|S|) term compensates
for this effect by penalizing such tracks, whose predictions are highly uncertain.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | initialize | likelihood | predict | residual

Introduced in R2018b

 distance

1-363

initialize
Initialize state and covariance of tracking filter

Syntax
initialize(filter,state,statecov)
initialize(filter,state,statecov,Name,Value)

Description
initialize(filter,state,statecov) initializes the filter by setting the State and
StateCovariance properties of the filter with the corresponding state and statecov inputs.

initialize(filter,state,statecov,Name,Value) also initializes properties of filter by
using one or more name-value pairs. Specify the name of the filter property and the value to which
you want to initialize it. You cannot change the size or type of the properties that you initialize.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingIMM object |
trackingPF object | trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

state — Filter state
real-valued M-element vector

Filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

statecov — State estimation error covariance
positive-definite real-valued M-by-M matrix

State estimation error covariance, specified as a positive-definite real-valued M-by-M matrix. M is the
size of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

1 Functions

1-364

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | likelihood | predict | residual

Introduced in R2018b

 initialize

1-365

likelihood
Likelihood of measurement from tracking filter

Syntax
measlikelihood = likelihood(filter,zmeas)
measlikelihood = likelihood(filter,zmeas,measparams)

Description
measlikelihood = likelihood(filter,zmeas) returns the likelihood of a measurement,
zmeas, that was produced by the specified filter, filter.

measlikelihood = likelihood(filter,zmeas,measparams) specifies additional parameters
that are used by the MeasurementFcn of the filter.

If filter is a trackingKF or trackingABF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingABF object |
trackingCKF object | trackingIMM object | trackingGSF object | trackingPF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn of the input filter. If filter is a
trackingKF or trackingABF object, then you cannot specify measparams.

1 Functions

1-366

Output Arguments
measlikelihood — Likelihood of measurement
scalar

Likelihood of measurement, returned as a scalar.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | predict | residual

Introduced in R2018b

 likelihood

1-367

predict
Predict state and state estimation error covariance of tracking filter

Syntax
[xpred,Ppred] = predict(filter)

[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,predparams)

predict(filter, ___)
xpred = predict(filter, ___)

Description
[xpred,Ppred] = predict(filter) returns the predicted state, xpred, and the predicted state
estimation error covariance, Ppred, for the next time step of the input tracking filter. The predicted
values overwrite the internal state and state estimation error covariance of filter.

[xpred,Ppred] = predict(filter,dt) specifies the time step as a positive scalar in seconds,
and returns one or more of the outputs from the preceding syntaxes.

[xpred,Ppred] = predict(filter,predparams) specifies additional prediction parameters
used by the state transition function. The state transition function is defined in the
StateTransitionFcn property of filter.

predict(filter, ___) updates filter with the predicted state and state estimation error
covariance without returning the predicted values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xpred = predict(filter, ___) updates filter with the predicted state and state estimation
error covariance but returns only the predicted state, xpred.

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
 'StateTransitionJacobianFcn',@constveljac, ...
 'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

1 Functions

1-368

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 0 0
 4.7500 3.7500 0 0
 0 0 11.7500 4.7500
 0 0 4.7500 3.7500

Input Arguments
filter — Filter for object tracking
trackingEKF object | trackingUKF object | trackingABF object | trackingCKF object |
trackingIMM object | trackingGSF object | trackingPF object | trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingABF — Alpha-beta filter
• trackingCKF — Cubature Kalman filter
• trackingIMM — Interacting multiple model (IMM) filter
• trackingGSF — Gaussian-sum filter
• trackingPF — Particle filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

To use the predict function with a trackingKF linear Kalman filter, see predict (trackingKF).

dt — Time step
positive scalar

Time step for next prediction, specified as a positive scalar in seconds.

predparams — Prediction parameters
comma-separated list of arguments

Prediction parameters used by the state transition function, specified as a comma-separated list of
arguments. These arguments are the same arguments that are passed into the state transition
function specified by the StateTransitionFcn property of the input filter.

 predict

1-369

Suppose you set the StateTransitionFcn property to @constacc and then call the predict
function:

[xpred,Ppred] = predict(filter,dt)

The predict function internally calls the following:

state = constacc(state,dt)

Output Arguments
xpred — Predicted state of filter
vector | matrix

Predicted state of the filter, specified as a vector or matrix. The State property of the input filter
is overwritten with this value.

Ppred — Predicted state covariance of filter
vector | matrix

Predicted state covariance of the filter, specified as a vector or matrix. The StateCovariance
property of the input filter is overwritten with this value.

zpred — Predicted measurement
vector | matrix

Predicted measurement, specified as a vector or matrix. You can return zpred only when filter is a
trackingABF object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual

Introduced in R2018b

1 Functions

1-370

predict
Predict state and state estimation error covariance of linear Kalman filter

Syntax
[xpred,Ppred] = predict(filter)

[xpred,Ppred] = predict(filter,u)
[xpred,Ppred] = predict(filter,F)
[xpred,Ppred] = predict(filter,F,Q)
[xpred,Ppred] = predict(filter,u,F,G)
[xpred,Ppred] = predict(filter,u,F,G,Q)

[xpred,Ppred] = predict(filter,dt)
[xpred,Ppred] = predict(filter,u,dt)

predict(filter, ___)
xpred = predict(filter, ___)

Description
[xpred,Ppred] = predict(filter) returns the predicted state, xpred, and the predicted state
estimation error covariance, Ppred, for the next time step of the input linear Kalman filter. The
predicted values overwrite the internal state and state estimation error covariance of filter.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,u) specifies a control input, or force, u, and returns one or
more of the outputs from the preceding syntaxes.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.

[xpred,Ppred] = predict(filter,F) specifies the state transition model, F. Use this syntax to
change the state transition model during a simulation.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,F,Q) specifies the state transition model, F, and the process
noise covariance, Q. Use this syntax to change the state transition model and process noise
covariance during a simulation.

This syntax applies when you set the ControlModel property of filter to an empty matrix.

[xpred,Ppred] = predict(filter,u,F,G) specifies the force or control input, u, the state
transition model, F, and the control model, G. Use this syntax to change the state transition model
and control model during a simulation.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.

 predict

1-371

[xpred,Ppred] = predict(filter,u,F,G,Q) specifies the force or control input, u, the state
transition model, F, the control model, G, and the process noise covariance, Q. Use this syntax to
change the state transition model, control model, and process noise covariance during a simulation.

This syntax applies when you set the ControlModel property of filter to a nonempty matrix.

[xpred,Ppred] = predict(filter,dt) returns the predicted outputs after time step dt.

This syntax applies when the MotionModel property of filter is not set to 'Custom' and the
ControlModel property is set to an empty matrix.

[xpred,Ppred] = predict(filter,u,dt) also specifies a force or control input, u.

This syntax applies when the MotionModel property of filter is not set to 'Custom' and the
ControlModel property is set to a nonempty matrix.

predict(filter, ___) updates filter with the predicted state and state estimation error
covariance without returning the predicted values. Specify the tracking filter and any of the input
argument combinations from preceding syntaxes.

xpred = predict(filter, ___) updates filter with the predicted state and state estimation
error covariance but returns only the predicted state, xpred.

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume that the
measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
 cstates(:,1),cstates(:,3),'o')

1 Functions

1-372

xlabel('x [m]')
ylabel('y [m]')
grid
xt = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

Input Arguments
filter — Linear Kalman filter for object tracking
trackingKF object

Linear Kalman filter for object tracking, specified as a trackingKF object.

u — Control vector
real-valued L-element vector

Control vector, specified as a real-valued L-element vector.

F — State transition model
real-valued M-by-M matrix

State transition model, specified as a real-valued M-by-M matrix, where M is the size of the state
vector.

 predict

1-373

Q — Process noise covariance matrix
positive-definite, real-valued M-by-M matrix

Process noise covariance matrix, specified as a positive-definite, real-valued M-by-M matrix, where M
is the length of the state vector.

G — Control model
real-valued M-by-L matrix

Control model, specified as a real-valued M-by-L matrix. M is the size of the state vector. L is the
number of independent controls.

dt — Time step
positive scalar

Time step, specified as a positive scalar. Units are in seconds.

Output Arguments
xpred — Predicted state
real-valued M-element vector

Predicted state, returned as a real-valued M-element vector. The predicted state represents the
deducible estimate of the state vector, propagated from the previous state using the state transition
and control models.

Ppred — Predicted state error covariance matrix
real-valued M-by-M matrix

Predicted state covariance matrix, specified as a real-valued M-by-M matrix. M is the size of the state
vector. The predicted state covariance matrix represents the deducible estimate of the covariance
matrix vector. The filter propagates the covariance matrix from the previous estimate.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | correct | correctjpda | distance | initialize | likelihood | residual

Introduced in R2018b

1 Functions

1-374

residual
Measurement residual and residual noise from tracking filter

Syntax
[zres,rescov] = residual(filter,zmeas)
[zres,rescov] = residual(filter,zmeas,measparams)

Description
[zres,rescov] = residual(filter,zmeas) computes the residual and residual covariance of
the current given measurement, zmeas, with the predicted measurement in the tracking filter,
filter. This function applies to filters that assume a Gaussian distribution for noise.

[zres,rescov] = residual(filter,zmeas,measparams) specifies additional parameters that
are used by the MeasurementFcn of the filter.

If filter is a trackingKF object, then you cannot use this syntax.

Input Arguments
filter — Filter for object tracking
trackingKF object | trackingEKF object | trackingUKF object | trackingCKF object |
trackingMSCEKF object

Filter for object tracking, specified as one of these objects:

• trackingKF — Linear Kalman filter
• trackingEKF — Extended Kalman filter
• trackingUKF — Unscented Kalman filter
• trackingCKF — Cubature Kalman filter
• trackingMSCEKF — Extended Kalman filter using modified spherical coordinates (MSC)

zmeas — Current measurement of tracked object
vector | matrix

Current measurement of a tracked object, specified as a vector or matrix.

measparams — Parameters for measurement function
cell array

Parameters for measurement function, specified as a cell array. The parameters are passed to the
measurement function that is defined in the MeasurementFcn property of the input filter. If
filter is a trackingKF object, then you cannot specify measparams.

 residual

1-375

Output Arguments
zres — Residual between current and predicted measurement
matrix

Residual between current and predicted measurement, returned as a matrix.

rescov — Residual covariance
matrix

Residual covariance, returned as a matrix.

Algorithms
The residual is the difference between a measurement and the value predicted by the filter. For
Kalman filters, the residual calculation depends on whether the filter is linear or nonlinear.

Linear Kalman Filters

Given a linear Kalman filter with a current measurement of z, the residual zres is defined as
zres = z – Hx,

where:

• H is the measurement model set by the MeasurementModel property of the filter.
• x is the current filter state.

The covariance of the residual, S, is defined as
S = R + HPHT,

where:

• P is the state covariance matrix.
• R is the measurement noise matrix set by the MeasurementNoise property of the filter.

Nonlinear Kalman Filters

Given a nonlinear Kalman filter with a current measurement of z, the residual zres is defined as:
zres = z – h(x),

where:

• h is the measurement function set by the MeasurementFcn property.
• x is the current filter state.

The covariance of the residual, S, is defined as:
S = R + Rp,

where:

• R is the measurement noise matrix set by the MeasurementNoise property of the filter.
• Rp is the state covariance matrix projected onto the measurement space.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions

1-376

See Also
clone | correct | correctjpda | distance | initialize | likelihood | predict

Introduced in R2018b

 residual

1-377

assignauction
Assignment using auction global nearest neighbor

Syntax
[assignments,unassignedrows,unassignedcolumns] = assignauction(costmatrix,
costofnonassignment)

Description
[assignments,unassignedrows,unassignedcolumns] = assignauction(costmatrix,
costofnonassignment) returns a table of assignments of detections to tracks derived based on
the forward/reverse auction algorithm. The auction algorithm finds a suboptimal solution to the
global nearest neighbor (GNN) assignment problem by minimizing the total cost of assignment. While
suboptimal, the auction algorithm is faster than the Munkres algorithm for large GNN assignment
problems, for example, when there are more than 50 rows and columns in the cost matrix.

The cost of each potential assignment is contained in the cost matrix, costmatrix. Each matrix
entry represents the cost of a possible assignments. Matrix rows represent tracks and columns
represent detections. All possible assignments are represented in the cost matrix. The lower the cost,
the more likely the assignment is to be made. Each track can be assigned to at most one detection
and each detection can be assigned to at most one track. If the number of rows is greater than the
number of columns, some tracks are unassigned. If the number of columns is greater than the
number of rows, some detections are unassigned. You can set an entry of costmatrix to Inf to
prohibit an assignment.

costofnonassignment represents the cost of leaving tracks or detections unassigned. Higher
values increase the likelihood that every existing object is assigned.

The function returns a list of unassigned tracks, unassignedrows, and a list of unassigned
detections, unassignedcolumns.

Examples

Assign Detections to Tracks Using Auction Algorithm

Use assignAuction to assign three detections to two tracks.

Start with two predicted track locations in x-y coordinates.

tracks = [1,1; 2,2];

Assume three detections are received. At least one detection will not be assigned.

dets = [1.1, 1.1; 2.1, 2.1; 1.5, 3];

Construct a cost matrix by defining the cost of assigning a detection to a track as the Euclidean
distance between them. Set the cost of non-assignment to 0.2.

1 Functions

1-378

for i = size(tracks, 1):-1:1
 delta = dets - tracks(i, :);
 costMatrix(i, :) = sqrt(sum(delta .^ 2, 2));
end
costofnonassignment = 0.2;

Use the Auction algorithm to assign detections to tracks.

[assignments, unassignedTracks, unassignedDetections] = ...
 assignauction(costMatrix,costofnonassignment);

Display the assignments.

disp(assignments)

 1 1
 2 2

Show that there are no unassigned tracks.

disp(unassignedTracks)

Display the unassigned detections.

disp(unassignedDetections)

 3

Plot detection to track assignments.

plot(tracks(:, 1), tracks(:, 2), '*', dets(:, 1), dets(:, 2), 'o')
hold on
xlim([0, 4])
ylim([0, 4])
legend('tracks', 'detections')
assignStr = strsplit(num2str(1:size(assignments,1)));
text(tracks(assignments(:, 1),1) + 0.1, ...
 tracks(assignments(:, 1),2) - 0.1, assignStr);
text(dets(assignments(:, 2),1) + 0.1, ...
 dets(assignments(:, 2),2) - 0.1, assignStr);
text(dets(unassignedDetections(:),1) + 0.1, ...
 dets(unassignedDetections(:),2) + 0.1, 'unassigned');

 assignauction

1-379

The track to detection assignments are:

1 Detection 1 is assigned to track 1.
2 Detection 2 is assigned to track 2.
3 Detection 3 is not assigned.

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an M-by-N matrix. M is the number of tracks to be assigned and N is the
number of detections to be assigned. Each entry in the cost matrix contains the cost of a track and
detection assignment. The matrix may contain Inf entries to indicate that an assignment is
prohibited. The cost matrix cannot be a sparse matrix.
Data Types: single | double

costofnonassignment — cost of non-assignment of tracks and detections
scalar

Cost of non-assignment, specified as a scalar. The cost of non-assignment represents the cost of
leaving tracks or detections unassigned. Higher values increase the likelihood that every object is
assigned. The value cannot be set to Inf.

1 Functions

1-380

Data Types: single | double

Output Arguments
assignments — Assignment of tracks to detections
integer-valued L-by-2 matrix

Assignment of detections to track, returned as an integer-valued L-by-2 matrix where L is the number
of assignments. The first column of the matrix contains the assigned track indices and the second
column contains the assigned detection indices.
Data Types: uint32

unassignedrows — Indices of unassigned tracks
integer-valued P-by-1 column vector

Indices of unassigned tracks, returned as an integer-valued P-by-1 column vector.
Data Types: uint32

unassignedcolumns — Indices of unassigned detections
integer-valued Q-by-1 column vector

Indices of unassigned detections, returned as an integer-valued Q-by-1 column vector.
Data Types: uint32

References
[1] Samuel S. Blackman and Popoli, R. Design and Analysis of Modern Tracking Systems. Artech

House: Norwood, MA. 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignjv | assignkbest | assignkbestsd | assignmunkres | assignsd |
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignauction

1-381

assignjv
Jonker-Volgenant global nearest neighbor assignment algorithm

Syntax
[assignments,unassignedrows,unassignedcolumns] = assignjv(costmatrix,
costofnonassignment)

Description
[assignments,unassignedrows,unassignedcolumns] = assignjv(costmatrix,
costofnonassignment) returns a table of assignments of detections to tracks using the Jonker-
Volgenant algorithm. The JV algorithm finds an optimal solution to the global nearest neighbor (GNN)
assignment problem by finding the set of assignments that minimize the total cost of the assignments.
The Jonker-Volgenant algorithm solves the GNN assignment in two phases: begin with the auction
algorithm and end with the Dijkstra shortest path algorithm.

The cost of each potential assignment is contained in the cost matrix, costmatrix. Each matrix
entry represents the cost of a possible assignments. Matrix rows represent tracks and columns
represent detections. All possible assignments are represented in the cost matrix. The lower the cost,
the more likely the assignment is to be made. Each track can be assigned to at most one detection
and each detection can be assigned to at most one track. If the number of rows is greater than the
number of columns, some tracks are unassigned. If the number of columns is greater than the
number of rows, some detections are unassigned. You can set an entry of costmatrix to Inf to
prohibit an assignment.

costofnonassignment represents the cost of leaving tracks or detections unassigned. Higher
values increase the likelihood that every existing object is assigned.

The function returns a list of unassigned tracks, unassignedrows, and a list of unassigned
detections, unassignedcolumns.

Examples

Assign Detections to Tracks Using Jonker-Volgenant Algorithm

Use assignjv to assign three detections to two tracks.

Start with two predicted track locations in x-y coordinates.

tracks = [1,1; 2,2];

Assume three detections are received. At least one detection will not be assigned.

dets = [1.1, 1.1; 2.1, 2.1; 1.5, 3];

Construct a cost matrix by defining the cost of assigning a detection to a track as the Euclidean
distance between them. Set the cost of non-assignment to 0.2.

1 Functions

1-382

for i = size(tracks,1):-1:1
 delta = dets - tracks(i,:);
 costMatrix(i,:) = sqrt(sum(delta .^ 2,2));
end
costofnonassignment = 0.2;

Use the Auction algorithm to assign detections to tracks.

[assignments, unassignedTracks, unassignedDetections] = ...
 assignjv(costMatrix,costofnonassignment);

Display the assignments.

disp(assignments)

 1 1
 2 2

Show that there are no unassigned tracks.

disp(unassignedTracks)

Display the unassigned detections.

disp(unassignedDetections)

 3

Plot the detection to track assignments.

plot(tracks(:, 1), tracks(:, 2), '*', dets(:, 1), dets(:, 2), 'o')
hold on
xlim([0,4])
ylim([0,4])
legend('tracks', 'detections')
assignStr = strsplit(num2str(1:size(assignments,1)));
text(tracks(assignments(:,1),1) + 0.1, ...
 tracks(assignments(:,1),2) - 0.1, assignStr);
text(dets(assignments(:,2),1) + 0.1, ...
 dets(assignments(:,2),2) - 0.1, assignStr);
text(dets(unassignedDetections(:),1) + 0.1, ...
 dets(unassignedDetections(:),2) + 0.1, 'unassigned');

 assignjv

1-383

The track to detection assignments are:

1 Detection 1 is assigned to track 1.
2 Detection 2 is assigned to track 2.
3 Detection 3 is not assigned.

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an M-by-N matrix. M is the number of tracks to be assigned and N is the
number of detections to be assigned. Each entry in the cost matrix contains the cost of a track and
detection assignment. The matrix may contain Inf entries to indicate that an assignment is
prohibited. The cost matrix cannot be a sparse matrix.
Data Types: single | double

costofnonassignment — cost of non-assignment of tracks and detections
scalar

Cost of non-assignment, specified as a scalar. The cost of non-assignment represents the cost of
leaving tracks or detections unassigned. Higher values increase the likelihood that every object is
assigned. The value cannot be set to Inf.

1 Functions

1-384

Data Types: single | double

Output Arguments
assignments — Assignment of tracks to detections
integer-valued L-by-2 matrix

Assignment of detections to track, returned as an integer-valued L-by-2 matrix where L is the number
of assignments. The first column of the matrix contains the assigned track indices and the second
column contains the assigned detection indices.
Data Types: uint32

unassignedrows — Indices of unassigned tracks
integer-valued P-by-1 column vector

Indices of unassigned tracks, returned as an integer-valued P-by-1 column vector.
Data Types: uint32

unassignedcolumns — Indices of unassigned detections
integer-valued Q-by-1 column vector

Indices of unassigned detections, returned as an integer-valued Q-by-1 column vector.
Data Types: uint32

References
[1] Samuel S. Blackman and Popoli, R. Design and Analysis of Modern Tracking Systems. Artech

House: Norwood, MA. 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignauction | assignkbest | assignkbestsd | assignmunkres | assignsd |
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignjv

1-385

assignkbest
Assignment using k-best global nearest neighbor

Syntax
[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment)
[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment,k)
[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment,k,algorithm)

Description
[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment) returns a table of assignments, assignments, of detections to tracks
using the Munkres algorithm. The algorithm finds the global nearest neighbor (GNN) solution that
minimizes the total cost of the assignments.

The cost of each potential assignment is contained in the cost matrix, costmatrix. Each matrix
entry represents the cost of a possible assignments. Matrix rows represent tracks and columns
represent detections. All possible assignments are represented in the cost matrix. The lower the cost,
the more likely the assignment is to be made. Each track can be assigned to at most one detection
and each detection can be assigned to at most one track. If the number of rows is greater than the
number of columns, some tracks are unassigned. If the number of columns is greater than the
number of rows, some detections are unassigned. You can set an entry of costmatrix to Inf to
prohibit an assignment.

costofnonassignment represents the cost of leaving tracks or detections unassigned. Higher
values increase the likelihood that every existing object is assigned.

All inputs must all be single precision or all be double precision.

The function returns a list of unassigned tracks, unassignedrows, a list of unassigned detections,
unassignedcolumns, and the cost of assignment, cost.

[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment,k)also specifies the number, k, of k-best global nearest neighbor solutions
that minimize the total cost of assignments. In addition to the best solution, the function uses the
Murty algorithm to find the remaining k-1 solutions.

[assignments,unassignedrows,unassignedcolumns,cost] = assignkbest(costmatrix,
costofnonassignment,k,algorithm) also specifies the algorithm, algorithm, for finding the
assignments.

Examples

1 Functions

1-386

Find Five Best Solutions Using Assignkbest

Create a cost matrix containing prohibited assignments. Then, use the assignkbest function to find
the 5 best solutions.

Set up the cost matrix to contain some prohibited or invalid assignments by inserting Inf into the
matrix.

costMatrix = [10 5 8 9; 7 Inf 20 Inf; Inf 21 Inf Inf; Inf 15 17 Inf; Inf inf 16 22];
costOfNonAssignment = 100;

Find the 5 best assignments.

[assignments,unassignedrows,unassignedcols,cost] = ...
 assignkbest(costMatrix,costOfNonAssignment,5)

assignments=5×1 cell array
 {4x2 uint32}
 {4x2 uint32}
 {4x2 uint32}
 {4x2 uint32}
 {4x2 uint32}

unassignedrows=5×1 cell array
 {[3]}
 {[3]}
 {[3]}
 {[4]}
 {[5]}

unassignedcols=5×1 cell array
 {0x1 uint32}
 {0x1 uint32}
 {0x1 uint32}
 {0x1 uint32}
 {0x1 uint32}

cost = 5×1

 147
 151
 152
 153
 154

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an M-by-N matrix. M is the number of tracks to be assigned and N is the
number of detections to be assigned. Each entry in the cost matrix contains the cost of a track and

 assignkbest

1-387

detection assignment. The matrix may contain Inf entries to indicate that an assignment is
prohibited. The cost matrix cannot be a sparse matrix.
Data Types: single | double

costofnonassignment — cost of non-assignment of tracks and detections
scalar

Cost of non-assignment, specified as a scalar. The cost of non-assignment represents the cost of
leaving tracks or detections unassigned. Higher values increase the likelihood that every object is
assigned. The value cannot be set to Inf.
Data Types: single | double

k — Number of best solutions
positive integer

Number of best solutions, specified as a positive integer.
Data Types: single | double

algorithm — Assignment algorithm
'munkres' (default) | 'jv' | 'auction'

Assignment algorithm, specified as 'munkres' for the Munkres algorithm, 'jv' for the Jonker-
Volgenant algorithm, or 'auction' for the Auction algorithm.
Example: 'jv'
Data Types: char | string

Output Arguments
assignments — Assignment of tracks to detections
k-element cell array

Assignment of tracks to detections, returned as a k-element cell array. k is the number of best
solutions. Each cell contains an Li-by-2 matrix of pairs of track indices and assigned detection indices.
Li is the number of assignment pairs in the ith solution cell. The first column of each matrix contains
the track indices and the second column contains the assigned detection indices.

unassignedrows — Indices of unassigned tracks
k-element cell array

Indices of unassigned tracks, returned as a k-element cell array. Each cell is a Pi vector where Pi = M
- Li is the number of unassigned rows in the ith cell. Each element is the index of a row to which no
columns are assigned. k is the number of best solutions.
Data Types: uint32

unassignedcolumns — Indices of unassigned detections
k-element cell array

Indices of unassigned detections, returned as a k-element cell array. Each cell is a Qi vector where Qi
= M - Li is the number of unassigned detections in the ith cell. Each element is the index of a column
to which no rows are assigned. k is the number of best solutions.

1 Functions

1-388

Data Types: uint32

cost — Total cost of solutions
k-element vector (default)

Total cost of solutions, returned as a k-element vector. Each element is a scalar value summarizing
the total cost of the solution to the assignment problem.
Data Types: single | double

References
[1] Murty, Katta G. "An algorithm for ranking all the assignments in order of increasing cost."

Operations research 16, no. 3 (1968): 682-687.

[2] Samuel Blackman and Robert Popoli. Design and Analysis of Modern Tracking Systems, Artech
House, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignauction | assignjv | assignkbestsd | assignmunkres | assignsd |
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignkbest

1-389

assignkbestsd
K-best S-D solution that minimizes total cost of assignment

Syntax
[assignments,cost,solutionGap] = assignkbestsd(costmatrix)
[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k)
[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap)
[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap,
maxIterations)
[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap,
maxIterations,algorithm)

Description
[assignments,cost,solutionGap] = assignkbestsd(costmatrix) returns a table of
assignments of detections to tracks by finding the best S-D solution that minimizes the total cost of
the assignments. The algorithm uses Lagrangian relaxation to convert the S-D assignment problem to
a corresponding 2-D assignment problem and then solves the 2-D problem. The cost of each potential
assignment is contained in the cost matrix, costmatrix.

costmatrix is an n-dimensional cost matrix where costmatrix(i,j,k ...) defines the cost of
the n-tuple (i,j,k, ...) in assignment. The index '1' on all dimensions in costmatrix represents
dummy measurement or a false track and is used to complete the assignment problem. The index 1,
being a dummy, can be a part of multiple n-tuples. The index can be assigned more than once. A
typical cost value for costmatrix(1,1,1,1, ...) is 0.

The function also returns the solution gap, solutionGap, and the cost of assignments, cost.

[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k) also specifies the
number, k of K-best S-D solutions. The function finds K optimal solutions that minimize the total cost.
First, the function finds the best solution. Then, the function uses the Murty algorithm to generate
partitioned cost matrices. Finally, the function obtains the remaining K - 1 minimum cost solutions for
each partitioned matrix.

[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap) also
specifies the desired maximum gap, desiredGap, between the dual solution and the feasible
solution. The gap controls the quality of the solution. Values usually range from 0 to 1. A value of 0
means the dual and feasible solutions are the same.

[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap,
maxIterations) also specifies the maximum number of iterations allowed. The desiredGap and
maxIterations arguments define the terminating conditions for the S-D algorithm.

[assignments,cost,solutionGap] = assignkbestsd(costmatrix,k,desiredGap,
maxIterations,algorithm) also specifies the algorithm for finding the assignments.

Examples

1 Functions

1-390

Assign Detections to Tracks Using K-Best SD

Find the first 5 best assignments of the S-D assignment problem. Set the desired gap to 0.01 and the
maximum number of iterations to 100.

Load the cost matrix.

load passiveAssociationCostMatrix.mat

Find the 5 best solutions.

[assignments,cost,solutionGap] = assignkbestsd(costMatrix,5,0.01,100)

assignments=5×1 cell array
 {2x3 uint32}
 {3x3 uint32}
 {3x3 uint32}
 {3x3 uint32}
 {3x3 uint32}

cost = 5×1

 -34.7000
 -31.7000
 -29.1000
 -28.6000
 -28.0000

solutionGap = 5×1

 0
 0.0552
 0.0884
 0.1075
 0.1964

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an n-dimensional array where costmatrix(i,j,k ...) defines the cost of
the n-tuple (i,j,k, ...) in an assignment. The index '1' on all dimensions in costmatrix
represents a dummy measurement or a false track and is used to complete the assignment problem.
The index 1, being a dummy, can be a part of multiple n-tuples. The index can be assigned more than
once. A typical cost value for costmatrix(1,1,1,1, ...) is 0.
Data Types: single | double

k — Number of best solutions
1 (default) | positive integer

Number of best solutions, specified as a positive integer.

 assignkbestsd

1-391

Data Types: single | double

desiredGap — Desired maximal gap
0.01 (default) | nonnegative scalar

Desired maximum gap between the dual and feasible solutions, specified as a nonnegative scalar.
Example: 0.05
Data Types: single | double

maxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Example: 50
Data Types: single | double

algorithm — Assignment algorithm
'auction' (default) | 'munkres' | 'jv'

Assignment algorithm for solving the 2-D assignment problem, specified as 'munkres' for the
Munkres algorithm, 'jv' for the Jonker-Volgenant algorithm, or 'auction' for the Auction
algorithm.
Example: 'jv'

Output Arguments
assignments — Assignment of tracks to detections
K-element cell array

Assignments of tracks to detections, returned as a K-element cell array. Each cell is an P-by-N list of
assignments. Assignments of the type [1 1 Q 1] from a four-dimensional cost matrix can be seen as
a Q-1 entity from dimension 3 that was left unassigned. The cost value at (1,1,Q,1) defines the cost
of not assigning the (Q-1)th entity from dimension 3.

cost — Total cost of solutions
K-element array

Total cost of solutions, returned as a K-element vector where K is the number of best solutions. Each
element is a scalar value summarizing the total cost of the solution to the assignment problem.
Data Types: single | double

solutionGap — Solution gap
real-valued K-element array

Solution gap, returned as a positive-valued K-element array where K is the number of best solutions.
Each element is the duality gap achieved between the feasible and dual solution. A gap value near
zero indicates the quality of solution.
Data Types: single | double

1 Functions

1-392

Algorithms
All numeric inputs can be single or double precision, but they all must have the same precision.

References
[1] Popp, R.L., Pattipati, K., and Bar Shalom, Y. "M-best S=D Assignment Algorithm with Application

to Multitarget Tracking". IEEE Transactions on Aerospace and Electronic Systems, 37(1),
22-39. 2001.

[2] Deb, S., Yeddanapudi, M., Pattipati, K., & Bar-Shalom, Y. (1997). "A generalized SD assignment
algorithm for multisensor-multitarget state estimation". IEEE Transactions on Aerospace and
Electronic Systems, 33(2), 523-538.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignauction | assignjv | assignkbest | assignmunkres | assignsd

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignkbestsd

1-393

assignmunkres
Munkres global nearest neighbor assignment algorithm

Syntax
[assignments,unassignedrows,unassignedcolumns] = assignmunkres(costmatrix,
costofnonassignment)

Description
[assignments,unassignedrows,unassignedcolumns] = assignmunkres(costmatrix,
costofnonassignment) returns a table of assignments of detections to tracks using the Munkres
algorithm. The Munkres algorithm obtains an optimal solution to the global nearest neighbor (GNN)
assignment problem. An optimal solution minimizes the total cost of the assignments.

The cost of each potential assignment is contained in the cost matrix, costmatrix. Each matrix
entry represents the cost of a possible assignments. Matrix rows represent tracks and columns
represent detections. All possible assignments are represented in the cost matrix. The lower the cost,
the more likely the assignment is to be made. Each track can be assigned to at most one detection
and each detection can be assigned to at most one track. If the number of rows is greater than the
number of columns, some tracks are unassigned. If the number of columns is greater than the
number of rows, some detections are unassigned. You can set an entry of costmatrix to Inf to
prohibit an assignment.

costofnonassignment represents the cost of leaving tracks or detections unassigned. Higher
values increase the likelihood that every existing object is assigned.

The function returns a list of unassigned tracks, unassignedrows, and a list of unassigned
detections, unassignedcolumns

Examples

Assign Detections to Tracks Using Munkres Algorithm

Use assignMunkres to assign three detections to two tracks.

Start with two predicted track locations in x-y coordinates.

tracks = [1,1; 2,2];

Assume three detections are received. At least one detection will not be assigned.

dets = [1.1, 1.1; 2.1, 2.1; 1.5, 3];

Construct a cost matrix by defining the cost of assigning a detection to a track as the Euclidean
distance between them. Set the cost of non-assignment to 0.2.

for i = size(tracks, 1):-1:1
 delta = dets - tracks(i, :);
 costMatrix(i, :) = sqrt(sum(delta .^ 2, 2));

1 Functions

1-394

end
costofnonassignment = 0.2;

Use the Auction algorithm to assign detections to tracks.

[assignments, unassignedTracks, unassignedDetections] = ...
 assignmunkres(costMatrix,costofnonassignment);

Display the assignments.

disp(assignments)

 1 1
 2 2

Show that there are no unassigned tracks.

disp(unassignedTracks)

Display the unassigned detections.

disp(unassignedDetections)

 3

Plot detection to track assignments.

plot(tracks(:, 1), tracks(:, 2), '*', dets(:, 1), dets(:, 2), 'o')
hold on
xlim([0, 4])
ylim([0, 4])
legend('tracks', 'detections')
assignStr = strsplit(num2str(1:size(assignments,1)));
text(tracks(assignments(:, 1),1) + 0.1, ...
 tracks(assignments(:, 1),2) - 0.1, assignStr);
text(dets(assignments(:, 2),1) + 0.1, ...
 dets(assignments(:, 2),2) - 0.1, assignStr);
text(dets(unassignedDetections(:),1) + 0.1, ...
 dets(unassignedDetections(:),2) + 0.1, 'unassigned');

 assignmunkres

1-395

The track to detection assignments are:

1 Detection 1 is assigned to track 1.
2 Detection 2 is assigned to track 2.
3 Detection 3 is not assigned.

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an M-by-N matrix. M is the number of tracks to be assigned and N is the
number of detections to be assigned. Each entry in the cost matrix contains the cost of a track and
detection assignment. The matrix may contain Inf entries to indicate that an assignment is
prohibited. The cost matrix cannot be a sparse matrix.
Data Types: single | double

costofnonassignment — cost of non-assignment of tracks and detections
scalar

Cost of non-assignment, specified as a scalar. The cost of non-assignment represents the cost of
leaving tracks or detections unassigned. Higher values increase the likelihood that every object is
assigned. The value cannot be set to Inf.

1 Functions

1-396

Data Types: single | double

Output Arguments
assignments — Assignment of tracks to detections
integer-valued L-by-2 matrix

Assignment of detections to track, returned as an integer-valued L-by-2 matrix where L is the number
of assignments. The first column of the matrix contains the assigned track indices and the second
column contains the assigned detection indices.
Data Types: uint32

unassignedrows — Indices of unassigned tracks
integer-valued P-by-1 column vector

Indices of unassigned tracks, returned as an integer-valued P-by-1 column vector.
Data Types: uint32

unassignedcolumns — Indices of unassigned detections
integer-valued Q-by-1 column vector

Indices of unassigned detections, returned as an integer-valued Q-by-1 column vector.
Data Types: uint32

References
[1] Samuel S. Blackman and Popoli, R. Design and Analysis of Modern Tracking Systems. Artech

House: Norwood, MA. 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd | assignsd |
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignmunkres

1-397

assignsd
S-D assignment using Lagrangian relaxation

Syntax
[assignments,cost,solutionGap] = assignsd(costmatrix)
[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap)
[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap,
maxIterations)
[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap,
maxIterations,algorithm)

Description
[assignments,cost,solutionGap] = assignsd(costmatrix) returns a table of assignments,
assignments, of detections to tracks by finding a suboptimal solution to the S-D assignment
problem using Lagrangian relaxation. The cost of each potential assignment is contained in the cost
matrix, costmatrix. The algorithm terminates when the gap reaches below 0.01 (1 percent) or if the
number of iterations reaches 100.

costmatrix is an n-dimensional cost matrix where costmatrix(i,j,k ...) defines the cost of
the n-tuple (i,j,k, ...) in assignment. The index '1' on all dimensions in costmatrix represents
dummy measurement or a false track and is used to complete the assignment problem. The index 1,
being a dummy, can be a part of multiple n-tuples. The index can be assigned more than once. A
typical cost value for costmatrix(1,1,1,1, ...) is 0.

All inputs can be single or double precision, but they all must be of the same precision.

The function also returns the solution gap, solutionGap, and the total cost of assignments, cost.

[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap)also specifies the
desired maximum gap, desiredGap, between the dual and the feasible solutions as a scalar. The gap
controls the quality of the solution. Values usually range from 0 to 1. A value of 0 means the dual and
feasible solutions are the same.

[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap,
maxIterations)also specifies the maximum number of iterations, maxIterations.

[assignments,cost,solutionGap] = assignsd(costmatrix,desiredGap,
maxIterations,algorithm)also specifies the assignment algorithm, algorithm.

Examples

Assign Detections to Tracks Using assignsd Algorithm

Use assignsd to perform strict assignment without index 1.

Not having dummy index means that no entity is left unassigned. Therefore, define the cost matrix to
be equi-dimensional.

1 Functions

1-398

costMatrix = rand(6,6,6);

Initialize the fullmatrix to all Inf. The fullmatix is one size larger than the cost matrix in all
dimensions.

fullMatrix = inf(7,7,7);

Set the inner matrix to costMatrix to force the assignments involving index 1 to have infinite cost.

fullMatrix(2:end,2:end,2:end) = costMatrix;
fullMatrix(1,1,1) = 0;
[assignments,cost,gapAchieved] = assignsd(fullMatrix,0.01,100);

Restore the actual indices.

assignments = assignments - 1

assignments = 6x3 uint32 matrix

 1 6 6
 2 4 3
 3 3 4
 4 1 2
 5 2 1
 6 5 5

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an n-dimensional array where costmatrix(i,j,k ...) defines the cost of
the n-tuple (i,j,k, ...) in an assignment. The index '1' on all dimensions in costmatrix
represents a dummy measurement or a false track and is used to complete the assignment problem.
The index 1, being a dummy, can be a part of multiple n-tuples. The index can be assigned more than
once. A typical cost value for costmatrix(1,1,1,1, ...) is 0.
Data Types: single | double

desiredGap — Desired maximal gap
0.01 (default) | nonnegative scalar

Desired maximum gap between the dual and feasible solutions, specified as a nonnegative scalar.
Example: 0.05
Data Types: single | double

maxIterations — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as a positive integer.
Example: 50
Data Types: single | double

 assignsd

1-399

algorithm — Assignment algorithm
'auction' (default) | 'munkres' | 'jv'

Assignment algorithm for solving the 2-D assignment problem, specified as 'munkres' for the
Munkres algorithm, 'jv' for the Jonker-Volgenant algorithm, or 'auction' for the Auction
algorithm.
Example: 'jv'

Output Arguments
assignments — Assignment of tracks to detections
P-by-N matrix

Assignments of tracks to detections, returned as a P-by-N list of assignments. Assignments of the type
[1 1 Q 1] from a four-dimensional cost matrix can be seen as a Q-1 entity from dimension 3 that
was left unassigned. The cost value at (1,1,Q,1) defines the cost of not assigning the (Q-1)th entity
from dimension 3.

cost — Total cost of assignment solution
positive scalar

Total cost of solutions, returned as a K-element vector where K is the number of best solutions. Each
element is a scalar value summarizing the total cost of the solution to the assignment problem.
Data Types: single | double

solutionGap — Solution gap
positive scalar (default)

Solution gap, returned as a positive scalar. The solution gap is the duality gap achieved between the
feasible and dual solution. A gap value near zero indicates the quality of solution.
Data Types: single | double

Algorithms
• The Lagrangian relaxation method computes a suboptimal solution to the S-D assignment

problem. The method relaxes the S-D assignment problem to a 2-D assignment problem using a
set of Lagrangian multipliers. The relaxed 2-D assignment problem is commonly known as the
dual problem, which can be solved optimally using algorithms like the Munkres algorithm.
Constraints are then enforced on the dual solution by solving multiple 2-D assignment problems to
obtain a feasible solution to the original problem. The cost of the dual solution and the feasible
solution serves as lower and upper bounds on the optimal cost, respectively. The algorithm
iteratively tries to minimize the gap between the dual and feasible solutions, commonly known as
the dual gap. The iteration stops when the dual gap is below a desired gap or the maximum
number of iterations have reached.

• When using the auction algorithm, the assignsd function uses the Heuristic Price Update
algorithm to update the Lagrangian multipliers. When using the Munkres and JV algorithms, the
function uses the Accelerated Subgradient Update algorithm.

• For cost matrices with well-defined solutions, such as passive association with high-precision
sensors, the solution gap converges to within 0.05 (5 percent) in approximately 100 iterations.

1 Functions

1-400

• As the optimal solution is unknown, the solution gap can be non-zero even when the returned
solution is optimal.

References
[1] Deb, S., Yeddanapudi, M., Pattipati, K., and Bar-Shalom, Y. (1997). A generalized SD assignment

algorithm for multisensor-multitarget state estimation. IEEE Transactions on Aerospace and
Electronic Systems, 33(2), 523-538.

[2] Blackman, Samuel, and Robert Popoli. Design and analysis of modern tracking systems. Norwood,
MA: Artech House, 1999. (1999)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres |
trackerGNN | trackerTOMHT

Introduced in R2018b

 assignsd

1-401

assignTOMHT
Track-oriented multi-hypotheses tracking assignment

Syntax
[assignments,unassignedrows,unassignedcolumns] = assignTOMHT(costmatrix,
costThreshold)

Description
[assignments,unassignedrows,unassignedcolumns] = assignTOMHT(costmatrix,
costThreshold) returns a table of assignments, assignments, of detections to tracks using a
track-oriented multi-hypothesis algorithm (TOMHT).

The cost of each potential assignment is contained in the cost matrix, costmatrix. Each matrix
entry represents the cost of a possible assignments. Matrix rows represent tracks and columns
represent detections. All possible assignments are represented in the cost matrix. The lower the cost,
the more likely the assignment is to be made. Each track can be assigned to at most one detection
and each detection can be assigned to at most one track. If the number of rows is greater than the
number of columns, some tracks are unassigned. If the number of columns is greater than the
number of rows, some detections are unassigned. You can set an entry of costmatrix to Inf to
prohibit an assignment.

costThreshold represents the set of three gates used for assigning detections to tracks.

The function returns a list of unassigned tracks, unassignedrows, and a list of unassigned
detections, unassignedcolumns.

Examples

Assignment Using AssignTOMHT

Find the assignments from a cost matrix using assignTOMHT with a nonzero C1 gate and a nonzero
C2 gate.

Create a cost matrix that assigns:

• Track 1 to detection 1 within the C1 gate and detection 2 within the C2 gate.
• Track 2 to detection 2 within the C2 gate and detection 3 within the C3 gate.
• Track 3 is unassigned.
• Detection 4 is unassigned.

costMatrix = [4 9 200 Inf; 300 12 28 Inf; 32 100 210 1000];
costThresh = [5 10 30];

Calculate the assignments.

[assignments, unassignedTracks, unassignedDets] = assignTOMHT(costMatrix,costThresh)

1 Functions

1-402

assignments = 4x2 uint32 matrix

 1 1
 1 2
 2 2
 2 3

unassignedTracks = 2x1 uint32 column vector

 2
 3

unassignedDets = 2x1 uint32 column vector

 3
 4

Tracks that are assigned detections within the C1 gate are not considered as unassigned. For
example, track 1. Detections that are assigned to tracks within the C2 gate are not considered as
unassigned. For example, detections 1 and 2.

Input Arguments
costmatrix — Cost matrix
real-valued M-by-N

Cost matrix, specified as an M-by-N matrix. M is the number of tracks to be assigned and N is the
number of detections to be assigned. Each entry in the cost matrix contains the cost of a track and
detection assignment. The matrix may contain Inf entries to indicate that an assignment is
prohibited. The cost matrix cannot be a sparse matrix.
Data Types: single | double

costThreshold — Assignment gates
positive, real-valued 3-element vector

Assignment gates, specified as a positive, real-valued three-element vector
[c1gate,c2gate,c3gate] where c1gate <= c2gate <= c3gate.
Example: [0.1,0.3,0.5]
Data Types: single | double

Output Arguments
assignments — Assignment of tracks to detections
integer-valued L-by-2 matrix

Assignment of detections to track, returned as an integer-valued L-by-2 matrix where L is the number
of assignments. The first column of the matrix contains the assigned track indices and the second
column contains the assigned detection indices.
Data Types: uint32

 assignTOMHT

1-403

unassignedrows — Indices of unassigned tracks
integer-valued P-by-1 column vector

Indices of unassigned tracks, returned as an integer-valued P-by-1 column vector.
Data Types: uint32

unassignedcolumns — Indices of unassigned detections
integer-valued Q-by-1 column vector

Indices of unassigned detections, returned as an integer-valued Q-by-1 column vector.
Data Types: uint32

Algorithms
Assignment Thresholds for Multi-Hypothesis Tracker

Three assignment thresholds, C1 , C2, and C3, control (1) the assignment of a detection to a track, (2)
the creation of a new branch from a detection, and (3) the creation of a new branch from an
unassigned track. The threshold values must satisfy: C1 <= C2 <= C3.

If the cost of an assignment is C = costmatrix(i,j), the following hypotheses are created based
on comparing the cost to the values of the assignment thresholds. Below each comparison, there is a
list of the possible hypotheses.

1 Functions

1-404

Tips:

• Increase the value of C3 if there are detections that should be assigned to tracks but are not.
Decrease the value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

• Increasing the values C1 and C2 helps control the number of track branches that are created.
However, doing so reduces the number of branches (hypotheses) each track has.

• To allow each track to be unassigned, set C1 = 0.
• To allow each detection to be unassigned, set C2 = 0.

 assignTOMHT

1-405

References
[1] Werthmann, John R. "Step-by-step description of a computationally efficient version of multiple

hypothesis tracking." In Signal and Data Processing of Small Targets 1992, vol. 1698, pp.
288-300. International Society for Optics and Photonics, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres | assignsd |
trackerGNN | trackerTOMHT

Introduced in R2018b

1 Functions

1-406

fusecovint
Covariance fusion using covariance intersection

Syntax
[fusedState,fusedCov] = fusecovint(trackState,trackCov)
[fusedState,fusedCov] = fusecovint(trackState,trackCov,minProp)

Description
[fusedState,fusedCov] = fusecovint(trackState,trackCov) fuses the track states in
trackState and their corresponding covariance matrices trackCov. The function computes the
fused state and covariance as an intersection of the individual covariances. It creates a convex
combination of the covariances and finds weights that minimize the determinant of the fused
covariance matrix.

[fusedState,fusedCov] = fusecovint(trackState,trackCov,minProp) estimates the
fused covariance by minimizing minProp, which can be either the determinant or the trace of the
fused covariance matrix.

Examples

Covariance Intersection Fusion Using Default Values

Define a state vector of tracks.

x(:,1) = [1;2;0];
x(:,2) = [2;2;0];
x(:,3) = [2;3;0];

Define the covariance matrices of the tracks.

p(:,:,1) = [10 5 0; 5 10 0; 0 0 1];
p(:,:,2) = [10 -5 0; -5 10 0; 0 0 1];
p(:,:,3) = [12 9 0; 9 12 0; 0 0 1];

Estimate the fused state vector and its covariance.

[fusedState,fusedCov] = fusecovint(x,p);

Use trackPlotter to plot the results.

tPlotter = theaterPlot('XLim',[-10 10],'YLim',[-10 10],'ZLim',[-10 10]);
tPlotter1 = trackPlotter(tPlotter, ...
 'DisplayName','Input Tracks','MarkerEdgeColor',[0.000 0.447 0.741]);
tPlotter2 = trackPlotter(tPlotter,'DisplayName', ...
 'Fused Track','MarkerEdgeColor',[0.850 0.325 0.098]);
plotTrack(tPlotter1,x',p)
plotTrack(tPlotter2,fusedState',fusedCov)
title('Covariance Intersection Fusion')

 fusecovint

1-407

Covariance Intersection Fusion Using Trace Minimization

Define a state vector of tracks.

x(:,1) = [1;2;0];
x(:,2) = [2;2;0];
x(:,3) = [2;3;0];

Define the covariance matrices of the tracks.

p(:,:,1) = [10 5 0; 5 10 0; 0 0 1];
p(:,:,2) = [10 -5 0; -5 10 0; 0 0 1];
p(:,:,3) = [12 9 0; 9 12 0; 0 0 1];

Estimate the fused state vector and its covariance. Combine the original covariances so that the trace
of the fused covariance matrix is minimized.

[fusedState,fusedCov] = fusecovint(x,p,'trace');

Use trackPlotter to plot the results.

tPlotter = theaterPlot('XLim',[-10 10],'YLim',[-10 10],'ZLim',[-10 10]);
tPlotter1 = trackPlotter(tPlotter, ...
 'DisplayName','Input Tracks','MarkerEdgeColor',[0.000 0.447 0.741]);
tPlotter2 = trackPlotter(tPlotter, ...

1 Functions

1-408

 'DisplayName','Fused Track','MarkerEdgeColor',[0.850 0.325 0.098]);
plotTrack(tPlotter1,x',p)
plotTrack(tPlotter2,fusedState',fusedCov)
title('Covariance Intersection Fusion')

Input Arguments
trackState — Track states
N-by-M matrix

Track states, specified as an N-by-M matrix, where N is the dimension of the state and M is the
number of tracks.
Data Types: single | double

trackCov — Track covariance matrices
N-by-N-by-M array

Track covariance matrices, specified as an N-by-N-by-M array, where N is the dimension of the state
and M is the number of tracks.
Data Types: single | double

minProp — Property to minimize
'det' (default) | 'trace'

 fusecovint

1-409

Property to minimize when estimating the fused covariance, specified as 'det' or 'trace'.

.
Data Types: char | string

Output Arguments
fusedState — Fused state
N-by-1 vector

Fused state, returned as an N-by-1 vector, where N is the dimension of the state.

fusedCov — Fused covariance matrix
N-by-N matrix

Fused covariance matrix, returned as an N-by-N matrix, where N is the dimension of the state.

References
[1] Matzka, Stephan, and Richard Altendorfer. "A comparison of track-to-track fusion algorithms for

automotive sensor fusion." In Multisensor Fusion and Integration for Intelligent Systems, pp.
69-81. Springer, Berlin, Heidelberg, 2009.

[2] Julier, Simon, and Jeffrey K. Uhlmann. "General decentralized data fusion with covariance
intersection." In Handbook of multisensor data fusion, pp. 339-364. CRC Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fusecovunion | fusexcov

Introduced in R2018b

1 Functions

1-410

fusecovunion
Covariance fusion using covariance union

Syntax
[fusedState,fusedCov] = fusecovunion(trackState,trackCov)

Description
[fusedState,fusedCov] = fusecovunion(trackState,trackCov) fuses the track states in
trackState and their corresponding covariance matrices trackCov. The function estimates the
fused state and covariance in a way that maintains consistency. For more details, see “Consistent
Estimator” on page 1-413.

Examples

Covariance Union Fusion

Define a state vector of tracks.

x(:,1) = [1;2;0];
x(:,2) = [2;2;0];
x(:,3) = [2;3;0];

Define the covariance matrices of the tracks.

p(:,:,1) = [10 5 0; 5 10 0;0 0 1];
p(:,:,2) = [10 -5 0; -5 10 0;0 0 1];
p(:,:,3) = [12 9 0; 9 12 0;0 0 1];

Estimate the fused state vector and its covariance.

[fusedState,fusedCov] = fusecovunion(x,p);

Use trackPlotter to plot the results.

tPlotter = theaterPlot('XLim',[-10 10],'YLim',[-10 10],'ZLim',[-10 10]);
tPlotter1 = trackPlotter(tPlotter, ...
 'DisplayName','Input Tracks','MarkerEdgeColor',[0.000 0.447 0.741]);
tPlotter2 = trackPlotter(tPlotter, ...
 'DisplayName','Fused Track','MarkerEdgeColor',[0.850 0.325 0.098]);
plotTrack(tPlotter1,x',p)
plotTrack(tPlotter2, fusedState', fusedCov)
title('Covariance Union Fusion')

 fusecovunion

1-411

Input Arguments
trackState — Track states
N-by-M matrix

Track states, specified as an N-by-M matrix, where N is the dimension of the state and M is the
number of tracks.
Data Types: single | double

trackCov — Track covariance matrices
N-by-N-by-M array

Track covariance matrices, specified as an N-by-N-by-M array, where N is the dimension of the state
and M is the number of tracks.
Data Types: single | double

Output Arguments
fusedState — Fused state
N-by-1 vector

Fused state, returned as an N-by-1 vector, where N is the dimension of the state.

1 Functions

1-412

fusedCov — Fused covariance matrix
N-by-N matrix

Fused covariance matrix, returned as an N-by-N matrix, where N is the dimension of the state.

More About
Consistent Estimator

A consistent estimator is an estimator that converges in probability to the quantity being estimated as
the sample size grows. In the case of tracking, a position estimate is consistent if its covariance
(error) matrix is not smaller than the covariance of the actual distribution of the true state about the
estimate. The covariance union method guarantees consistency by ensuring that all the individual
means and covariances are bounded by the fused mean and covariance.

References
[1] Reece, Steven, and Stephen Rogers. "Generalised Covariance Union: A Unified Approach to

Hypothesis Merging in Tracking." IEEE® Transactions on Aerospace and Electronic Systems.
Vol. 46, No. 1, Jan. 2010, pp. 207–221.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fusecovint | fusexcov

Introduced in R2018b

 fusecovunion

1-413

fusexcov
Covariance fusion using cross-covariance

Syntax
[fusedState,fusedCov] = fusexcov(trackState,trackCov)
[fusedState,fusedCov] = fusexcov(trackState,trackCov,crossCovFactor)

Description
[fusedState,fusedCov] = fusexcov(trackState,trackCov) fuses the track states in
trackState and their corresponding covariance matrices trackCov. The function estimates the
fused state and covariance within a Bayesian framework in which the cross-correlation between
tracks is unknown.

[fusedState,fusedCov] = fusexcov(trackState,trackCov,crossCovFactor) specifies a
cross-covariance factor for the effective correlation coefficient when computing the cross-covariance.

Examples

Cross-Covariance Fusion Using Default Values

Define a state vector of tracks.

x(:,1) = [1;2;0];
x(:,2) = [2;2;0];
x(:,3) = [2;3;0];

Define the covariance matrices of the tracks.

p(:,:,1) = [10 5 0; 5 10 0;0 0 1];
p(:,:,2) = [10 -5 0; -5 10 0;0 0 1];
p(:,:,3) = [12 9 0; 9 12 0;0 0 1];

Estimate the fused state vector and its covariance.

[fusedState,fusedCov] = fusexcov(x,p);

Use trackPlotter to plot the results.

tPlotter = theaterPlot('XLim',[-10 10],'YLim',[-10 10],'ZLim',[-10 10]);
tPlotter1 = trackPlotter(tPlotter, ...
 'DisplayName','Input Tracks','MarkerEdgeColor',[0.000 0.447 0.741]);
tPlotter2 = trackPlotter(tPlotter, ...
 'DisplayName','Fused Track','MarkerEdgeColor',[0.850 0.325 0.098]);
plotTrack(tPlotter1,x',p)
plotTrack(tPlotter2, fusedState', fusedCov)
title('Cross-Covariance Fusion')

1 Functions

1-414

Cross-Covariance Fusion Using Cross-Covariance Factor

Define a state vector of tracks.

x(:,1) = [1;2;0];
x(:,2) = [2;2;0];
x(:,3) = [2;3;0];

Define the covariance matrices of the tracks.

p(:,:,1) = [10 5 0; 5 10 0;0 0 1];
p(:,:,2) = [10 -5 0; -5 10 0;0 0 1];
p(:,:,3) = [12 9 0; 9 12 0;0 0 1];

Estimate the fused state vector and its covariance. Specify a cross-covariance factor of 0.5.

[fusedState,fusedCov] = fusexcov(x,p,0.5);

Use trackPlotter to plot the results.

tPlotter = theaterPlot('XLim',[-10 10],'YLim',[-10 10],'ZLim',[-10 10]);
tPlotter1 = trackPlotter(tPlotter, ...
 'DisplayName','Input Tracks','MarkerEdgeColor',[0.000 0.447 0.741]);
tPlotter2 = trackPlotter(tPlotter, ...
 'DisplayName','Fused Track','MarkerEdgeColor',[0.850 0.325 0.098]);

 fusexcov

1-415

plotTrack(tPlotter1,x',p)
plotTrack(tPlotter2, fusedState', fusedCov)
title('Cross-Covariance Fusion')

Input Arguments
trackState — Track states
N-by-M matrix

Track states, specified as an N-by-M matrix, where N is the dimension of the state and M is the
number of tracks.
Data Types: single | double

trackCov — Track covariance matrices
N-by-N-by-M array

Track covariance matrices, specified as an N-by-N-by-M array, where N is the dimension of the state
and M is the number of tracks.
Data Types: single | double

crossCovFactor — Cross-covariance factor
0.4 (default) | scalar

Cross-covariance factor, specified as a scalar.

1 Functions

1-416

Data Types: single | double

Output Arguments
fusedState — Fused state
N-by-1 vector

Fused state, returned as an N-by-1 vector, where N is the dimension of the state.

fusedCov — Fused covariance matrix
N-by-N matrix

Fused covariance matrix, returned as an N-by-N matrix, where N is the dimension of the state.

References
[1] Bar-Shalom, Yaakov, and Xiao-Rong Li. Multitarget-multisensor tracking: principles and

techniques. Vol. 19. Storrs, CT: YBs, 1995.

[2] Weng, Zhiyuan, and Petar M. Djurić. "A bayesian approach to covariance estimation and data
fusion." In 2012 Proceedings of the 20th European Signal Processing Conference , pp.
2352-2356. IEEE, 2012.

[3] Matzka, Stephan, and Richard Altendorfer. "A comparison of track-to-track fusion algorithms for
automotive sensor fusion." In Multisensor Fusion and Integration for Intelligent Systems, pp.
69-81. Springer, Berlin, Heidelberg, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
fusecovint | fusecovunion

Introduced in R2018b

 fusexcov

1-417

clusterTrackBranches
Cluster track-oriented multi-hypothesis history

Syntax
[clusters,incompatibleBranches] = clusterTrackBranches(branchHistory)
[clusters,incompatibleBranches] = clusterTrackBranches(
branchHistory,'OutputForm',out)

Description
[clusters,incompatibleBranches] = clusterTrackBranches(branchHistory) computes
the clusters and incompatibility matrix for a set of branches.

Branches i, j, and k belong to the same cluster if branches i and j are pairwise-incompatible and
branches j and k are pairwise-incompatible. Two branches are pairwise-incompatible if they share a
track ID (the first column of branchHistory) or if they share detections that fall in their gates
during the number of recent scans as specified by the history depth.

[clusters,incompatibleBranches] = clusterTrackBranches(
branchHistory,'OutputForm',out) returns the clusters in the format specified by out.

Examples

Compute Clusters of Branches

Create a branch history matrix for 12 branches. For this example, the branch history matrix has 11
columns that represent the history of 2 sensors with a history depth of 4.

branchHistory = uint32([
 4 9 9 0 0 1 0 0 0 0 0
 5 10 10 0 0 0 2 0 0 0 0
 6 11 11 0 0 3 0 0 0 0 0
 1 12 12 0 0 1 0 1 0 0 0
 1 13 13 0 0 0 2 1 0 0 0
 1 14 14 0 0 1 2 1 0 0 0
 2 15 15 0 0 3 0 3 0 0 0
 3 16 16 0 0 0 4 0 4 0 0
 7 0 17 1 0 0 0 0 0 0 0
 1 5 18 1 0 0 0 0 2 0 0
 1 5 19 0 2 0 0 0 2 0 0
 1 5 20 1 2 0 0 0 2 0 0]);

Get the list of clusters and the list of incompatible branches. The clusters matrix has three
columns, therefore there are three clusters.

[clusters,incompBranches] = clusterTrackBranches(branchHistory);
size(clusters)

ans = 1×2

1 Functions

1-418

 12 3

Show the incompatible branches as a graph. The numeric branch IDs are in the third column of
branchHistory. To display the IDs of the branches on the graph, convert the IDs to character
vectors. You can see the three distinct clusters.

branchIDs = cellstr(num2str(branchHistory(:,3)));
g = graph(incompBranches,branchIDs,'omitselfloops');
plot(g)

Input Arguments
branchHistory — Branch history
matrix of integers

Branch history, specified as a matrix of integers. Each row of branchHistory represents a unique
track branch. branchHistory must have 3+(D×S) columns, where D is the number of maintained
scans (the history depth) and S is the maximum number of maintained sensors. For more information,
see the history output of the trackBranchHistory system object.

out — Output form
'logical' (default) | 'vector' | 'cell'

Output form of the returned clusters, specified as 'logical', 'vector', or 'cell'.

 clusterTrackBranches

1-419

Output Arguments
clusters — Clusters
M-by-P logical matrix | M-element numeric vector | cell array

Clusters, returned as one of the following. The format of clusters is specified by out.

• An M-by-P logical matrix. M is the number of branches (rows) in branchHistory and P is the
number of clusters. The (i,j) element is true if branch j is contained in cluster i. The value of P is
less than or equal to M.

• A vector of length M, where the i-th element gives the index of the cluster that contains branch i.
• A cell array c, where c{j} contains the IDs of all the branches in cluster j.

Data Types: logical

incompatibleBranches — Incompatible branches
M-by-M symmetric logical matrix

Incompatible branches, returned as an M-by-M symmetric logical matrix. The (i,j) element is true if
branches i and j are pairwise-incompatible.
Data Types: logical

References
[1] Werthmann, John R. "A Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In Proceedings of SPIE Vol. 1698, Signal and Processing of Small
Targets. 1992, pp. 288–300. doi: 10.1117/12.139379.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation only supports the 'logical' value of output form out.

See Also
compatibleTrackBranches | pruneTrackBranches | trackBranchHistory | trackerTOMHT

Introduced in R2018b

1 Functions

1-420

compatibleTrackBranches
Formulate global hypotheses from clusters

Syntax
[hypotheses,hypScores] = compatibleTrackBranches(clusters,
incompatibleBranches,scores,maxNumHypotheses)

Description
[hypotheses,hypScores] = compatibleTrackBranches(clusters,
incompatibleBranches,scores,maxNumHypotheses) returns the list of hypotheses
hypotheses and their scores hypScores from information about clusters of branches and
incompatibility of branches.

Hypotheses are sets of compatible track branches, which are branches that do not belong to the same
track or share a detection in their history. The score of each hypothesis is the sum of scores of all
branches included in the hypothesis.

Examples

Get Hypotheses of Branches

Create a branch history matrix for 12 branches. For this example, the branch history matrix has 11
columns that represent the history of 2 sensors with a history depth of 4.

branchHistory = uint32([
 4 9 9 0 0 1 0 0 0 0 0
 5 10 10 0 0 0 2 0 0 0 0
 6 11 11 0 0 3 0 0 0 0 0
 1 12 12 0 0 1 0 1 0 0 0
 1 13 13 0 0 0 2 1 0 0 0
 1 14 14 0 0 1 2 1 0 0 0
 2 15 15 0 0 3 0 3 0 0 0
 3 16 16 0 0 0 4 0 4 0 0
 7 0 17 1 0 0 0 0 0 0 0
 1 5 18 1 0 0 0 0 2 0 0
 1 5 19 0 2 0 0 0 2 0 0
 1 5 20 1 2 0 0 0 2 0 0]);

Get the list of clusters and the list of incompatible branches. The clusters matrix has three
columns, therefore there are three clusters.

[clusters,incompBranches] = clusterTrackBranches(branchHistory);

Specify a 12-by-1 column vector containing the branch scores.

scores = [81.4; 90.5; 12.7; 91.3; 63.2; 9.7; 27.8; 54.6; 95.7; 96.4; 15.7; 97.1];

Specify the number of global hypotheses.

 compatibleTrackBranches

1-421

numHypotheses = 6;

Get a matrix of hypotheses and the score of each hypothesis.

[hyps,hypScores] = compatibleTrackBranches(clusters,incompBranches,scores,numHypotheses)

hyps = 12x6 logical array

 1 0 1 1 1 0
 1 1 1 1 1 1
 0 0 0 0 1 1
 0 1 0 0 0 1
 0 0 0 0 0 0
 0 0 0 0 0 0
 1 1 1 1 0 0
 1 1 1 1 1 1
 1 1 0 0 1 1
 0 0 0 1 0 0
 ⋮

hypScores = 1×6

 365.7000 359.9000 351.4000 350.7000 350.6000 344.8000

Input Arguments
clusters — Clusters
M-by-P logical matrix | M-element numeric vector | cell array

Clusters, specified as one of the following.

• An M-by-P logical matrix. M is the number of branches and P is the number of clusters. The (i,j)
element is true if branch j is contained in cluster i. The value of P is less than or equal to M.

• A vector of length M, where the i-th element gives the index of the cluster that contains branch i.
• A cell array c, where c{j} contains the IDs of all the branches in cluster j.

You can use clusterTrackBranches to compute the clusters from a branch history matrix.
Data Types: logical

incompatibleBranches — Incompatible branches
M-by-M symmetric logical matrix

Incompatible branches, specified as an M-by-M symmetric logical matrix. The (i,j) element is true if
branches i and j are pairwise-incompatible.

You can use clusterTrackBranches to compute incompatible branches from a branch history
matrix.
Data Types: logical

scores — Branch scores
M-by-1 numeric vector | M-by-2 numeric matrix

1 Functions

1-422

Branch scores, specified as an M-by-1 numeric vector or an M-by-2 numeric matrix.

Note If you specify scores as an M-by-2 numeric matrix, then the first column specifies the current
score of each branch and the second column specifies the maximum score.
compatibleTrackBranches ignores the second column.

Data Types: single | double

maxNumHypotheses — Maximum number of hypotheses
positive integer

Maximum number of hypotheses, specified as a positive integer.

Output Arguments
hypotheses — Hypotheses
M-by-H logical matrix

Hypotheses, returned as an M-by-H logical matrix, where M is the number of branches and H is the
value of maxNumHypotheses.

hypScores — Hypotheses score
1-by-H numeric vector

Hypotheses score, returned as a 1-by-H numeric vector.

References
[1] Werthmann, John R. "A Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In Proceedings of SPIE Vol. 1698, Signal and Processing of Small
Targets. 1992, pp. 288–300. doi: 10.1117/12.139379.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Code generation only supports clusters specified as an M-by-P logical matrix.

See Also
clusterTrackBranches | pruneTrackBranches | trackBranchHistory | trackerTOMHT

Introduced in R2018b

 compatibleTrackBranches

1-423

pruneTrackBranches
Prune track branches with low likelihood

Syntax
[toPrune,globalProbability] = pruneTrackBranches(branchHistory,scores,
hypotheses)
[toPrune,globalProbability] = pruneTrackBranches(branchHistory,scores,
hypotheses,Name,Value)
[toPrune,globalProbability,info] = pruneTrackBranches(___)

Description
[toPrune,globalProbability] = pruneTrackBranches(branchHistory,scores,
hypotheses) returns a logical flag, toPrune, that indicates which branches should be pruned based
on the branch history, branch scores, and hypotheses. pruneTrackBranches also returns the global
branch probabilities, globalProbability.

[toPrune,globalProbability] = pruneTrackBranches(branchHistory,scores,
hypotheses,Name,Value) uses name-value pairs to modify how branches are pruned.

[toPrune,globalProbability,info] = pruneTrackBranches(___) returns additional
information, info, about the pruned branches.

Examples

Prune Branches For Single Sensor Using N-Scan Pruning

Create a branch history matrix for a single sensor with 20 branches. For this example, the history
depth is 4 therefore the matrix has 7 columns.

history = [
 8 14 14 0 0 2 0
 1 23 23 0 0 2 1
 2 24 24 0 0 1 2
 9 25 25 0 1 0 0
 10 26 26 0 2 0 0
 1 28 28 0 1 0 1
 4 33 33 0 1 2 1
 1 34 34 0 1 2 1
 2 35 35 0 2 1 2
 11 0 36 1 0 0 0
 12 0 37 2 0 0 0
 8 14 38 2 0 2 0
 1 23 39 2 0 2 1
 2 24 40 1 0 1 2
 9 25 41 2 1 0 0
 10 26 42 1 2 0 0
 1 28 43 2 1 0 1
 4 33 44 2 1 2 1

1 Functions

1-424

 1 34 45 2 1 2 1
 2 35 46 1 2 1 2];

Get the list of clusters and the list of incompatible branches. The clusters matrix has two columns,
therefore there are two clusters.

[clusters,incompBranches] = clusterTrackBranches(history);

Specify a 20-by-1 column vector containing branch scores.

scores = [4.5 44.9 47.4 6.8 6.8 43.5 50.5 61.9 64.7 9.1 9.1 19 61.7 ...
 63.5 21.2 20.5 60.7 67.3 79.2 81.5]';

Get a matrix of hypothesis.

hypotheses = compatibleTrackBranches(clusters,incompBranches,scores,10);

Prune the track branches, using name-value pair arguments to specify a single sensor and the
'Hypothesis' method of N-scan pruning. Return the pruning flag, global probability, and pruning
information about each branch. To make the information easier to compare, convert the information
from a struct to a table.

The i-th value of toPrune is true if any of 'PrunedByProbability', 'PrunedByNScan', or
'PrunedByNumBranches' are true in the i-th row of the information table.

[toPrune,probs,info] = pruneTrackBranches(history,scores,hypotheses, ...
 'NumSensors',1,'NScanPruning','Hypothesis');
infoTable = struct2table(info)

infoTable=20×6 table
 BranchID PriorProbability GlobalProbability PrunedByProbability PrunedByNScan PrunedByNumBranches
 ________ ________________ _________________ ___________________ _____________ ___________________

 14 0.98901 0.098901 false false false
 23 1 0.1 false false true
 24 1 0.1 false false true
 25 0.99889 0.099889 false false false
 26 0.99889 0.099889 false false false
 28 1 0 true true false
 33 1 0 true false false
 34 1 0.2 false false false
 35 1 0.2 false false false
 36 0.99989 0.19998 false false false
 37 0.99989 0.19998 false false false
 38 1 0 true false false
 39 1 0.1 false false false
 40 1 0.1 false false false
 41 1 0.1 false false false
 42 1 0.1 false false false
 ⋮

Input Arguments
branchHistory — Branch history
matrix of integers

 pruneTrackBranches

1-425

Branch history, specified as a matrix of integers. Each row of branchHistory represents a unique
track branch. branchHistory must have 3+(D×S) columns, where D is the number of maintained
scans (the history depth) and S is the maximum number of maintained sensors. For more information,
see the history output of the trackBranchHistory system object.

scores — Branch scores
M-by-1 numeric vector | M-by-2 numeric matrix

Branch scores, specified as an M-by-1 numeric vector or an M-by-2 numeric matrix.

Note If you specify scores as an M-by-2 numeric matrix, then the first column specifies the current
score of each branch and the second column specifies the maximum score. pruneTrackBranches
ignores the second column.

Data Types: single | double

hypotheses — Hypotheses
M-by-H logical matrix

Hypotheses, returned as an M-by-H logical matrix, where M is the number of branches and H is the
number of global hypotheses. You can use clusterTrackBranches to compute the clusters from a
branch history matrix, then use compatibleTrackBranches to compute the hypotheses from the
clusters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [toPrune,probs] =
pruneTrackBranches(branchHistory,scores,hypotheses,'MinBranchProbability',2e-
3);

MinBranchProbability — Minimum branch probability
1e-3 (default) | number in the range [0,1)

Minimum branch probability threshold, specified as the comma-separated pair consisting of
'MinBranchProbability' and a number in the range [0,1). Typical values are between 1e-3 and
5e-3. The pruneTrackBranches function prunes branches with global probability less than the
threshold.

MaxNumTrackBranches — Maximum number of branches
3 (default) | positive integer

Maximum number of branches to keep per track, specified as the comma-separated pair consisting of
'MaxNumTrackBranches' and a positive integer. Typical values are between 2 and 6. If a track has
more than this number of branches, then pruneTrackBrances prunes branches with the lowest
initial score.

NScanPruning — N-scan pruning method
'None' (default) | 'Hypothesis'

1 Functions

1-426

N-scan pruning method, specified as the comma-separated pair consisting of 'NScanPruning' and
'None' or 'Hypothesis'. If you specify 'Hypothesis', then pruneTrackBrances prunes
branches that are incompatible with the current most likely branch in the most recent N scans. By
default, pruneTrackBrances does not use N-scan pruning.

NumSensors — Number of sensors
20 (default) | positive integer

Number of sensors in history, specified as the comma-separated pair consisting of 'NumSensors'
and a positive integer.

Output Arguments
toPrune — Branches to prune
M-by-1 logical vector

Branches to prune, returned as an M-by-1 logical vector. A value of true indicates that the branch
should be pruned.
Data Types: logical

globalProbability — Global branch probabilities
M-by-1 numeric vector

Global branch probabilities, returned as an M-by-1 numeric vector.

info — Pruning information
struct

Pruning information about each branch, returned as a struct with the following fields.

• BranchID — An M-by-1 numeric vector. Each value specifies the ID of a track branch. The IDs
come from the third column of branchHistory.

• PriorProbability — An M-by-1 numeric vector. Each value specifies the branch prior
probability from the branch score.

• GlobalProbability — An M-by-1 numeric vector. Each value specifies the branch global
probability, which considers the hypotheses that contain the branch and their scores.

• PrunedByProbability — An M-by-1 logical vector. A value of true indicates that the branch is
pruned by MinBranchProbability.

• PrunedByNScan — An M-by-1 logical vector. A value of true indicates that the branch is pruned
by NScanPruning.

• PrunedByNumBranches — An M-by-1 logical vector. A value of true indicates that the branch is
pruned by MaxNumTrackBranches.

References
[1] Werthmann, John R. "A Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In Proceedings of SPIE Vol. 1698, Signal and Processing of Small
Targets. 1992, pp. 288–300. doi: 10.1117/12.139379.

[2] Blackman, Samuel, and Robert Popoli. "Design and Analysis of Modern Tracking Systems." Artech
House, 1999.

 pruneTrackBranches

1-427

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clusterTrackBranches | compatibleTrackBranches | trackBranchHistory | trackerTOMHT

Introduced in R2018b

1 Functions

1-428

triangulateLOS
Triangulate multiple line-of-sight detections

Syntax
estPos = triangulateLOS(detections)
[estPos,estCov] = triangulateLOS(detections)

Description
estPos = triangulateLOS(detections) estimates the position of a target in a global Cartesian
coordinate frame by triangulating a set of angle-only detections. Angle-only detections are also
known as line-of-sight (LOS) detections. For more details, see “Algorithms” on page 1-432.

[estPos,estCov] = triangulateLOS(detections) also returns estCov, the covariance of the
error in target position. The function uses a Taylor-series approximation to estimate the error
covariance.

Examples

Triangulate Line-of-Sight Measurements from Three Sensors

Load a MAT-file containing a set of line-of-sight detections stored in the variable detectionSet.

load angleOnlyDetectionFusion.mat

Plot the angle-only detections and the sensor positions. Specify a range of 5 km for plotting the
direction vector. To specify the position of the origin, use the second measurement parameter
because the sensor is located at the center of the platform. Convert the azimuth and elevation
readings to Cartesian coordinates.

rPlot = 5000;

for i = 1:numel(detectionSet)
 originPos = detectionSet{i}.MeasurementParameters(2).OriginPosition;

 az = detectionSet{i}.Measurement(1);
 el = detectionSet{i}.Measurement(2);
 [xt,yt,zt] = sph2cart(deg2rad(az),deg2rad(el),rPlot);

 positionData(:,i) = originPos;
 plotData(:,3*i+(-2:0)) = [xt yt zt]'.*[1 0 NaN]+originPos;
end

plot3(positionData(1,:),positionData(2,:),positionData(3,:),'*')
hold on
plot3(plotData(1,:),plotData(2,:),plotData(3,:))

Triangulate the detections by using triangulateLOS. Plot the triangulated position.

 triangulateLOS

1-429

[estPos,estCov] = triangulateLOS(detectionSet);

plot3(estPos(1),estPos(2),estPos(3),'pk','MarkerFaceColor','k')
hold off

legend('Sensor Positions','Angle-Only Detections','Triangulated Position', ...
 'location','southeast')
xlabel('x [m]')
ylabel('y [m]')
view(2)

Input Arguments
detections — Line-of-sight measurements
cell array of objectDetection objects

Line-of-sight measurements, specified as a cell array of objectDetection objects. Each object has
the properties listed in the table.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix

1 Functions

1-430

Property Definition
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Each detection must specify the MeasurementParameters property as a structure with the fields
described in the table.

Parameter Definition
Frame Frame used to report measurements. Specify

Frame as 'spherical' for the first structure.
OriginPosition Position offset of the origin of the frame relative

to the parent frame, represented as a 3-by-1 real
vector.

OriginVelocity Velocity offset of the origin of the frame relative
to the parent frame, represented as a 3-by-1 real
vector.

Orientation A 3-by-3 real-valued orthonormal frame
orientation matrix.

IsParentToChild A logical scalar that indicates if Orientation is
given as a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, then Orientation is given as a frame
rotation from the child coordinate frame to the
parent coordinate frame.

HasElevation A logical scalar that indicates if elevation is
included in the measurements. This parameter is
true by default.

HasAzimuth A logical scalar that indicates if azimuth is
included in the measurements. This parameter is
true by default. If specified as a field, it must be
set to true.

HasRange A logical scalar that indicates if range is included
in the measurements. This parameter must be
specified as a field and set to false.

HasVelocity A logical scalar that indicates if velocity is
included in the measurements. This parameter is
false by default. If specified as a field, it must
be set to false.

The function provides default values for fields left unspecified.

 triangulateLOS

1-431

Output Arguments
estPos — Estimated position
3-by-1 vector

Estimated position of the target, returned as a 3-by-1 vector.

estCov — Estimated error covariance
3-by-3 matrix

Estimated error covariance of the target position, returned as a 3-by-3 matrix.

Algorithms
Multiple angle-only or line-of-sight measurements result in lines in space. These lines might or might
not intersect because of measurement noise. triangulateLOS uses a suboptimal linear least-
squares method to minimize the distance of miss between multiple detections. The formulation makes
these assumptions:

• All detections report measurements with approximately the same accuracy in azimuth and
elevation (if measured).

• The distances from the different sensors to the triangulated target are all of the same order.

References
[1] Blackman, Samuel, and Robert Popoli. "Design and analysis of modern tracking systems."

Norwood, MA: Artech House, 1999. (1999).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
objectDetection

System Objects
staticDetectionFuser

Introduced in R2018b

1 Functions

1-432

radarChannel
Free space propagation and reflection of radar signals

Syntax
radarsigout = radarChannel(radarsigin,platforms)
radarsigout = radarChannel(radarsigin,platforms,'HasOcclusion',HasOcclusion)

Description
radarsigout = radarChannel(radarsigin,platforms) returns radar signals,radarsigout,
as combinations of the signals, radarsigin, that are reflected from the platforms, platforms.

radarsigout = radarChannel(radarsigin,platforms,'HasOcclusion',HasOcclusion)
also allows you to specify whether to model occlusion from extended objects.

Examples

Reflect Radar Emission From Platform

Create a radar emission and a platform and reflect the emission from the platform.

Create a radar emission object.

radarSig = radarEmission('PlatformID',1,'EmitterIndex',1,'OriginPosition',[0 0 0]);

Create a platform structure.

platfm = struct('PlatformID',2,'Position',[10 0 0],'Signatures',rcsSignature());

Reflect the emission from the platform.

sigs = radarChannel(radarSig,platfm)

sigs =
 radarEmission with properties:

 PlatformID: 1
 EmitterIndex: 1
 OriginPosition: [0 0 0]
 OriginVelocity: [0 0 0]
 Orientation: [1x1 quaternion]
 FieldOfView: [180 180]
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 EIRP: 0
 RCS: 0

 radarChannel

1-433

Reflect Radar Emission From Platform within Tracking Scenario

Reflect a radar emission from a platform defined within a trackingScenario.

Create a tracking scenario object.

scenario = trackingScenario;

Create a radarEmitter object.

emitter = radarEmitter(1);

Mount the emitter on a platform within the scenario.

plat = platform(scenario,'Emitters',emitter);

Add another platform to reflect the emitted signal.

target = platform(scenario);
target.Trajectory.Position = [30 0 0];

Emit the signal using the emit object function of a platform.

txsigs = emit(plat,scenario.SimulationTime)

txsigs = 1x1 cell array
 {1x1 radarEmission}

Reflect the signal from the platforms in the scenario.

sigs = radarChannel(txsigs,scenario.Platforms)

sigs=2×1 cell array
 {1x1 radarEmission}
 {1x1 radarEmission}

Input Arguments
radarsigin — Input radar signals
array of radarEmission objects

Input radar signals, specified as an array of radarEmission objects.

platforms — Reflector platforms
cell array of Platform objects | array of Platform structures

Reflector platforms, specified as a cell array of Platform objects, Platform, or an array of
Platform structures:

1 Functions

1-434

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

Acceleration Acceleration of the platform in scenario
coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell array
{rcsSignature,irSignature , tsSignature}

If you specify an array of platform structures, set a unique PlatformID for each platform and set the
Position field for each platform. Any other fields not specified are assigned default values.

HasOcclusion — Enable occlusion from extended objects
true | false

 radarChannel

1-435

Enable occlusion from extended objects, specified as true or false. Set HasOccusion to true to
model occlusion from extended objects. Two types of occlusion (self occlusion and inter object
occlusion) are modeled. Self occlusion occurs when one side of an extended object occludes another
side. Inter object occlusion occurs when one extended object stands in the line of sight of another
extended object or a point target. Note that both extended objects and point targets can be occluded
by extended objects, but a point target cannot occlude another point target or an extended object.

Set HasOccusion to false to disable occlusion of extended objects. This will also disable the
merging of objects whose detections share a common sensor resolution cell, which gives each object
in the tracking scenario an opportunity to generate a detection.
Data Types: logical

Output Arguments
radarsigout — Reflected radar signals
array of radarEmission objects

Reflected radar signals, specified as an array of radarEmission objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
radarEmission | radarEmitter | radarSensor

Introduced in R2018b

1 Functions

1-436

underwaterChannel
Propagated and reflected sonar signals

Syntax
sonarsigout = underwaterChannel(sonarsigin,platforms)

Description
sonarsigout = underwaterChannel(sonarsigin,platforms) returns sonar signals,
sonarsigout, as combinations of signals, sonarsigin, reflected from platforms, platforms.

Examples

Reflect Sonar Emission From Platform

Create a sonar emission and a platform and reflect the emission from the platform.

Create a sonar emission object.

sonarSig = sonarEmission('PlatformID',1,'EmitterIndex',1,'OriginPosition',[0 0 0]);

Create a platform structure.

platfm = struct('PlatformID',2,'Position',[10 0 0],'Signatures',tsSignature());

Reflect the emission from the platform.

sigs = underwaterChannel(sonarSig,platfm)

sigs =
 2x1 sonarEmission array with properties:

 SourceLevel
 TargetStrength
 PlatformID
 EmitterIndex
 OriginPosition
 OriginVelocity
 Orientation
 FieldOfView
 CenterFrequency
 Bandwidth
 WaveformType
 ProcessingGain
 PropagationRange
 PropagationRangeRate

 underwaterChannel

1-437

Reflect Sonar Emission from Platform within Tracking Scenario

Reflect a sonar emission from a platform defined within a trackingScenario.

Create a tracking scenario object.

scenario = trackingScenario;

Create an sonarEmitter.

emitter = sonarEmitter(1);

Mount the emitter on a platform within the scenario.

plat = platform(scenario,'Emitters',emitter);

Add another platform to reflect the emitted signal.

tgt = platform(scenario);
tgt.Trajectory.Position = [30 0 0];

Emit the signal using the emit object function of a platform .

txSigs = emit(plat, scenario.SimulationTime)

txSigs = 1x1 cell array
 {1x1 sonarEmission}

Reflect the signal from the platforms in the scenario.

sigs = underwaterChannel(txSigs, scenario.Platforms)

sigs = 1x1 cell array
 {1x1 sonarEmission}

Input Arguments
sonarsigin — Input sonar signals
array of sonarEmission objects

Input sonar signals, specified as an array of sonarEmission objects.

platforms — Reflector platform
cell array of Platform objects | array of Platform structures

Reflector platforms, specified as a cell array of Platform objects, Platform, or an array of
Platform structures:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

1 Functions

1-438

Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

Acceleration Acceleration of the platform in scenario
coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell array
{rcsSignature,irSignature , tsSignature}

If you specify an array of platform structures, set a unique PlatformID for each platform and set the
Position field for each platform. Any other fields not specified are assigned default values.

Output Arguments
sonarsigout — Reflected sonar signals
array of sonarEmission objects

 underwaterChannel

1-439

Reflected sonar signals, specified as an array of sonarEmission objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
sonarEmission | sonarEmitter | sonarSensor

Introduced in R2018b

1 Functions

1-440

clearData
Clear data from specific plotter of theater plot

Syntax
clearData(pl)

Description
clearData(pl) clears data belonging to the plotter pl associated with a theater plot. This function
clears data from plotters created by the following plotter methods:

• detectionPlotter
• orientationPlotter
• platformPlotter
• trackPlotter
• trajectoryPlotter

Examples

Clear Specific Plotter Data

Create a theater plot. Add a track plotter and detection plotter to the theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks');
radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');

 clearData

1-441

Plot a set of tracks in the track plotter.

trackPos = [30, 15, 1; 60, -15, 1; 20, 5, 1];
trackLabels = {'T1','T2','T3'};
plotTrack(tPlotter, trackPos, trackLabels)

1 Functions

1-442

Plot a set of detections in the detection plotter.

detPos = [30, 5, 4; 30, -10, 2; 50, 15, 1];
detLabels = {'R1','R2','R3'};
plotDetection(radarPlotter, detPos, detLabels)

 clearData

1-443

Delete the track plotter data.

clearData(tPlotter)

1 Functions

1-444

Input Arguments
pl — Specific plotter belonging to theater plot
specific plotter of theater plot handle

Specific plotter belonging to a theater plot, specified as a plotter handle of theaterPlot.

See Also
clearPlotterData | findPlotter | theaterPlot

Introduced in R2018b

 clearData

1-445

emissionsInBody
Transform emissions to body frame of platform

Syntax
embody = emissionsInBody(emscene,bodyframe)

Description
embody = emissionsInBody(emscene,bodyframe) converts emissions, emscene, referenced to
scenario coordinates into emissions, embody, referenced to platform body coordinates. bodyframe
specifies the position,velocity, and orientation of the platform body.

Examples

Convert Radar Emission to Body Frame

Convert a radar emission from scenario coordinates to body frame.

Define a radar emission with respect to the scenario frame.

emScene = radarEmission('PlatformID',1,'EmitterIndex',1, ...
 'OriginPosition',[0 0 0])

Define the position, velocity, and orientation, of the body relative to the scenario frame.

bodyFrame = struct(...
 'Position',[10 0 0], ...
 'Velocity',[5 5 0], ...
 'Orientation',quaternion([45 0 0],'eulerd','zyx','frame'));

Convert the emission into the body frame.

emBody = emissionsInBody(emScene,bodyFrame)

Convert Sonar Emission into Body Frame

Convert a sonar emission from scenario coordinates into body coordinates. Use trackingScenario
to defined the motion of the body and use sonarEmitter to create the emission.

Set up a tracking scenario.

scene = trackingScenario;

Create a sonar emitter to mount on a platform.

emitter = sonarEmitter(1,'No scanning');

Mount the emitter on a platform in the scenario 100 meters below sea-level.

1 Functions

1-446

platTx = platform(scene,'Emitters',emitter);
platTx.Trajectory.Position = [10 0 100];

Create another platform in the scenario.

platRx = platform(scene);
platRx.Trajectory.Position = [100 0 100];
platRx.Trajectory.Orientation = quaternion([45 0 0],'eulerd', ...
 'zyx','frame');

Emit a signal. The emitted signal is in the scenario frame.

emScene = emit(platTx,scene.SimulationTime)

emScene = 1x1 cell array
 {1x1 sonarEmission}

Propagate the emission through an underwater channel.

emPropScene = underwaterChannel(emScene,scene.Platforms)

emPropScene=2×1 cell array
 {1x1 sonarEmission}
 {1x1 sonarEmission}

Convert the emission to the body frame of the second platform.

emBodyRx = emissionsInBody(emPropScene, platRx);
disp(emBodyRx(1))

 {1x1 sonarEmission}

Input Arguments
emscene — Emissions in scenario coordinates
emission object

Emissions in scenario coordinates, specified as a cell array of radarEmission or sonarEmission
emission objects.

bodyframe — Body frame
structure | Platform object

Body frame, specified as a structure or Platform object. You can use a Platform object because it
contains the necessary information. The body frame structure must contain at least these fields:

Field Description
Position Position of body in scenario coordinates, specified

as a real-valued 1-by-3 vector. This field is
required. There is no default value. Units are in
meters.

 emissionsInBody

1-447

Field Description
Velocity Velocity of body in scenario coordinates, specified

as a real-valued 1-by-3 vector. Units are in meters
per second. The default is [0 0 0].

Orientation Orientation of body with respect to the scenario
coordinate frame, specified as a scalar quaternion
or a 3-by-3 rotation matrix. Orientation defines
the frame rotation from the scenario coordinate
system to the body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0) or, equivalently,
eye(3).

Because the fields in the body frame structure are a subset of the fields in a platform structure, you
can use the platform structure output from the platformPoses method of trackingScenario as
the input bodyframe.

Output Arguments
embody — Emissions in body coordinates
emission object

Emissions in body coordinates, returned as a cell array of radarEmission and sonarEmission
emission objects.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
radarChannel | underwaterChannel

Objects
Platform | radarEmission | sonarEmission | trackingScenario

System Objects
radarEmitter | sonarEmitter

Introduced in R2018b

1 Functions

1-448

Classes

2

ahrs10filter
Height and orientation from MARG and altimeter readings

Description
The ahrs10filter object fuses MARG and altimeter sensor data to estimate device height and
orientation. MARG (magnetic, angular rate, gravity) data is typically derived from magnetometer,
gyroscope, and accelerometer sensors. The filter uses an 18-element state vector to track the
orientation quaternion, vertical velocity, vertical position, MARG sensor biases, and geomagnetic
vector. The ahrs10filter object uses an extended Kalman filter to estimate these quantities.

Creation

Syntax
FUSE = ahrs10filter
FUSE = ahrs10filter('ReferenceFrame',RF)
FUSE = ahrs10filter(___ ,Name,Value)

Description

FUSE = ahrs10filter returns an extended Kalman filter object, FUSE, for sensor fusion of MARG
and altimeter readings to estimate device height and orientation.

FUSE = ahrs10filter('ReferenceFrame',RF) returns an extended Kalman filter object that
estimates device height and orientation relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

FUSE = ahrs10filter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/s)2)
[1e-9,1e-9,1e-9] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as positive real finite
numbers.
Data Types: single | double

2 Classes

2-2

AccelerometerNoise — Multiplicative process noise variance from accelerometer ((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as positive real
finite numbers.
Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias ((rad/
s2)2)
[1e-10,1e-10,1e-10] (default) | scalar | three-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s2)2, specified as positive real
finite numbers.
Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
((m/s2)2)
[1e-4,1e-4,1e-4] (default) | scalar | three-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as positive real
finite numbers.
Data Types: single | double

GeomagneticVectorNoise — Additive process noise for geomagnetic vector (μT2)
[1e-6,1e-6,1e-6] (default) | scalar | three-element row vector

Additive process noise for geomagnetic vector in μT2, specified as positive real finite numbers.
Data Types: single | double

MagnetometerBiasNoise — Additive process noise for magnetometer bias (μT2)
[0.1,0.1,0.1] (default) | scalar | three-element row vector

Additive process noise for magnetometer bias in μT2, specified as positive real finite numbers.
Data Types: single | double

State — State vector of extended Kalman filter
18-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED or ENU) m 5
Vertical Velocity (NED or ENU) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED
or ENU)

μT 13:15

Magnetometer Bias (XYZ) μT 16:18

 ahrs10filter

2-3

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(18)*1e-6 (default) | 18-by-18 matrix

State error covariance for the Kalman filter, specified as an 18-by-18-element matrix of real numbers.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data
fusemag Correct states using magnetometer data
fusealtimeter Correct states using altimeter data
correct Correct states using direct state measurements
residual Residuals and residual covariances from direct state measurements
residualmag Residuals and residual covariance from magnetometer measurements
residualaltimeter Residuals and residual covariance from altimeter measurements
pose Current orientation and position estimate
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of UAV

Load logged sensor data, ground truth pose, and initial state and initial state covariance. Calculate
the number of IMU samples per altimeter sample and the number of IMU samples per magnetometer
sample.

load('fuse10exampledata.mat', ...
 'imuFs','accelData','gyroData', ...
 'magnetometerFs','magData', ...
 'altimeterFs','altData', ...
 'expectedHeight','expectedOrient', ...
 'initstate','initcov');

imuSamplesPerAlt = fix(imuFs/altimeterFs);
imuSamplesPerMag = fix(imuFs/magnetometerFs);

Create an AHRS filter that fuses MARG and altimeter readings to estimate height and orientation. Set
the sampling rate and measurement noises of the sensors. The values were determined from
datasheets and experimentation.

filt = ahrs10filter('IMUSampleRate',imuFs, ...
 'AccelerometerNoise',0.1, ...
 'State',initstate, ...
 'StateCovariance',initcov);

Ralt = 0.24;
Rmag = 0.9;

Preallocate variables to log height and orientation.

2 Classes

2-4

numIMUSamples = size(accelData,1);
estHeight = zeros(numIMUSamples,1);
estOrient = zeros(numIMUSamples,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer and altimeter data. The outer loop predicts the filter
forward at the fastest sample rate (the IMU sample rate).

for ii = 1:numIMUSamples

 % Use predict to estimate the filter state based on the accelometer and
 % gyroscope data.
 predict(filt,accelData(ii,:),gyroData(ii,:));

 % Magnetometer data is collected at a lower rate than IMU data. Fuse
 % magnetometer data at the lower rate.
 if ~mod(ii,imuSamplesPerMag)
 fusemag(filt,magData(ii,:),Rmag);
 end

 % Altimeter data is collected at a lower rate than IMU data. Fuse
 % altimeter data at the lower rate.
 if ~mod(ii, imuSamplesPerAlt)
 fusealtimeter(filt,altData(ii),Ralt);
 end

 % Log the current height and orientation estimate.
 [estHeight(ii),estOrient(ii)] = pose(filt);
end

Calculate the RMS errors between the known true height and orientation and the output from the
AHRS filter.

pErr = expectedHeight - estHeight;
qErr = rad2deg(dist(expectedOrient,estOrient));

pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Altitude RMS Error\n');

Altitude RMS Error

fprintf('\t%.2f (meters)\n\n',pRMS);

 0.38 (meters)

Visualize the true and estimated height over time.

t = (0:(numIMUSamples-1))/imuFs;
plot(t,expectedHeight);hold on
plot(t,estHeight);hold off
legend('Ground Truth','Estimated Height','location','best')
ylabel('Height (m)')
xlabel('Time (s)')
grid on

 ahrs10filter

2-5

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

 2.93 (degrees)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | insfilter

Introduced in R2019a

2 Classes

2-6

reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a

 reset

2-7

predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — ahrs10Filter object
object

Object of ahrs10filter.

accelReadings — Accelerometer readings in the sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in local sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the IMUSampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in the sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the IMUSampleRate
property.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a

2 Classes

2-8

pose
Current orientation and position estimate

Syntax
[position, orientation, velocity] = pose(FUSE)
[position, orientation, velocity] = pose(FUSE,format)

Description
[position, orientation, velocity] = pose(FUSE) returns the current estimate of the pose.

[position, orientation, velocity] = pose(FUSE,format)returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Vertical position estimate in the local NED coordinate system (m)
scalar

Vertical position estimate in the local NED coordinate system in meters, returned as a scalar.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion or 3-by-3
rotation matrix. The quaternion or rotation matrix represents a frame rotation from the local NED
reference frame to the body reference frame.
Data Types: single | double | quaternion

velocity — Vertical velocity estimate in the local NED coordinate system (m/s)
scalar

 pose

2-9

Vertical velocity estimate in the local NED coordinate system in m/s, returned as a scalar.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a

2 Classes

2-10

fusemag
Correct states using magnetometer data

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fusemag

2-11

See Also
ahrs10filter | insfilter

Introduced in R2019a

2 Classes

2-12

residualmag
Residuals and residual covariance from magnetometer measurements

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

 residualmag

2-13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter

Introduced in R2020a

2 Classes

2-14

fusealtimeter
Correct states using altimeter data

Syntax
[res,resCov] = fusealtimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance)

Description
[res,resCov] = fusealtimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance) fuses altimeter data to correct the state estimate.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

altimeterReadings — Altimeter readings (m)
real scalar

Altimeter readings in meters, specified as a real scalar.
Data Types: single | double

altimeterReadingsCovariance — Altimeter readings error covariance (m2)
real scalar

Altimeter readings error covariance in m2, specified as a real scalar.
Data Types: single | double

Output Arguments
res — Measurement residual
scalar

Measurement residual, returned as a scalar in meters.

resCov — Residual covariance
nonnegative scalar

Residual covariance, returned as a nonnegative scalar in m2.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 fusealtimeter

2-15

See Also
ahrs10filter | insfilter

Introduced in R2019a

2 Classes

2-16

residualaltimeter
Residuals and residual covariance from altimeter measurements

Syntax
[res,resCov] = residualaltimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance)

Description
[res,resCov] = residualaltimeter(FUSE,altimeterReadings,
altimeterReadingsCovariance) computes the residual, res, and the innovation covariance,
resCov, based on the magnetometer readings and the corresponding covariance.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

altimeterReadings — Altimeter readings (m)
real scalar

Altimeter readings in meters, specified as a real scalar.
Data Types: single | double

altimeterReadingsCovariance — Altimeter readings error covariance (m2)
real scalar

Altimeter readings error covariance in m2, specified as a real scalar.
Data Types: single | double

Output Arguments
res — Measurement residual
scalar

Measurement residual, returned as a scalar in meters.

resCov — Residual covariance
nonnegative scalar

Residual covariance, returned as a nonnegative scalar in m2.

 residualaltimeter

2-17

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2020a

2 Classes

2-18

correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1,18]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,18].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED) m 5
Vertical Velocity (NED) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED) μT 13:15
Magnetometer Bias (XYZ) μT 16:18

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

 correct

2-19

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a

2 Classes

2-20

stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

Input Arguments
FUSE — ahrs10filter object
object

Object of ahrs10filter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter | insfilter

Introduced in R2019a

 stateinfo

2-21

residual
Residuals and residual covariances from direct state measurements

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — ahrs10filter
ahrs10filter | object

ahrs10filter, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1,18]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,18].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Altitude (NED) m 5
Vertical Velocity (NED) m/s 6
Delta Angle Bias (XYZ) rad/s 7:9
Delta Velocity Bias (XYZ) m/s 10:12
Geomagnetic Field Vector (NED) μT 13:15
Magnetometer Bias (XYZ) μT 16:18

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

2 Classes

2-22

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrs10filter

Introduced in R2020a

 residual

2-23

trackingSensorConfiguration
Represent sensor configuration for tracking

Description
The trackingSensorConfiguration object creates the configuration for a sensor used with a
trackerPHD System object™. It allows you to specify the sensor parameters such as clutter density,
sensor limits, sensor resolution. You can also specify how a tracker perceives the detections from the
sensor using properties such as FilterInitializationFcn, SensorTransformFcn, and
SensorTransformParameters. See “Create a Tracking Sensor Configuration” on page 2-30 for
more details. The trackingSensorConfiguration object enables the tracker to perform three
main routine operations:

• Evaluate the probability of detection at points in state-space.
• Initiate components in the probability hypothesis density.
• Obtain the clutter density of the sensor.

Creation

Syntax
config = trackingSensorConfiguration(SensorIndex)
config = trackingSensorConfiguration(SensorIndex,Name,Value)

Description

config = trackingSensorConfiguration(SensorIndex) creates a
trackingSensorConfiguration object with a specified sensor index, SensorIndex, and default
property values.

config = trackingSensorConfiguration(SensorIndex,Name,Value) allows you to set
properties using one or more name-value pairs.

Properties
SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system. When creating a
trackingSensorConfiguration object, you must specify the SensorIndex as the first input
argument in the creation syntax.
Example: 2
Data Types: double

2 Classes

2-24

IsValidTime — Indicate detection reporting status
false (default) | true

Indicate the detection reporting status of the sensor, specified as false or true. Set this property to
true when the sensor must report detections within its sensor limits to the tracker. If a track or
target was supposed to be detected by a sensor but the sensor reported no detections, then this
information is used to count against the probability of existence of the track when the isValidTime
property is set to true.
Data Types: logical

FilterInitializationFcn — Filter initialization function
@initcvggiwphd (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a valid filter initialization function. The function initializes the PHD filter used by
trackerPHD. The function must support the following syntaxes:

filter = filterInitializationFcn()
filter = filterInitializationFcn(detections)

filter is a valid PHD filter with components for new-born targets, and detections is a cell array
of objectDetection objects. The first syntax allows you to specify the predictive birth density in
the PHD filter without using detections. The second syntax allows the filter to initialize the adaptive
birth density using detection information. See the “BirthRate” on page 3-0 property of
trackerPHD for more details. If you create your own FilterInitilizationFcn, you must also
provide a transform function using the SensorTransformFcn property. Other than the default filter
initialization function initcvggiwphd, Sensor Fusion and Tracking Toolbox also provides other
initialization functions, such as initctrectgmphd, initctgmphd, initcvgmphd, initcagmphd,
initctggiwphd and initcaggiwphd.
Data Types: function_handle | char

SensorTransformFcn — Sensor transform function
@cvmeas | function handle | character vector

Sensor transform function, specified as a function handle or as a character vector containing the
name of a valid sensor transform function. The function transforms a track's state into the sensor's
detection state. For example, the function transforms the track's state in the scenario Cartesian
frame to the sensor's spherical frame. You can create your own sensor transform function, but it must
support the following syntax:

detStates = SensorTransformFcn(trackStates,params)

params are the parameters stored in the SensorTransformParameters property. Notice that the
signature of the function is similar to a measurement function. Therefore, you can use a measurement
function (such as cvmeas, ctmeas, or cameas) as the SensorTransformFcn.

Depending on the filter type and the target type, the output, detStates, needs to return differently.

• When used with gmphd for non-extended targets or with ggiwphd, detStates is a N-by-M
matrix, where N is the number of rows in the SensorLimits property and M is the number of
input states in trackStates. For gmphd, non-extended targets refer to point targets and
extended targets whose MeasurementOrigin is 'center'.

• When used with gmphd for extended targets, the SensorTransformFcn allows you to specify
multiple detStates per trackState. In this case, detStates is a N-by-M-by-S matrix, where S

 trackingSensorConfiguration

2-25

is the number of detectable sources on the extended target. For example, if the target is described
by a rectangular state, the detectable sources can be the corners of the rectangle.

If any of the source falls inside the SensorLimits, the target is declared detectable. The
functions uses the spread (maximum coordinate − minimum coordinate) of each detStates and
the ratio between the spread and sensor resolution on each sensor limit to calculate the expected
number of detections from each extended target. You can override this default setting by
providing an optional output in the SensorTransformFcn as:

[..., Nexp] = SensorTransformFcn(trackStates, params)

where Nexp is the expected number of detections from each extended track state.

Note that the default SensorTransformFcn is the sensor transform function of the filter returned by
FilterInitilizationFcn. For example, the initicvggiwphd function returns the default
cvmeas, whereas initictggiwphd and initicaggiwphd functions return ctmeas and cameas,
respectively.
Data Types: function_handle | char

SensorTransformParameters — Parameters for sensor transform function
structure | array of structures

Parameters for the sensor transform function, returned as a structure or an array of structures. If you
only need to transform the state once, specify it as a structure. If you need to transform the state n
times, specify it as an n-by-1 array of structures. For example, to transform a state from the scenario
frame to the sensor frame, you usually need to first transform the state from the scenario rectangular
frame to the platform rectangular frame, and then transform the state from the platform rectangular
frame to the sensor spherical frame. The fields of the structure are:

Field Description
Frame Child coordinate frame type, specified as

'Rectangular' or 'Spherical'.
OriginPosition Child frame origin position expressed in the

Parent frame, specified as a 3-by-1 vector.
OriginVelocity Child frame origin velocity expressed in the

parent frame, specified as a 3-by-1 vector.
Orientation Relative orientation between frames, specified as

a 3-by-3 rotation matrix. If the
IsParentToChild property is set to false,
then specify Orientation as the rotation from
the child frame to the parent frame. If the
IsParentToChild property is set to true, then
specify Orientation as the rotation from the
parent frame to the child frame.

IsParentToChild Flag to indicate the direction of rotation between
parent and child frame, specified as true or
false. The default is false. See description of
the Orientation field for details.

HasAzimuth Indicates whether outputs contain azimuth
components, specified as true or false.

2 Classes

2-26

HasElevation Indicates whether outputs contain elevation
components, specified as true or false.

HasRange Indicates whether outputs contain range
components, specified as true or false.

HasVelocity Indicates whether outputs contains velocity
components, specified as true or false.

Note that here the scenario frame is the parent frame of the platform frame, and the platform frame
is the parent frame of the sensor frame.

The default values for SensorTransformParameters are a 2-by-1 array of structures as:

Fields Struct 1 Struct 2
Frame 'Spherical' 'Rectangular'
OriginPosition [0;0;0] [0;0;0]
OriginVelocity [0;0;0] [0;0;0]
Orientation eye(3) eye(3)
IsParentToChild false false
HasAzimuth true true
HasElevation true true
HasRange true true
HasVelocity false true

In this table, Struct 2 accounts for the transformation from the scenario rectangular frame to the
platform rectangular frame, and Struct 1 accounts for the transformation from the platform
rectangular frame to the sensor spherical frame, given the isParentToChild property is set to
false.
Data Types: struct

SensorLimits — Sensor's detection limits
3-by-2 matrix (default) | N-by-2 matrix

Sensor's detection limits, specified as an N-by-2 matrix, where N is the output dimension of the
sensor transform function. The matrix must describe the lower and upper detection limits of the
sensor in the same order as the outputs of the sensor transform function.

If you use cvmeas, cameas, or ctmeas as the sensor transform function, then you need to provide
the sensor limits in order as:

 trackingSensorConfiguration

2-27

SensorLimits =

minAz maxAz
minEl maxEl

minRng maxRng
minRr maxRr

The description of these limits and their default values are given in the following table. Note that the
default values for SensorLimits are a 3-by-2 matrix including the top six elements in the table.
Moreover, if you use these three functions, you can specify the matrix to be in other sizes (1-by-2, 2-
by-2, or 3-by-4), but you have to specify these limits in the sequence shown in the SensorLimits
matrix.

Limits Description Default values
minAz Minimum detectable azimuth in

degrees.
-10

maxAz Maximum detectable azimuth in
degrees.

10

minEl Minimum detectable elevation
in degrees.

-2.5

maxEl Maximum detectable elevation
in degrees.

2.5

minRng Minimum detectable range in
meters.

0

maxRng Maximum detectable range in
meters.

1000

minRr Minimum detectable range rate
in meters per second.

N/A

maxRr Maximum detectable range rate
in meters per second.

N/A

Data Types: double

SensorResolution — Resolution of sensor
[4;2;10] (default) | N-element positive-valued vector

Resolution of a sensor, specified as a N-element positive-valued vector, where N is the number of
parameters specified in the SensorLimits property. If you want to assign only one resolution cell for
a parameter, simply specify its resolution as the difference between the maximum limit and the
minimum limit of the parameter.
Data Types: double

MaxNumDetsPerObject — Maximum number of detections per object
Inf (default) | positive integer

2 Classes

2-28

Maximum number of detections the sensor can report per object, specified as a positive integer.
Example: 3
Data Types: double

ClutterDensity — Expected number of false alarms per unit volume
1e-3 (default) | positive scalar

Expected number of false alarms per unit volume from the sensor, specified as a positive scalar.
Example: 2e-3
Data Types: double

MinDetectionProbability — Probability of detecting track estimated to be outside of
sensor limits
0.05 (default) | positive scalar

Probability of detecting a target estimated to be outside of the sensor limits, specified as a positive
scalar. This property allows a trackerPHD object to consider that the estimated target, which is
outside the sensor limits, may be detectable.
Example: 0.03
Data Types: double

Examples

Create Radar Sensor Configuration

Consider a radar with the following sensor limits and sensor resolution.

 azLimits = [-10 10];
 elLimits = [-2.5 2.5];
 rangeLimits = [0 500];
 rangeRateLimits = [-50 50];
 sensorLimits = [azLimits;elLimits;rangeLimits;rangeRateLimits];
 sensorResolution = [5 2 10 3];

Specifying the sensor transform function that transforms the Cartesian coordinates [x;y;vx;vy] in the
scenario frame to the spherical coordinates [az;el;range;rr] in the sensor's frame. You can use the
measurement function cvmeas as the sensor transform function.

 transformFcn = @cvmeas;

To specify the parameters required for cvmeas, use the SensorTransformParameters property.
Here, you assume the sensor is mounted at the center of the platform and the platform located at
[100;30;20] is moving with a velocity of [-5;4;2] units per second in the scenario frame.

The first structure defines the sensor's location, velocity, and orientation in the platform frame.

 params(1) = struct('Frame','Spherical','OriginPosition',[0;0;0],...
 'OriginVelocity',[0;0;0],'Orientation',eye(3),'HasRange',true,...
 'HasVelocity',true);

The second structure defines the platform's location, velocity, and orientation in the scenario frame.

 trackingSensorConfiguration

2-29

 params(2) = struct('Frame','Rectangular','OriginPosition',[100;30;20],...
 'OriginVelocity',[-5;4;2],'Orientation',eye(3),'HasRange',true,...
 'HasVelocity',true);

Create the configuration.

 config = trackingSensorConfiguration('SensorIndex',3,'SensorLimits',sensorLimits,...
 'SensorResolution',sensorResolution,...
 'SensorTransformParameters',params,...
 'SensorTransformFcn',@cvmeas,...
 'FilterInitializationFcn',@initcvggiwphd)

config =
 trackingSensorConfiguration with properties:

 SensorIndex: 3
 IsValidTime: 0

 SensorLimits: [4x2 double]
 SensorResolution: [4x1 double]
 SensorTransformFcn: @cvmeas
 SensorTransformParameters: [1x2 struct]

 FilterInitializationFcn: @initcvggiwphd
 MaxNumDetsPerObject: Inf

 ClutterDensity: 1.0000e-03
 DetectionProbability: 0.9000
 MinDetectionProbability: 0.0500

More About
Create a Tracking Sensor Configuration

To create the configuration for a sensor, you first need to specify the sensor transform function, which
is usually given as:

Y = g(x, p)
where x denotes the tracking state, Y denotes detection states, and p denotes the required
parameters. For object tracking applications, you mainly focus on obtaining an object's tracking state.
For example, a radar sensor can measure an object's azimuth, elevation, range, and possibly range-
rate. Using a trackingSensorConfiguration object, you can specify a radar's transform function
using the SensorTransformFcn property and specify the radar's mounting location, orientation, and
velocity using corresponding fields in the SensorTransformParameters property. If the object is
moving at a constant velocity, constant acceleration, or constant turning, you can use the built-in
measurement function – cvmeas, cameas, or ctmeas, respectively – as the SensorTransformFcn.
To set up the exact outputs of these three functions, specify the hasAzimuth, hasElevation,

2 Classes

2-30

hasRange, and hasVelocity fields as true or false in the SensorTransformParameters
property.

To set up the configuration of a sensor, you also need to specify the sensor's detection ability.
Primarily, you need to specify the sensor's detection limits. For all the outputs of the sensor transform
function, you need to provide the detection limits in the same order of these outputs using the
SensorLimits property. For example, for a radar sensor, you might need to provide its azimuth,
elevation, range, and range-rate limits. You can also specify the radar's SensorResolution and
MaxNumDetsPerObject properties if you want to consider extended object detection. You might also
want to specify other properties, such as ClutterDensity, IsValidTime, and
MinDetectionProbability to further clarify the sensor's detection ability.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cameas | ctmeas | cvmeas | ggiwphd | trackerPHD

Introduced in R2019a

 trackingSensorConfiguration

2-31

pose
Current orientation and position estimate

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose of
the object tracked by FUSE, an insfilterErrorState object.

[position,orientation,velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate in local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element row vector.
Data Types: single | double

orientation — Orientation estimate in local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion or 3-by-3
rotation matrix, depending on the specified orientation format. The quaternion or rotation matrix
represents a frame rotation from the local NED reference frame to the body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate in local NED coordinate system (m/s)
3-element row vector

2 Classes

2-32

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

 pose

2-33

stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property of FUSE, an
insfilterErrorState object, and the associated units.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes

2-34

reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators of FUSE, an
insfilterErrorState object, to their default values.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

 reset

2-35

predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes

2-36

fusemvo
Correct states using monocular visual odometry

Syntax
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance)

Description
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance) fuses position and orientation data from monocular visual odometry (MVO)
measurements to correct the state and state estimation error covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of camera in local NED coordinate system (m)
3-element row vector

Position of camera in the local NED coordinate system in meters, specified as a real finite 3-element
row vector.
Data Types: single | double

positionCovariance — Position measurement covariance of MVO (m2)
scalar | 3-element vector | 3-by-3 matrix

Position measurement covariance of MVO in m2, specified as a scalar, 3-element vector, or 3-by-3
matrix.
Data Types: single | double

ornt — Orientation of camera with respect to local NED coordinate system
scalar quaternion | rotation matrix

Orientation of the camera with respect to the local NED coordinate system, specified as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame rotation from the
NED coordinate system to the current camera coordinate system.
Data Types: quaternion | single | double

orntCovariance — Orientation measurement covariance of monocular visual odometry
(rad2)
scalar | 3-element vector | 3-by-3 matrix

Orientation measurement covariance of monocular visual odometry in rad2, specified as a scalar, 3-
element vector, or 3-by-3 matrix.

 fusemvo

2-37

Data Types: single | double

Output Arguments
pResidual — Position residual
1-by-3 vector of real values

Position residual, returned as a 1-by-3 vector of real values in m.

oResidual — Rotation vector residual
1-by-3 vector of real values

Rotation vector residual, returned as a 1-by-3 vector of real values in radians.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes

2-38

residualmvo
Residuals and residual covariance from monocular visual odometry measurements

Syntax
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance)

Description
[pResidual,oResidual,resCov] = fusemvo(FUSE,position,positionCovariance,ornt,
orntCovariance) computes the residual information based on the monocular visual odometry
measurements and covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of camera in local NED coordinate system (m)
3-element row vector

Position of camera in the local NED coordinate system in meters, specified as a real finite 3-element
row vector.
Data Types: single | double

positionCovariance — Position measurement covariance of MVO (m2)
scalar | 3-element vector | 3-by-3 matrix

Position measurement covariance of MVO in m2, specified as a scalar, 3-element vector, or 3-by-3
matrix.
Data Types: single | double

ornt — Orientation of camera with respect to local NED coordinate system
scalar quaternion | rotation matrix

Orientation of the camera with respect to the local NED coordinate system, specified as a scalar
quaternion or 3-by-3 rotation matrix. The quaternion or rotation matrix is a frame rotation from the
NED coordinate system to the current camera coordinate system.
Data Types: quaternion | single | double

orntCovariance — Orientation measurement covariance of monocular visual odometry
(rad2)
scalar | 3-element vector | 3-by-3 matrix

Orientation measurement covariance of monocular visual odometry in rad2, specified as a scalar, 3-
element vector, or 3-by-3 matrix.

 residualmvo

2-39

Data Types: single | double

Output Arguments
pResidual — Position residual
1-by-3 vector of real values

Position residual, returned as a 1-by-3 vector of real values in meters.

oResidual — Rotation vector residual
1-by-3 vector of real values

Rotation vector residual, returned a 1-by-3 vector of real values in radians.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2020a

2 Classes

2-40

fusegps
Correct states using GPS data

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
scalar | 3-element row vector | 3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s)2

scalar | 3-element row vector | 3-by-3 matrix

 fusegps

2-41

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in (m/s)2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Innovation residual
6-by-6 matrix of real values

Innovation residual, returned as a 6-by-6 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes

2-42

correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance of FUSE, an insfilterErrorState object, based on the measurement
and measurement covariance. The measurement maps directly to the state specified by the indices
idx.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

idx — State vector index of measurements to correct
N-element vector of increasing integers in the range [1, 17]

State vector index of measurements to correct, specified as an N-element vector of increasing
integers in the range [1, 17].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | M-element vector | M-by-M matrix

 correct

2-43

Covariance of measurement, specified as a scalar, M-element vector, or M-by-M matrix. If you correct
orientation (state indices 1–4), then M = numel(idx)-1. If you do not correct orientation, then M =
numel(idx).
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterErrorState

Introduced in R2019a

2 Classes

2-44

residual
Residuals and residual covariances from direct state measurements

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

idx — State vector index of measurements to correct
N-element vector of increasing integers in the range [1, 17]

State vector index of measurements to correct, specified as an N-element vector of increasing
integers in the range [1, 17].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

 residual

2-45

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState

Introduced in R2020a

2 Classes

2-46

residualgps
Residuals and residual covariance from GPS measurements

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — INS filter object
insfilterErrorState

insfilterErrorState, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

 residualgps

2-47

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState

Introduced in R2020a

2 Classes

2-48

insfilterErrorState
Estimate pose from IMU, GPS, and monocular visual odometry (MVO) data

Description
The insfilterErrorState object implements sensor fusion of IMU, GPS, and monocular visual
odometry (MVO) data to estimate pose in the NED (or ENU) reference frame. The filter uses a 17-
element state vector to track the orientation quaternion, velocity, position, IMU sensor biases, and
the MVO scaling factor. The insfilterErrorState object uses an error-state Kalman filter to
estimate these quantities.

Creation

Syntax
filter = insfilterErrorState
filter = insfilterErrorState('ReferenceFrame',RF)
filter = insfilterErrorState(___ ,Name,Value)

Description

filter = insfilterErrorState creates an insfilterErrorState object with default property
values.

filter = insfilterErrorState('ReferenceFrame',RF) allows you to specify the reference
frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The
default value is 'NED'.

filter = insfilterErrorState(___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double

 insfilterErrorState

2-49

GyroscopeNoise — Multiplicative process noise variance from gyroscope ((rad/s)2)
[1e-6 1e-6 1e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

GyroscopeBiasNoise — Additive process noise variance from gyroscope bias ((rad/s)2)
[1e-9 1e-9 1e-9] (default) | scalar | 3-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-element
row vector of positive real finite numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each axis

Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer ((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Additive process noise variance from accelerometer bias
((m/s2)2)
[1e-4 1e-4 1e-4] (default) | scalar | 3-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar or 3-element
row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

State — State vector of Kalman filter
[1;zeros(15,1);1] (default) | 17-element column vector

State vector of the extended Kalman filter, specified as a 17-element column vector. The state values
represent:

2 Classes

2-50

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
Gyroscope Bias (XYZ) rad/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16
Visual Odometry Scale (XYZ) N/A 17

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for Kalman filter
ones(16) (default) | 16-by-16 matrix

State error covariance for the Kalman filter, specified as a 16-by-16-element matrix of real numbers.
The state error covariance values represent:

State Covariance Row/Column Index
δ Rotation Vector (XYZ) 1:3
δ Position (NED or ENU) 4:6
δ Velocity (NED or ENU) 7:9
δ Gyroscope Bias (XYZ) 10:12
δ Accelerometer Bias (XYZ) 13:15
δ Visual Odometry Scale (XYZ) 16

Note that because this is an error-state Kalman filter, it tracks the errors in the states. δ represents
the error in the corresponding state.
Data Types: single | double

Object Functions
predict Update states using accelerometer and gyroscope data
correct Correct states using direct state measurements
residual Residuals and residual covariances from direct state measurements
fusegps Correct states using GPS data
residualgps Residuals and residual covariance from GPS measurements
fusemvo Correct states using monocular visual odometry
residualmvo Residuals and residual covariance from monocular visual odometry measurements
pose Current orientation and position estimate
reset Reset internal states
stateinfo Display state vector information

Examples

 insfilterErrorState

2-51

Estimate Pose of Ground Vehicle

Load logged data of a ground vehicle following a circular trajectory. The .mat file contains IMU and
GPS sensor measurements and ground truth orientation and position.

load('loggedGroundVehicleCircle.mat', ...
 'imuFs','localOrigin', ...
 'initialStateCovariance', ...
 'accelData','gyroData', ...
 'gpsFs','gpsLLA','Rpos','gpsVel','Rvel', ...
 'trueOrient','truePos');

Create an INS filter to fuse IMU and GPS data using an error-state Kalman filter.

initialState = [compact(trueOrient(1)),truePos(1,:),-6.8e-3,2.5002,0,zeros(1,6),1].';
filt = insfilterErrorState;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;

Preallocate variables for position and orientation. Allocate a variable for indexing into the GPS data.

numIMUSamples = size(accelData,1);
estOrient = ones(numIMUSamples,1,'quaternion');
estPos = zeros(numIMUSamples,3);

gpsIdx = 1;

Fuse accelerometer, gyroscope, and GPS data. The outer loop predicts the filter forward at the fastest
sample rate (the IMU sample rate).

for idx = 1:numIMUSamples

 % Use predict to estimate the filter state based on the accelData and
 % gyroData arrays.
 predict(filt,accelData(idx,:),gyroData(idx,:));

 % GPS data is collected at a lower sample rate than IMU data. Fuse GPS
 % data at the lower rate.
 if mod(idx, imuFs / gpsFs) == 0
 % Correct the filter states based on the GPS data.
 fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
 gpsIdx = gpsIdx + 1;
 end

 % Log the current pose estimate
 [estPos(idx,:), estOrient(idx,:)] = pose(filt);
end

Calculate the RMS errors between the known true position and orientation and the output from the
error-state filter.

pErr = truePos - estPos;
qErr = rad2deg(dist(estOrient,trueOrient));

pRMS = sqrt(mean(pErr.^2));
qRMS = sqrt(mean(qErr.^2));

2 Classes

2-52

fprintf('Position RMS Error\n');

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

 X: 0.40, Y: 0.24, Z: 0.05 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n',qRMS);

 0.30 (degrees)

Visualize the true position and the estimated position.

plot(truePos(:,1),truePos(:,2),estPos(:,1),estPos(:,2),'r:','LineWidth',2)
grid on
axis square
xlabel('N (m)')
ylabel('E (m)')
legend('Ground Truth','Estimation')

 insfilterErrorState

2-53

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterErrorState uses a 17-axis error state Kalman filter structure to estimate pose in the
NED reference frame. The state is defined as:

x =

q0
q1
q2
q3

positionN
positionE
positionD

vN
vE
vD

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY

accelbiasZ
scaleFactor

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• scaleFactor –– Scale factor of the pose estimate.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

the predicted state estimate is:

2 Classes

2-54

xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN − Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ + gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE− Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ + gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD− Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ + gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ −
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

gyrobiasX
gyrobiasY
gyrobiasZ
accelbiasX
accelbiasY
accelbiasZ

scaleFactor

 insfilterErrorState

2-55

where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterMARG | insfilterNonholonomic

Introduced in R2019a

2 Classes

2-56

stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property of the
insfilterAsync object and the associated units.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 stateinfo

2-57

reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State and StateCovariance properties of the insfilterAsync object
to their default values.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

2 Classes

2-58

predict
Update states based on motion model

Syntax
predict(FUSE,dt)

Description
predict(FUSE,dt) updates states based on the motion model.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

dt — Delta time to propagate forward (s)
scalar

Delta time to propagate forward in seconds, specified as a positive scalar.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 predict

2-59

pose
Current position, orientation, and velocity estimate

Syntax
[position,orientation,velocity] = pose(FUSE)
[position,orientation,velocity] = pose(FUSE,format)

Description
[position,orientation,velocity] = pose(FUSE) returns the current estimate of the pose.

[position,orientation,velocity] = pose(FUSE,format) returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate in the local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element row vector.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, returned as a scalar quaternion or 3-by-3
rotation matrix, depending on the specified orientation format. The quaternion or rotation matrix
represents a frame rotation from the local NED reference frame to the body reference frame.
Data Types: single | double | quaternion

velocity — Velocity estimate in the local NED coordinate system (m/s)
3-element row vector

2 Classes

2-60

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row vector.
Data Types: single | double | quaternion

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 pose

2-61

fusemag
Correct states using magnetometer data

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

2 Classes

2-62

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 fusemag

2-63

residualmag
Residuals and residual covariance from magnetometer measurements

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

2 Classes

2-64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync

Introduced in R2020a

 residualmag

2-65

fusegyro
Correct states using gyroscope data

Syntax
[res,resCov] = fusegyro(FUSE,gyroReadings,gyroCovariance)

Description
[res,resCov] = fusegyro(FUSE,gyroReadings,gyroCovariance) fuses gyroscope data to
correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in local sensor body coordinate system in rad/s, specified as a 3-element row
vector.
Data Types: single | double

gyroCovariance — Covariance of gyroscope measurement error ((rad/s)2)
scalar | 3-element row vector | 3-by-3 matrix

Covariance of gyroscope measurement error in (rad/s)2, specified as a scalar, 3-element row vector, or
3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in rad/s.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (rad/s)2.

2 Classes

2-66

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 fusegyro

2-67

residualgyro
Residuals and residual covariance from gyroscope measurements

Syntax
[res,resCov] = residualgyro(FUSE,gyroReadings,gyroCovariance)

Description
[res,resCov] = residualgyro(FUSE,gyroReadings,gyroCovariance) computes the
residual, res, and the innovation covariance, resCov, based on the gyroscope readings and the
corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in local sensor body coordinate system in rad/s, specified as a 3-element row
vector.
Data Types: single | double

gyroCovariance — Covariance of gyroscope measurement error ((rad/s)2)
scalar | 3-element row vector | 3-by-3 matrix

Covariance of gyroscope measurement error in (rad/s)2, specified as a scalar, 3-element row vector, or
3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in rad/s.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (rad/s)2.

2 Classes

2-68

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2020a

 residualgyro

2-69

fusegps
Correct states using GPS data

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

2 Classes

2-70

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync | insfilterMARG

Introduced in R2019a

 fusegps

2-71

fuseaccel
Correct states using accelerometer data

Syntax
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance)

Description
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance) fuses
accelerometer data to correct the state estimate.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

acceleration — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in local sensor body coordinate system in m/s2, specified as a 3-element row
vector
Data Types: single | double

accelerationCovariance — Acceleration error covariance of accelerometer measurement
((m/s2)2)
scalar | 3-element row vector | 3-by-3 matrix

Acceleration error covariance of the accelerometer measurement in (m/s2)2, specified as a scalar, 3-
element row vector, or 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in m/s2.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values in (m/s2)2.

2 Classes

2-72

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 fuseaccel

2-73

residualaccel
Residuals and residual covariance from accelerometer measurements

Syntax
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance)

Description
[res,resCov] = fuseaccel(FUSE,acceleration,accelerationCovariance) computes the
residual, res, and the residual covariance, resCov, based on the acceleration readings and the
corresponding covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

acceleration — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in local sensor body coordinate system in m/s2, specified as a 3-element row
vector
Data Types: single | double

accelerationCovariance — Acceleration error covariance of accelerometer measurement
((m/s2)2)
scalar | 3-element row vector | 3-by-3 matrix

Acceleration error covariance of the accelerometer measurement in (m/s2)2, specified as a scalar, 3-
element row vector, or 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in m/s2.

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (m/s2)2.

2 Classes

2-74

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2020a

 residualaccel

2-75

correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterAsync object
object

insfilterAsync, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1, 28]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 28].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Acceleration (NED) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED) μT 23:25
Magnetometer Bias (XYZ) μT 26:28

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as an N-element vector. N is the number of elements of the
index argument, idx.

2 Classes

2-76

Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterAsync

Introduced in R2019a

 correct

2-77

residual
Residuals and residual covariances from direct state measurements

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

idx — State vector index of measurement to correct
N-element vector of increasing integers in the range [1, 28]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 28].

The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Acceleration (NED) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED) μT 23:25
Magnetometer Bias (XYZ) μT 26:28

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

2 Classes

2-78

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync

Introduced in R2020a

 residual

2-79

residualgps
Residuals and residual covariance from GPS measurements

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterAsync
ahrs10filter | object

insfilterAsync, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

2 Classes

2-80

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync

Introduced in R2020a

 residualgps

2-81

insfilterAsync
Estimate pose from asynchronous MARG and GPS data

Description
The insfilterAsync object implements sensor fusion of MARG and GPS data to estimate pose in
the NED (or ENU) reference frame. MARG (magnetic, angular rate, gravity) data is typically derived
from magnetometer, gyroscope, and accelerometer data, respectively. The filter uses a 28-element
state vector to track the orientation quaternion, velocity, position, MARG sensor biases, and
geomagnetic vector. The insfilterAsync object uses a continuous-discrete extended Kalman filter
to estimate these quantities.

Creation

Syntax
filter = insfilterAsync
filter = insfilterAsync('ReferenceFrame',RF)
filter = insfilterAsync(___ ,Name,Value)

Description

filter = insfilterAsync creates an insiflterAsync object to fuse asynchronous MARG and
GPS data with default property values.

filter = insfilterAsync('ReferenceFrame',RF) allows you to specify the reference frame,
RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

filter = insfilterAsync(___ ,Name,Value) also allows you set properties of the created
filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | three-element positive row vector

Reference location, specified as a three-element row vector in geodetic coordinates (latitude,
longitude, and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The
reference location units are [degrees degrees meters].
Data Types: single | double

QuaternionNoise — Additive quaternion process noise variance
[1e-6 1e-6 1e-6 1e-6] (default) | scalar | four-element row vector

Additive quaternion process noise variance, specified as a scalar or four-element vector of quaternion
parts.

2 Classes

2-82

Data Types: single | double

AngularVelocityNoise — Additive angular velocity process noise in local navigation
coordinate system ((rad/s)2)
[0.005 0.005 0.005] (default) | scalar | three-element row vector

Additive angular velocity process noise in the local navigation coordinate system in (rad/s)2, specified
as a scalar or three-element row vector of positive real finite numbers.

• If AngularVelocityNoise is a row vector, the elements correspond to the noise in the x, y, and
z axes of the local navigation coordinate system, respectively.

• If AngularVelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

PositionNoise — Additive position process noise variance in local navigation coordinate
system (m2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive position process noise in the local navigation coordinate system in m2, specified as a scalar
or three-element row vector of positive real finite numbers.

• If PositionNoise is a row vector, the elements correspond to the noise in the x, y, and z axes of
the local navigation coordinate system, respectively.

• If PositionNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

VelocityNoise — Additive velocity process noise variance in local navigation coordinate
system ((m/s)2)
[1e-6 1e-6 1e-6] (default) | scalar | three-element row vector

Additive velocity process noise in the local navigation coordinate system in (m/s)2, specified as a
scalar or three-element row vector of positive real finite numbers.

• If VelocityNoise is a row vector, the elements correspond to the noise in the x, y, and z axes of
the local navigation coordinate system, respectively.

• If VelocityNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerationNoise — Additive acceleration process noise variance in local navigation
coordinate system ((m/s2)2)
[50 50 50] (default) | scalar | three-element row vector

Additive acceleration process noise in (m/s2)2, specified as a scalar or three-element row vector of
positive real finite numbers.

• If AccelerationNoise is a row vector, the elements correspond to the noise in the x, y, and z
axes of the local navigation coordinate system, respectively.

• If AccelerationNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

 insfilterAsync

2-83

GyroscopeBiasNoise — Additive process noise variance from gyroscope bias ((rad/s)2)
[1e-10 1e-10 1e-10] (default) | scalar | three-element row vector

Additive process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or three-
element row vector of positive real finite numbers.

• If GyroscopeBiasNoise is a row vector, the elements correspond to the noise in the x, y, and z
axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Additive process noise variance from accelerometer bias
((m/s2)2)
[1e-4 1e-4 1e-4] (default) | positive scalar | three-element row vector

Additive process noise variance from accelerometer bias in (m/s2)2, specified as a scalar or three-
element row vector of positive real numbers.

• If AccelerometerBiasNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is a scalar, the single element is applied to each axis.

GeomagneticVectorNoise — Additive process noise variance of geomagnetic vector in local
navigation coordinate system (μT2)
[1e-6 1e-6 1e-6] (default) | positive scalar | three-element row vector

Additive process noise variance of geomagnetic vector in μT2, specified as a scalar or three-element
row vector of positive real numbers.

• If GeomagneticVectorNoise is a row vector, the elements correspond to the noise in the x, y,
and z axes of the local navigation coordinate system, respectively.

• If GeomagneticVectorNoise is a scalar, the single element is applied to each axis.

MagnetometerBiasNoise — Additive process noise variance from magnetometer bias (μT2)
[0.1 0.1 0.1] (default) | positive scalar | three-element row vector

Additive process noise variance from magnetometer bias in μT2, specified as a scalar or three-element
row vector of positive real numbers.

• If MagnetometerBiasNoise is a row vector, the elements correspond to the noise in the x, y, and
z axes of the magnetometer, respectively.

• If MagnetometerBiasNoise is a scalar, the single element is applied to each axis.

State — State vector of extended Kalman filter
28-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Angular Velocity (XYZ) rad/s 5:7

2 Classes

2-84

State Units Index
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Acceleration (NED or ENU) m/s2 14:16
Accelerometer Bias (XYZ) m/s2 17:19
Gyroscope Bias (XYZ) rad/s 20:22
Geomagnetic Field Vector (NED
or ENU)

μT 23:25

Magnetometer Bias (XYZ) μT 26:28

The default initial state corresponds to an object at rest located at [0 0 0] in geodetic LLA
coordinates.
Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(28) (default) | 28-by-28 matrix

State error covariance for the extended Kalman filter, specified as a 28-by-28-element matrix of real
numbers.
Data Types: single | double

Object Functions
predict Update states based on motion model
fuseaccel Correct states using accelerometer data
fusegyro Correct states using gyroscope data
fusemag Correct states using magnetometer data
fusegps Correct states using GPS data
correct Correct states using direct state measurements
residual Residuals and residual covariances from direct state measurements
residualaccel Residuals and residual covariance from accelerometer measurements
residualgps Residuals and residual covariance from GPS measurements
residualmag Residuals and residual covariance from magnetometer measurements
residualgyro Residuals and residual covariance from gyroscope measurements
pose Current position, orientation, and velocity estimate
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of UAV

Load logged sensor data and ground truth pose.

load('uavshort.mat','refloc','initstate','imuFs', ...
 'accel','gyro','mag','lla','gpsvel', ...
 'trueOrient','truePos')

Create an INS filter to fuse asynchronous MARG and GPS data to estimate pose.

 insfilterAsync

2-85

filt = insfilterAsync;
filt.ReferenceLocation = refloc;
filt.State = [initstate(1:4);0;0;0;initstate(5:10);0;0;0;initstate(11:end)];

Define sensor measurement noises. The noises were determined from datasheets and
experimentation.

Rmag = 80;
Rvel = 0.0464;
Racc = 800;
Rgyro = 1e-4;
Rpos = 34;

Preallocate variables for position and orientation. Allocate a variable for indexing into the GPS data.

N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

gpsIdx = 1;

Fuse accelerometer, gyroscope, magnetometer, and GPS data. The outer loop predicts the filter
forward one time step and fuses accelerometer and gyroscope data at the IMU sample rate.

for ii = 1:N

 % Predict the filter forward one time step
 predict(filt,1./imuFs);

 % Fuse accelerometer and gyroscope readings
 fuseaccel(filt,accel(ii,:),Racc);
 fusegyro(filt,gyro(ii,:),Rgyro);

 % Fuse magnetometer at 1/2 the IMU rate
 if ~mod(ii, fix(imuFs/2))
 fusemag(filt,mag(ii,:),Rmag);
 end

 % Fuse GPS once per second
 if ~mod(ii,imuFs)
 fusegps(filt,lla(gpsIdx,:),Rpos,gpsvel(gpsIdx,:),Rvel);
 gpsIdx = gpsIdx + 1;
 end

 % Log the current pose estimate
 [p(ii,:),q(ii)] = pose(filt);

end

Calculate the RMS errors between the known true position and orientation and the output from the
asynchronous IMU filter.

posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));

pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));

fprintf('Position RMS Error\n');

2 Classes

2-86

Position RMS Error

fprintf('\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

 X: 0.55, Y: 0.71, Z: 0.74 (meters)

fprintf('Quaternion Distance RMS Error\n');

Quaternion Distance RMS Error

fprintf('\t%.2f (degrees)\n\n', qRMS);

 4.72 (degrees)

Visualize the true position and the estimated position.

plot3(truePos(:,1),truePos(:,2),truePos(:,3),'LineWidth',2)
hold on
plot3(p(:,1),p(:,2),p(:,3),'r:','LineWidth',2)
grid on
xlabel('N (m)')
ylabel('E (m)')
zlabel('D (m)')

 insfilterAsync

2-87

Algorithms
Dynamic Model Used in insfilterAsync

Note: The following algorithm only applies to an NED reference frame.

insfilterAsync implements a 28-axis continuous-discrete extended Kalman filter using sequential
fusion. The filter relies on the assumption that individual sensor measurements are uncorrelated. The
filter uses an omnidirectional motion model and assumes constant angular velocity and constant
acceleration. The state is defined as:

x =

q0
q1
q2
q3

angVelX
angVelY
angVelZ
positionN
positionE
positionD

νN
νE
νD

accelN
accelE
accelD

accelbiasX
accelbiasY
accelbiasZ
gyrobiasX
gyrobiasY
gyrobiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

where

2 Classes

2-88

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• angVelX, angVelY, angVelZ –– Angular velocity relative to the platform's body frame.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• accelN, accelE, accelD –– Acceleration of the platform in the local NED coordinate system.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.
• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD –– Estimate of the

geomagnetic field vector at the reference location.
• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the process equation, ẋ = f x + w, w is the process noise, ẋ is
the derivative of x, and:

 insfilterAsync

2-89

f x =

− q1 angVelX − q2 angVelY − q3 angVelZ
2

q0 angVelX − q3 angVelY + q1 angVelZ
2

q3 angVelX + q0 angVelY − q1 angVelZ
2

q1 angVelX − q2 angVelY + q0 angVelZ
2
0
0
0
νN
νE
νD

accelN
accelE
accelD

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterErrorState | insfilterMARG | insfilterNonholonomic

Introduced in R2019a

2 Classes

2-90

correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,22]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1, 22].

The state values represent:

State Units Index
Orientation (quaternion parts) 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED) µT 17:19
Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

 correct

2-91

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

2 Classes

2-92

fusegps
Correct states using GPS data

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

 fusegps

2-93

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-6 vector of real values in m and m/s, respectively.

resCov — Residual covariance
6-by-6 matrix of real values

Residual covariance, returned as a 6-by-6 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

2 Classes

2-94

fusemag
Correct states using magnetometer data

Syntax
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = fusemag(FUSE,magReadings,magReadingsCovariance) fuses
magnetometer data to correct the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

 fusemag

2-95

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

2 Classes

2-96

residualmag
Residuals and residual covariance from magnetometer measurements

Syntax
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance)

Description
[res,resCov] = residualmag(FUSE,magReadings,magReadingsCovariance) computes the
residual, residual, and the residual covariance, resCov, based on the magnetometer readings and
the corresponding covariance.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

magReadings — Magnetometer readings (µT)
3-element row vector

Magnetometer readings in µT, specified as a 3-element row vector of finite real numbers.
Data Types: single | double

magReadingsCovariance — Magnetometer readings error covariance (µT2)
scalar | 3-element row vector | 3-by-3 matrix

Magnetometer readings error covariance in µT2, specified as a scalar, 3-element row vector, or 3-by-3
matrix.
Data Types: single | double

Output Arguments
res — Residual
1-by-3 vector of real values

Residual, returned as a 1-by-3 vector of real values in µT.
Data Types: single | double

resCov — Residual covariance
3-by-3 matrix of real values

Residual covariance, returned a 3-by-3 matrix of real values in (µT)2.

See Also
insfilter | insfilterMARG

 residualmag

2-97

Introduced in R2020a

2 Classes

2-98

pose
Current orientation and position estimate

Syntax
[position,orientation] = pose(FUSE)
[position,orientation] = pose(FUSE,format)

Description
[position,orientation] = pose(FUSE) returns the current estimate of the pose.

[position,orientation] = pose(FUSE,format) returns the current estimate of the pose
with orientation in the specified orientation format.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
position — Position estimate in the local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element row vector.
Data Types: single | double

orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, specified as a scalar quaternion or 3-by-3
rotation matrix. The quaternion or rotation matrix represents a frame rotation from the local NED
reference frame to the body reference frame.
Data Types: single | double | quaternion

 pose

2-99

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

2 Classes

2-100

predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

 predict

2-101

reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

2 Classes

2-102

stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterMARG

Introduced in R2018b

 stateinfo

2-103

residual
Residuals and residual covariances from direct state measurements

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

idx — State vector index of measurement
N-element vector of increasing integers in the range [1,22]

State vector index of measurement, specified as an N-element vector of increasing integers in the
range [1, 22].

The state values represent:

State Units Index
Orientation (quaternion parts) 1:4
Position (NED) m 5:7
Velocity (NED) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED) µT 17:19
Magnetometer Bias (XYZ) µT 20:22

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

2 Classes

2-104

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

See Also
insfilterMARG

Introduced in R2020a

 residual

2-105

residualgps
Residuals and residual covariance from GPS measurements

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterMARG object
object

insfilterMARG, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

2 Classes

2-106

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and velocity residual
1-by-3 vector of real values | 1-by-6 vector of real values

Position and velocity residual, returned as a 1-by-3 vector of real values if the inputs only contain
position information, and returned as 1-by-6 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 6-by-6 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 6-by-6 matrix of real values if the inputs also contain velocity information.

See Also
insfilter | insfilterMARG

Introduced in R2020a

 residualgps

2-107

insfilterMARG
Estimate pose from MARG and GPS data

Description
The insfilterMARG object implements sensor fusion of MARG and GPS data to estimate pose in the
NED (or ENU) reference frame. MARG (magnetic, angular rate, gravity) data is typically derived from
magnetometer, gyroscope, and accelerometer sensors. The filter uses a 22-element state vector to
track the orientation quaternion, velocity, position, MARG sensor biases, and geomagnetic vector. The
insfilterMARG object uses an extended Kalman filter to estimate these quantities.

Creation

Syntax
filter = insfilterMARG
filter = insfilterMARG('ReferenceFrame',RF)
filter = insfilterMARG(___ ,Name,Value)

Description

filter = insfilterMARG creates an insfilterMARG object with default property values.

filter = insfilterMARG('ReferenceFrame',RF) allows you to specify the reference frame,
RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

filter = insfilterMARG(___ ,Name,Value) also allows you set properties of the created
filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the inertial measurement unit (IMU) in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double

2 Classes

2-108

GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

1e-9 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y, and z axes of
the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias (rad/s)2

1e-10 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-
element row vector of positive real numbers.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope bias, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer (m/s2)2

1e-4 (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
(m/s2)2

1e-4 (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as a scalar or
3-element row vector of positive real numbers.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer bias, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

GeomagneticVectorNoise — Additive process noise for geomagnetic vector (µT2)
1e-6 (default) | positive scalar | 3-element row vector

Additive process noise for geomagnetic vector in µT2, specified as a scalar or 3-element row vector of
positive real numbers.

 insfilterMARG

2-109

• If GeomagneticVectorNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the geomagnetic vector, respectively.

• If GeomagneticVectorNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

MagnetometerBiasNoise — Additive process noise for magnetometer bias (µT2)
0.1 (default) | positive scalar | 3-element row vector

Additive process noise for magnetometer bias in µT2, specified as a scalar or 3-element row vector.

• If MagnetometerBiasNoise is specified as a row vector, the elements correspond to the noise in
the x, y, and z axes of the magnetometer bias, respectively.

• If MagnetometerBiasNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

State — State vector of extended Kalman filter
22-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Position (NED or ENU) m 5:7
Velocity (NED or ENU) m/s 8:10
Delta Angle Bias (XYZ) rad 11:13
Delta Velocity Bias (XYZ) m/s 14:16
Geomagnetic Field Vector (NED
or ENU)

µT 17:19

Magnetometer Bias (XYZ) µT 20:22

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(22)*1e-6 (default) | 22-by-22 matrix

State error covariance for the extended Kalman filter, specified as a 22-by-22-element matrix, or real
numbers.
Data Types: single | double

Object Functions
correct Correct states using direct state measurements
residual Residuals and residual covariances from direct state measurements
fusegps Correct states using GPS data
residualgps Residuals and residual covariance from GPS measurements
fusemag Correct states using magnetometer data
residualmag Residuals and residual covariance from magnetometer measurements
pose Current orientation and position estimate
predict Update states using accelerometer and gyroscope data

2 Classes

2-110

reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of UAV

This example shows how to estimate the pose of an unmanned aerial vehicle (UAV) from logged
sensor data and ground truth pose.

Load the logged sensor data and ground truth pose of an UAV.

load uavshort.mat

Initialize the insfilterMARG filter object.

f = insfilterMARG;
f.IMUSampleRate = imuFs;
f.ReferenceLocation = refloc;
f.AccelerometerBiasNoise = 2e-4;
f.AccelerometerNoise = 2;
f.GyroscopeBiasNoise = 1e-16;
f.GyroscopeNoise = 1e-5;
f.MagnetometerBiasNoise = 1e-10;
f.GeomagneticVectorNoise = 1e-12;
f.StateCovariance = 1e-9*ones(22);
f.State = initstate;

gpsidx = 1;
N = size(accel,1);
p = zeros(N,3);
q = zeros(N,1,'quaternion');

Fuse accelerometer, gyroscope, magnetometer, and GPS data.

for ii = 1:size(accel,1) % Fuse IMU
 f.predict(accel(ii,:), gyro(ii,:));

 if ~mod(ii,fix(imuFs/2)) % Fuse magnetometer at 1/2 the IMU rate
 f.fusemag(mag(ii,:),Rmag);
 end

 if ~mod(ii,imuFs) % Fuse GPS once per second
 f.fusegps(lla(gpsidx,:),Rpos,gpsvel(gpsidx,:),Rvel);
 gpsidx = gpsidx + 1;
 end

 [p(ii,:),q(ii)] = pose(f); %Log estimated pose
end

Calculate and display RMS errors.

posErr = truePos - p;
qErr = rad2deg(dist(trueOrient,q));
pRMS = sqrt(mean(posErr.^2));
qRMS = sqrt(mean(qErr.^2));
fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',pRMS(1),pRMS(2),pRMS(3));

 insfilterMARG

2-111

Position RMS Error
 X: 0.57, Y: 0.53, Z: 0.68 (meters)

fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',qRMS);

Quaternion Distance RMS Error
 0.28 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterMARG uses a 22-axis extended Kalman filter structure to estimate pose in the NED
reference frame. The state is defined as:

x =

q0
q1
q2
q3

positionN
positionE
positionD

νN
νE
νD

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.

2 Classes

2-112

• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• ΔθbiasX, ΔθbiasY, ΔθbiasZ –– Bias in the integrated gyroscope reading.
• ΔνbiasX, ΔνbiasY, ΔνbiasZ –– Bias in the integrated accelerometer reading.
• geomagneticFieldVectorN, geomagneticFieldVectorE, geomagneticFieldVectorD –– Estimate of the

geomagnetic field vector at the reference location.
• magbiasX, magbiasY, magbiasZ –– Bias in the magnetometer readings.

Given the conventional formation of the predicted state estimate,

xk k− 1 = f (x k− 1 k− 1, uk)

uk is controlled by accelerometer and gyroscope data that has been converted to delta velocity and
delta angle through trapezoidal integration. The predicted state estimation is:

 insfilterMARG

2-113

xk k− 1 =

q0− q1
ΔθX− ΔθbiasX

2 − q2
ΔθY − ΔθbiasY

2 − q3
ΔθZ− ΔθbiasZ

2

q1 + q0
ΔθX− ΔθbiasX

2 − q3
ΔθY − ΔθbiasY

2 + q2
ΔθZ− ΔθbiasZ

2

q2 + q3
ΔθX− ΔθbiasX

2 + q0
ΔθY − ΔθbiasY

2 − q1
ΔθZ− ΔθbiasZ

2

q3− q2
ΔθX− ΔθbiasX

2 + q1
ΔθY − ΔθbiasY

2 + q0
ΔθZ− ΔθbiasZ

2
positionN + Δt νN
positionE + Δt νE
positionD + Δt νD

νN + Δt gN + ΔνX− ΔνbiasX q0
2 + q1

2− q2
2− q3

2 − 2 ΔνY − ΔνbiasY q0q3− q1q2 + 2 ΔνZ− ΔνbiasZ q0q2 + q1q3

νE + Δt gE + ΔνY − ΔνbiasY q0
2− q1

2 + q2
2− q3

2 + 2 ΔνX− ΔνbiasX q0q3 + q1q2 − 2 ΔνZ− ΔνbiasZ q0q1− q2q3

νD + Δt gD + ΔνZ− ΔνbiasZ q0
2− q1

2− q2
2 + q3

2 − 2 ΔνX− ΔνbiasX q0q2− q1q3 + 2 ΔνY − ΔνbiasY q0q1 + q2q3

ΔθbiasX

ΔθbiasY

ΔθbiasZ
ΔνbiasX
ΔνbiasY
ΔνbiasZ

geomagneticFieldVectorN
geomagneticFieldVectorE
geomagneticFieldVectorD

magbiasX
magbiasY
magbiasZ

2 Classes

2-114

where

• ΔθX, ΔθY, ΔθZ –– Integrated gyroscope reading.
• ΔνX, ΔνY, ΔνZ –– Integrated accelerometer readings.
• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterErrorState | insfilterNonholonomic

Topics
“Estimate Position and Orientation of a Ground Vehicle”

Introduced in R2018b

 insfilterMARG

2-115

correct
Correct states using direct state measurements

Syntax
correct(FUSE,idx,measurement,measurementCovariance)

Description
correct(FUSE,idx,measurement,measurementCovariance) corrects the state and state
estimation error covariance based on the measurement and measurement covariance. The
measurement maps directly to the state specified by the indices idx.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,16]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,16].

The state values represent:

State Units Index
Orientation (quaternion parts) 1:4
Gyroscope bias (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.
Data Types: single | double

measurementCovariance — Covariance of measurement
scalar | N-element vector | N-by-N matrix

2 Classes

2-116

Covariance of measurement, specified as a scalar, N-element vector, or N-by-N matrix. N is the
number of elements of the index argument, idx.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b

 correct

2-117

fusegps
Correct states using GPS data

Syntax
[res,resCov] = fusegps(FUSE,position,positionCovariance)
[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = fusegps(FUSE,position,positionCovariance) fuses GPS position data to
correct the state estimate.

[res,resCov] = fusegps(FUSE,position,positionCovariance,velocity,
velocityCovariance) fuses GPS position and velocity data to correct the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

2 Classes

2-118

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and course residual
1-by-4 vector of real values

Position and course residual, returned as a 1-by-6 vector of real values in m and rad/s, respectively.

resCov — Residual covariance
4-by-4 matrix of real values

Residual covariance, returned as a 4-by-4 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b

 fusegps

2-119

residual
Residuals and residual covariances from direct state measurements

Syntax
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance)

Description
[res, resCov]= residual(FUSE,idx,measurement,measurementCovariance) computes the
residual, res, and the residual covariance, resCov, based on the direct state measurement and
measurement covariance. The measurement maps directly to the states specified by indices, idx.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

idx — State vector Index of measurement to correct
N-element vector of increasing integers in the range [1,16]

State vector index of measurement to correct, specified as an N-element vector of increasing integers
in the range [1,16].

The state values represent:

State Units Index
Orientation (quaternion parts) 1:4
Gyroscope bias (XYZ) rad/s 5:7
Position (NED) m 8:10
Velocity (NED) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

measurement — Direct measurement of state
N-element vector

Direct measurement of state, specified as a N-element vector. N is the number of elements of the
index argument, idx.

measurementCovariance — Covariance of measurement
N-by-N matrix

Covariance of measurement, specified as an N-by-N matrix. N is the number of elements of the index
argument, idx.

2 Classes

2-120

Output Arguments
res — Measurement residual
1-by-N vector of real values

Measurement residual, returned as a 1-by-N vector of real values.

resCov — Residual covariance
N-by-N matrix of real values

Residual covariance, returned as a N-by-N matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2020a

 residual

2-121

residualgps
Residuals and residual covariance from GPS measurements

Syntax
[res,resCov] = residualgps(FUSE,position,positionCovariance)
[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance)

Description
[res,resCov] = residualgps(FUSE,position,positionCovariance) computes the
residual, res, and the residual covariance, resCov, based on the GPS position measurement and
covariance.

[res,resCov] = residualgps(FUSE,position,positionCovariance,velocity,
velocityCovariance) computes the residual, res, and the residual covariance, resCov, based on
the GPS position measurement and covariance.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

position — Position of GPS receiver (LLA)
3-element row vector

Position of GPS receiver in geodetic latitude, longitude, and altitude (LLA) specified as a real finite 3-
element row vector. Latitude and longitude are in degrees with north and east being positive. Altitude
is in meters.
Data Types: single | double

positionCovariance — Position measurement covariance of GPS receiver (m2)
3-by-3 matrix

Position measurement covariance of GPS receiver in m2, specified as a 3-by-3 matrix.
Data Types: single | double

velocity — Velocity of GPS receiver in local NED coordinate system (m/s)
3-element row vector

Velocity of the GPS receiver in the local NED coordinate system in m/s, specified as a 3-element row
vector.
Data Types: single | double

velocityCovariance — Velocity measurement covariance of GPS receiver (m/s2)
3-by-3 matrix

2 Classes

2-122

Velocity measurement covariance of the GPS receiver in the local NED coordinate system in m/s2,
specified as a 3-by-3 matrix.
Data Types: single | double

Output Arguments
res — Position and course residual
1-by-3 vector of real values | 1-by-4 vector of real values

Position and course residual, returned as a 1-by-3 vector of real values the inputs only contain
position information, and returned as a 1-by-4 vector of real values if the inputs also contain velocity
information.

resCov — Residual covariance
3-by-3 matrix of real values | 4-by-4 matrix of real values

Residual covariance, returned as a 3-by-3 matrix of real values if the inputs only contain position
information, and a 4-by-4 vector of real values if the inputs also contain velocity information.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterNonholonomic

Introduced in R2020a

 residualgps

2-123

fuserSourceConfiguration
Configuration of source used with track fuser

Description
A fuserSourceConfiguration object contains the configuration information of a source used with
a track fuser. A source of a track fuser is a tracking system (such as a tracker or another track fuser)
that outputs tracks to the track fuser.

Creation

Syntax
config = fuserSourceConfiguration(SourceIndex)
config = fuserSourceConfiguration(SourceIndex,Name,Value)

Description

config = fuserSourceConfiguration(SourceIndex) creates a source configuration object to
use with a track fuser. You must specify SourceIndex as a positive integer. The other properties of
the configuration take default values.

config = fuserSourceConfiguration(SourceIndex,Name,Value) allows you to specify
additional properties using one or more name-value pairs. Enclose each property name in single
quotes.

Properties
SourceIndex — Unique index for source system
positive integer

Unique index for the source system, specified as a positive integer. This property distinguishes
different source systems that output tracks to the fuser.
Example: 2

IsInternalSource — Indicate if the source is internal to the fuser
true (default) | false

Indicate if the source is internal to the fuser, specified as true or false. An internal source is a
source that the fuser directly fuses tracks from even if the tracks are not self reported. For example,
if the fuser is at the vehicle level, a tracking radar installed on this vehicle is considered internal,
while another vehicle that reports fused tracks is considered external.
Data Types: logical

IsInitializingCentralTracks — Indicate if source can initialize central track
true (default) | false

2 Classes

2-124

Indicate if the source can initialize a central track in the fuser, specified as true or false. A central
track is a track maintained in the fuser.
Example: false
Data Types: logical

LocalToCentralTransformFcn — Function to transform track from local to central state
space
@track(track) (default) | function handle

Function to transform a track from local to central state space, specified as a function handle. The
default transform function, @track(track), makes no transformation.
Data Types: function_handle

CentralToLocalTransformFcn — Function to transform track from central to local state
space
@track(track) (default) | function handle

Function to transform a track from central to local state space, specified as a function handle. The
default transform function, @track(track), makes no transformation.
Data Types: function_handle

Examples

Create Fusion Configuration for Source

Create a fusion configuration for a source with SourceIndex equal to 3.

config = fuserSourceConfiguration(3)

config =
 fuserSourceConfiguration with properties:

 SourceIndex: 3
 IsInternalSource: 1
 IsInitializingCentralTracks: 1
 LocalToCentralTransformFcn: @(track)track
 CentralToLocalTransformFcn: @(track)track

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectTrack | trackFuser

Introduced in R2019b

 fuserSourceConfiguration

2-125

ggiwphd
Gamma Gaussian Inverse Wishart (GGIW) PHD filter

Description

The ggiwphd object is a filter that implements the probability hypothesis density (PHD) using a
mixture of Gamma Gaussian Inverse-Wishart components. GGIW implementation of a PHD filter is
typically used to track extended objects. An extended object can produce multiple detections per
sensor, and the GGIW filter uses the random matrix model to account for the spatial distribution of
these detections. The filter consists of three distributions to represent the state of an extended object.

1 Gaussian distribution — represents the kinematic state of the extended object.
2 Gamma distribution — represents the expected number of detections on a sensor from the

extended object.
3 Inverse-Wishart (IW) distribution — represents the spatial extent of the target. In 2-D space, the

extent is represented by a 2-by-2 random positive definite matrix, which corresponds to a 2-D
ellipse description. In 3-D space, the extent is represented by a 3-by-3 random matrix, which
corresponds to a 3-D ellipsoid description. The probability density of these random matrices is
given as an Inverse-Wishart distribution.

For details about ggiwphd, see [1] and [2].

Note ggiwphd object is not compatible with trackerGNN, trackerJPDA, and trackerTOMHT
system objects.

Creation

Syntax
PHD = ggiwphd
PHD = ggiwphd(States,StateCovariances)
phd = ggiwphd(States,StateCovariances,Name,Value)

Description

PHD = ggiwphd creates a ggiwphd filter with default property values.

PHD = ggiwphd(States,StateCovariances) allows you to specify the States and
StateCovariances of the Gaussian distribution for each component in the density. States and
StateCovariances set the properties of the same names.

phd = ggiwphd(States,StateCovariances,Name,Value) also allows you to set properties for
the filter using one or more name-value pairs. Enclose each property name in quotes.

2 Classes

2-126

Properties
States — State of each component in filter
P-by-N matrix

State of each component in the filter, specified as a P-by-N matrix, where P is the dimension of the
state and N is the number of components. Each column of the matrix corresponds to the state of each
component. The default value for States is a 6-by-2 matrix, in which the elements of the first column
are all 0, and the elements of the second column are all 1.
Data Types: single | double

StateCovariances — State estimate error covariance of each component in filter
P-by-P-by-N array

State estimate error covariance of each component in the filter, specified as a P-by-P-by-N array,
where P is the dimension of the state and N is the number of components. Each page (P-by-P matrix)
of the array corresponds to the covariance matrix of each component. The default value for
StateCovariances is a 6-by-6-by-2 array, in which each page (6-by-6 matrix) is an identity matrix.
Data Types: single | double

PositionIndex — Indices of position coordinates in state
[1 3 5] | row vector of positive integers

Indices of position coordinates in the state, specified as a row vector of positive integers. For
example, by default the state is arranged as [x;vx;y;vy;z;vz] and the corresponding position index is
[1 3 5] representing x-, y- and z-position coordinates.
Example: [1 2 3]
Data Types: single | double

StateTransitionFcn — State transition function
@constvel (default) | function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k–1. The function can also include noise values.

• If HasAdditiveProcessNoise is true, specify the function using one of these syntaxes:

x(k) = transitionfcn(x(k-1))

x(k) = transitionfcn(x(k-1),dT)

where x(k) is the state estimate at time k, and dT is the time step.
• If HasAdditiveProcessNoise is false, specify the function using one of these syntaxes:

x(k) = transitionfcn(x(k-1),w(k-1))

x(k) = transitionfcn(x(k-1),w(k-1),dT)

where x(k) is the state estimate at time k, w(k) is the process noise at time k, and dT is the time
step.

Example: @constacc
Data Types: function_handle

 ggiwphd

2-127

StateTransitionJacobianFcn — Jacobian of state transition function
@constveljac (default) | function handle

The Jacobian of the state transition function, specified as a function handle. This function has the
same input arguments as the state transition function.

• If HasAdditiveProcessNoise is true, specify the Jacobian function using one of these
syntaxes:

Jx(k) = statejacobianfcn(x(k))

Jx(k) = statejacobianfcn(x(k),dT)

where x(k) is the state at time k, dT is the time step, and Jx(k) denotes the Jacobian of the state
transition function with respect to the state. The Jacobian is an M-by-M matrix at time k, where M
is the dimension of the state.

• If HasAdditiveProcessNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dT)

where w(k) is a Q-element vector of the process noise at time k. Q is the dimension of the process
noise. Unlike the case of additive process noise, the process noise vector in the nonadditive noise
case need not have the same dimensions as the state vector.

Jw(k) denotes the M-by-Q Jacobian of the predicted state with respect to the process noise
elements, where M is the dimension of the state.

If not specified, the Jacobians are computed by numerical differencing at each call of the predict
function. This computation can increase the processing time and numerical inaccuracy.
Example: @constaccjac
Data Types: function_handle

ProcessNoise — Process noise covariance
eye(3) (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a scalar or a
positive definite real-valued M-by-M matrix. M is the dimension of the state vector. When specified
as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector. You must specify ProcessNoise before any call
to the predict object function.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
false (default)

Option to model processes noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

2 Classes

2-128

Example: true

Shapes — Shape parameter of Gamma distribution for each component
[1 1] (default) | 1-by-N row vector of positive real values

Shape parameter of Gamma distribution for each component, specified as a 1-by-N row vector of
positive real values. N is the number of components in the density.
Example: [1.0 0.95 2]
Data Types: single | double

Rates — Rate parameter of Gamma distribution for each component
[1 1] (default) | 1-by-N row vector of positive real value

Rate parameter of Gamma distribution for each component, specified as a 1-by-N row vector of
positive real values. N is the number of components in the density.
Example: [1.2 0.85 1.5]
Data Types: single | double

GammaForgettingFactors — Forgetting factor of Gamma distribution for each component
[1 1] (default) | 1-by-N row vector of positive real value

Forgetting factor of Gamma distribution for each component, specified as a 1-by-N row vector of
positive real values. N is the number of components in the density. During prediction, for each
component, the Gamma distribution parameters, shape (α) and rate (β), are both divided by
forgetting factor n:

 ggiwphd

2-129

ak + 1 k =
αk
nk

βk + 1 k =
βk
nk

where k and k+1 represent two consecutive time steps. The mean (E) and variance (Var) of a Gamma
distribution are:

2 Classes

2-130

E = α
β

Var = α
β2

Therefore, the division action will keep the expected measurement rate as a constant, but increase
the variance of the Gamma distribution exponentially with time if the forgetting factor n is larger
than 1.
Example: [1.2 1.1 1.4]
Data Types: single | double

DegreesOfFreedom — Degrees of freedom parameter of Inverse-Wishart distribution for
each component
[100 100] (default) | 1-by-N row vector of positive real value

Degrees of freedom parameter of Inverse-Wishart distribution for each component, specified as a 1-
by-N row vector of positive real values. N is the number of components in the density.
Example: [55.2 31.1 20.4]

 ggiwphd

2-131

Data Types: single | double

ScaleMatrices — Scale matrix of Inverse-Wishart distribution for each component
d-by-d-by-N array of positive real value

Scale matrix of Inverse-Wishart distribution for each component, specified as a d-by-d-by-N array of
positive real values. d is the dimension of the space (for example, d = 2 for 2-D space), and N is the
number of components in the density. The default value for ScaleMatrices is a 3-by-3-by-2 array,
where each page (3-by-3 matrix) of the array is 100*eye(3).
Example: 20*eye(3,3,4)
Data Types: single | double

ExtentRotationFcn — Rotation transition function of target's extent
@(x,varargin)eye(3) (default) | function handle

Rotation transition function of target's extent, specified as a function handle. The function allows
predicting the rotation of the target's extent when the object's angular velocity is estimated in the
state vector. To define your own extent rotation function, follow the syntax given by

R = myRotationFcn(x,dT)

where x is the component state, dT is the time step, and R is the corresponding rotation matrix. Note
that R is returned as a 2-by-2 matrix if the extent is 2-D, and a 3-by-3 matrix if the extent is 3-D. The
extent at the next step is given by

Ex(t + dT) = R × Ex(t) × RT
where Ex(t) is the extent at time t.
Example: @myRotationFcn
Data Types: function_handle

TemporalDecay — Temporal decay factor of IW distribution
100 (default) | positive scalar

Temporal decay factor of IW distribution, specified as a positive scalar. You can use this property to
control the extent uncertainty (variance of IW distribution) during prediction. The smaller the
TemporalDecay value is, the faster the variance of IW distribution increases.
Example: 120
Data Types: single | double

Labels — Label of each component in mixture
[0 0] (default) | 1-by-N row vector of nonnegative integer

Label of each component in the mixture, specified as a 1-by-N row vector of nonnegative integers. N
is the number of components in the density. Each component can only have one label, but multiple
components can share the same label.
Example: [1 2 3]
Data Types: single | double

2 Classes

2-132

Weights — Weight of each component in mixture
[1 1] (default) | 1-by-N row vector of positive real value

Weight of each component in the density, specified as a 1-by-N row vector of positive real values. N is
the number of components in the density. The weights are given in the sequence as shown in the
labels property.
Example: [1.1 0.82 1.1]
Data Types: single | double

Detections — Detections
K-element cell array of objectDetection objects

Detections, specified as a K-element cell array of objectDetection objects, where K is the number
of detections. You can create detections directly, or you can obtain detections from the outputs of
sensor objects, such as radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Data Types: single | double

MeasurementFcn — Measurement model function
@cvmeas (default) | function handle

Measurement model function, specified as a function handle. This function specifies the transition
from state to measurement. Input to the function is the P-element state vector. The output is the M-
element measurement vector. The function can take additional input arguments, such as sensor
position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

where x(k) is the state at time k and z(k) is the corresponding measurement . The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

where x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
@cvmeasjac (default) | function handle

Jacobian of the measurement function, specified as a function handle. The function has the same
input arguments as the measurement function. The function can take additional input parameters,
such as sensor position and orientation.

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using one of these
syntaxes:

 ggiwphd

2-133

Jmx(k) = measjacobianfcn(x(k))

Jmx(k) = measjacobianfcn(x(k),parameters)

where x(k) is the state at time k. Jmx(k) denotes the M-by-P Jacobian of the measurement
function with respect to the state. M is the dimension of the measurement, and P is the dimension
of the state. The parameters argument stands for all arguments required by the measurement
function.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k))

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k),parameters)

where x(k) is the state at time k and v(k) is an R-dimensional sample noise vector. Jmx(k)
denotes the M-by-P Jacobian matrix of the measurement function with respect to the state.
Jmv(k) denotes the Jacobian of the M-by-R measurement function with respect to the
measurement noise. The parameters argument stands for all arguments required by the
measurement function.

If not specified, measurement Jacobians are computed using numerical differencing at each call to
the correct function. This computation can increase processing time and numerical inaccuracy.
Example: @cameasjac
Data Types: function_handle

HasAdditiveMeasurementNoise — Model additive measurement noise
false (default)

Option to model measurement noise as additive, specified as true or false. When this property is
true, measurement noise is added to the state vector. Otherwise, noise is incorporated into the
measurement function.
Example: true

MaxNumDetections — Maximum number of detections
100 (default) | positive integer

Maximum number of detections the ggiwphd filter can take as input, specified as a positive integer.
Example: 50
Data Types: single | double

MaxNumComponents — Maximum number of components
1000 (default) | positive integer

Maximum number of components the ggiwphd filter can maintain, specified as a positive integer.
Data Types: single | double

Object Functions
append Append two phd filter objects
correct Correct phd filter with detections
correctUndetected Correct phd filter with no detection hypothesis

2 Classes

2-134

extractState Extract target state estimates from the phd filter
labeledDensity Keep components with a given label ID
likelihood Log-likelihood of association between detection cells and components in the

density
merge Merge components in the density of phd filter
predict Predict probability hypothesis density of phd filter
prune Prune the filter by removing selected components
scale Scale weights of components in the density
clone Create duplicate phd filter object

Examples

Create ggiwphd Filter with Two 3-D Components

Creating a ggiwphd filter with two 3-D constant velocity components. The initial states of the two
components are [0;0;0;0;0;0] and [1;0;1;0;1;0], respectively. Both these components have position
covariance equal to 1 and velocity covariance equal to 100. By default, ggiwphd creates a 3-D extent
matrix for each component.

states = [zeros(6,1),[1;0;1;0;1;0]];
cov1 = diag([1 100 1 100 1 100]);
covariances = cat(3,cov1,cov1);

phd = ggiwphd(states,covariances,'StateTransitionFcn',@constvel,...
 'StateTransitionJacobianFcn',@constveljac,...
 'MeasurementFcn',@cvmeas,'MeasurementJacobianFcn',@cvmeasjac,...
 'ProcessNoise',eye(3),'HasAdditiveProcessNoise',false,...
 'PositionIndex',[1;3;5]);

Specify information about extent.

dofs = [21 30];
scaleMatrix1 = 13*diag([4.7 1.8 1.4].^2);
scaleMatrix2 = 22*diag([1.8 4.7 1.4].^2);
scaleMatrices = cat(3,scaleMatrix1,scaleMatrix2);
phd.DegreesOfFreedom = dofs;
phd.ScaleMatrices = scaleMatrices;
phd.ExtentRotationFcn = @(x,dT)eye(3); % No rotation during prediction

Predict the filter 0.1 second ahead.

predict(phd,0.1);

Specify detections at 0.1 second. The filter receives 10 detections at the current scan.

detections = cell(10,1);
rng(2018); % Reproducible results
for i = 1:10
 detections{i} = objectDetection(0.1,randi([0 1]) + randn(3,1));
end
phd.Detections = detections;

Select two detection cells and calculate their likelihoods.

detectionIDs = false(10,2);
detectionIDs([1 3 5 7 9],1) = true;

 ggiwphd

2-135

detectionIDs([2 4 6 8 10],2) = true;
lhood = likelihood(phd,detectionIDs)

lhood = 2×2

 1.5575 -0.3183
 0.1513 -0.7616

Correct the filter with the two detection cells and associated likelihoods.

correct(phd,detectionIDs, exp(lhood)./sum(exp(lhood),1));
phd

phd =
 ggiwphd with properties:

 States: [6x4 double]
 StateCovariances: [6x6x4 double]
 PositionIndex: [3x1 double]
 StateTransitionFcn: @constvel
 StateTransitionJacobianFcn: @constveljac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

 Shapes: [6 6 6 6]
 Rates: [2 2 2 2]
 GammaForgettingFactors: [1 1 1 1]

 DegreesOfFreedom: [25.9870 34.9780 25.9870 34.9780]
 ScaleMatrices: [3x3x4 double]
 ExtentRotationFcn: @(x,dT)eye(3)
 TemporalDecay: 100

 Weights: [0.8032 0.1968 0.6090 0.3910]
 Labels: [0 0 0 0]

 Detections: {1x10 cell}
 MeasurementFcn: @cvmeas
 MeasurementJacobianFcn: @cvmeasjac
 HasAdditiveMeasurementNoise: 1

Merge components in the filter.

merge(phd,5);
phd

phd =
 ggiwphd with properties:

 States: [6x2 double]
 StateCovariances: [6x6x2 double]
 PositionIndex: [3x1 double]
 StateTransitionFcn: @constvel
 StateTransitionJacobianFcn: @constveljac
 ProcessNoise: [3x3 double]
 HasAdditiveProcessNoise: 0

2 Classes

2-136

 Shapes: [6 6.0000]
 Rates: [2 2]
 GammaForgettingFactors: [1 1]

 DegreesOfFreedom: [25.9870 34.9780]
 ScaleMatrices: [3x3x2 double]
 ExtentRotationFcn: @(x,dT)eye(3)
 TemporalDecay: 100

 Weights: [1.4122 0.5878]
 Labels: [0 0]

 Detections: {1x10 cell}
 MeasurementFcn: @cvmeas
 MeasurementJacobianFcn: @cvmeasjac
 HasAdditiveMeasurementNoise: 1

Extract state estimates and detections.

targetStates = extractState(phd,0.5);
tStates = targetStates.State

tStates = 6×1

 0.1947
 0.9733
 0.8319
 4.1599
 -0.0124
 -0.0621

d = [detections{:}];
measurements = [d.Measurement];

Visualize the results.

figure()
plot3(measurements(1,:),measurements(2,:),measurements(3,:),'x','MarkerSize',10,'MarkerEdgeColor','b');
hold on;
plot3(tStates(1,:),tStates(3,:),tStates(5,:),'ro');
xlabel('x')
ylabel('y')
zlabel('z')
legend('Detections','Components')

 ggiwphd

2-137

References
[1] Granstorm, K., and O. Orguner." A PHD filter for tracking multiple extended targets using random

matrices." IEEE Transactions on Signal Processing. Vol. 60, Number 11, 2012, pp. 5657-5671.

[2] Granstorm, K., and A. Natale, P. Braca, G. Ludeno, and F. Serafino."Gamma Gaussian inverse
Wishart probability hypothesis density for extended target tracking using X-band marine
radar data." IEEE Transactions on Geoscience and Remote Sensing. Vol. 53, Number 12,
2015, pp. 6617-6631.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The code generation configuration must allow recursion to use merge method.

See Also
gmphd | partitionDetections | trackerPHD | trackingSensorConfiguration

2 Classes

2-138

Introduced in R2019a

 ggiwphd

2-139

append
Append two phd filter objects

Syntax
append(phd1,phd2)

Description
append(phd1,phd2) appends the components in phd2 to the components in phd1. The total
number of components in the appended filter must not exceed the value specified by the
MaxNumComponents property of phd1.

Input Arguments
phd1 — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

phd2 — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

2 Classes

2-140

clone
Create duplicate phd filter object

Syntax
phd2 = clone(phd1)

Description
phd2 = clone(phd1) creates a duplicate phd filter, phd2, from a phd filter, phd1.

Input Arguments
phd1 — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

Output Arguments
phd2 — phd filter
ggiwphd filter object | gmphd filter object

phd filter, returned as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

 clone

2-141

correct
Correct phd filter with detections

Syntax
correct(phd,detectionIndices,likelihood)

Description
correct(phd,detectionIndices,likelihood) corrects phd filter object using detections
specified by detectionIndices and corresponding detection likelihoods, likelihood.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

detectionIndices — Indices of detection cells
M-by-P logical matrix

Indices of detection cells, specified as an M-by-P logical matrix. M is the number of detections, and P
is the number of detection cells. In each column, if the value of the ith element is 1, then the ith
detection belongs to the detection cell specified by this column. On the contrary, if the value of the ith
element is 0, then the ith detection does not belong to the detection cell specified by this column.
Example: [1 0 0; 0 1 1; 1 1 0]
Data Types: logical

likelihood — Likelihood of association between detection cells and components
N-by-P real-valued matrix

Likelihood of association between detection cells and components in the density, specified as an N-by-
P real-valued matrix. N is the number of components in the density of PHD filter, and P is the number
of detection cells specified by detectionIndices. The (i,j) element of likelihood matrix
represents the likelihood of association between component i and detection cell j. The weight of a
component after correction is equal to its original weight multiplied by its likelihood.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

2 Classes

2-142

Introduced in R2019a

 correct

2-143

correctUndetected
Correct phd filter with no detection hypothesis

Syntax
correctUndetect(phd,Pd)
correctUndetect(phd,Pd,PzeroDets)

Description
correctUndetect(phd,Pd) corrects the phd filter, phd, with the sensor detection probability, Pd.
If used with ggiwphd, the function calculates the probability of generating zero detections using the
current Gamma distribution of the filter. If used with gmphd, the probability of generating zero
detections is assumed to be zero.

correctUndetect(phd,Pd,PzeroDets) allows you to specify the conditional probability for
generating zero detections using PzeroDets.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

Pd — Sensor's detection probability for each component
1-by-N real-valued row vector

Sensor's detection probability for each component in the density of the PHD filter, specified as a 1-by-
N real-valued row vector, where N is the number of components.
Example: [0.5 0.6 0.55]
Data Types: single | double

PzeroDets — Probability of generating zero detection for each component
1-by-N real-valued row vector

Probability of generating zero detection for each component in the density of the PHD filter, specified
as a 1-by-N real-valued row vector, where N is the number of components.
Example: [0.1 0.2 0.15]
Data Types: single | double

2 Classes

2-144

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

 correctUndetected

2-145

extractState
Extract target state estimates from the phd filter

Syntax
[States,Indices] = extractState(phd,threshold)

Description
[States,Indices] = extractState(phd,threshold) returns all sates of components,
States, whose weights are above the threshold given by threshold, and their corresponding
indices, Indices, in the phd filter, phd.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

threshold — Extraction threshold
real positive scalar

Extraction threshold of component weight, specified as a real positive scalar.
Example: 0.2
Data Types: single | double

Output Arguments
States — Extracted states
structure | 1-by-N array of structure

Extracted states, returned as a structure or a 1-by-N array of structure, where N is the number of
extracted states. Given the type of the phd filter, each structure contains:

• ggiwphd:

Field Description
State State estimate of the target.
StateCovariance Uncertainty covariance matrix.
Extent Spatial extent estimate of the tracked object,

returned as a d-by-d matrix, where d is the
dimension of the object.

2 Classes

2-146

MeasurementRate Expected number of detections from the
tracked object.

• gmphd:

Field Description
State State estimate of the target.
StateCovariance Uncertainty covariance matrix.

Data Types: struct

Indices — Indices of extracted states
1-by-N vector of nonnegative integers

Indices of extracted states, returned as an 1-by-N vector of nonnegative integers, where N is the
number of extracted states. Each element of the vector is the index of the corresponding extracted
state in States.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

 extractState

2-147

labeledDensity
Keep components with a given label ID

Syntax
labeledDensity(phd,labelID)

Description
labeledDensity(phd,labelID) keeps components with the specified labelID and removes all
other components in the density.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

labelID — label ID of reserved components
nonnegative integer

label ID of the components to be kept, specified as a nonnegative integer.
Example: 1
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

2 Classes

2-148

likelihood
Log-likelihood of association between detection cells and components in the density

Syntax
lhood = likelihood(phd,detectionIndices)

Description
lhood = likelihood(phd,detectionIndices) returns the log-likelihood of association between
detection cells specified by detectionIndices, and components in the phd filter, phd.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

detectionIndices — Indices of detection cells
M-by-P logical matrix

Indices of detection cells, specified as an M-by-P logical matrix. M is the number of detections, and P
is the number of detection cells. In each column, if the value of the ith element is 1, then the ith
detection belongs to the detection cell specified by this column. On the contrary, if the value of the ith
element is 0, then the ith detection does not belong to the detection cell specified by this column.
Example: [1 0 0; 0 1 1; 1 1 0]
Data Types: logical

Output Arguments
lhood — log-likelihood of association between detection cells and components
N-by-P real-valued matrix

Log-likelihood of association between detection cells and components in the density, specified as an
N-by-P real-valued matrix. N is the number of components in the density of PHD filter, and P is the
number of detection cells specified by detectionIndices. The (i,j) element of lhood matrix
represents the log-likelihood of association between component i and detection cell j.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 likelihood

2-149

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

2 Classes

2-150

merge
Merge components in the density of phd filter

Syntax
merge(phd,mergingThreshold)

Description
merge(phd,mergingThreshold) merges components whose Kullback-Leibler difference is below
the threshold, mergingThreshold.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

mergingThreshold — Threshold for components merging
real positive scalar

Threshold for components merging, specified as a real positive scalar. If the Kullback-Leibler
difference between two components is smaller than the value specified by the mergingThreshold
argument, then these two components will be merged into one component. The merged weight of the
new component is equal to the summation of the weights of the two pre-merged components.
Example: 30
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

 merge

2-151

predict
Predict probability hypothesis density of phd filter

Syntax
predict(phd,dt)

Description
predict(phd,dt) predicts the density of the phd filter object, phd, forward by time step, dt.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

dt — time step of prediction
real positive scalar

Time step of prediction, specified as a real positive scalar.
Example: 0.1
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

2 Classes

2-152

prune
Prune the filter by removing selected components

Syntax
prune(phd,pruneIndices)

Description
prune(phd,pruneIndices) removes components in phd filter object, phd, specified by
pruneIndices.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

pruneIndices — Indices of components to be pruned
1-by-N logical vector

Indices of components to be pruned, specified as an 1-by-N logical vector, where N is the number of
components in the density. If the ith element of the vector is 1 instead of 0, then the ith component
will be removed from the density.
Example: [0 1 0 1 0 0]
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

 prune

2-153

scale
Scale weights of components in the density

Syntax
scale(phd,ScaleFactor)

Description
scale(phd,ScaleFactor) scales the weights of components in the density of the phd filter, phd, by
factor, ScaleFactor.

Input Arguments
phd — phd filter
ggiwphd filter object | gmphd filter object

phd filter, specified as a ggiwphd filter object or a gmphd filter object.
Example: phd
Data Types: object

ScaleFactor — Scale factor
positive scalar | 1-by-N vector of positive scalars

Scale factor of components in the density, specified as a positive scalar, or an 1-by-N vector of positive
scalars, where N is the number of components in the density. If the scale factor is specified as a
scalar, then the weight of each component is multiplied by this scalar. If the scale factor is specified
as a vector, then the weight of each component is multiplied by the corresponding element in the
vector.
Example: [0.9 1.1 0.8]
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ggiwphd | gmphd | trackerPHD

Introduced in R2019a

2 Classes

2-154

gmphd
Gaussian mixture (GM) PHD filter

Description
The gmphd object is a filter that implements the probability hypothesis density (PHD) using a mixture
of Gaussian components. The filter assumes the target states are Gaussian and represents these
states using a mixture of Gaussian components. You can use a gmphd filter to track extended objects
or point targets. In tracking, a point object returns at most one detention per sensor scan, and an
extended object can return multiple detections per sensor scan.

You can directly create a gmphd filter. You can also initialize a gmphd filter used with trackerPHD by
specifying the FilterInitializationFcn property of trackingSensorConfiguration. You can
use the provided initcvgmphd, initctgmphd, initcagmphd, and initctrectgmphd as
initialization functions. Or, you can create your own initialization functions.

Creation

Syntax
phd = gmphd
phd = gmphd(states,stateCovariances)
phd = gmphd(states,stateCovariances,Name,Value)

Description

phd = gmphd creates a gmphd filter with default property values.

phd = gmphd(states,stateCovariances) allows you to specify the states and corresponding
state covariances of the Gaussian distribution for each component in the density. states and
stateCovariances set the States and StateCovariances properties of the filter.

phd = gmphd(states,stateCovariances,Name,Value) also allows you to specify properties for
the filter using one or more name-value pairs. Enclose each property name in quotes.

Properties
States — State of each component in filter
P-by-N matrix

State of each component in the filter, specified as a P-by-N matrix, where P is the dimension of the
state and N is the number of components. Each column of the matrix corresponds to the state of one
component. The default value for States is a 6-by-2 matrix, in which the elements of the first column
are all 0, and the elements of the second column are all 1.
Data Types: single | double

 gmphd

2-155

StateCovariances — State estimate error covariance of each component in filter
P-by-P-by-N array

State estimate error covariance of each component in the filter, specified as a P-by-P-by-N array,
where P is the dimension of the state and N is the number of components. Each page (P-by-P matrix)
of the array corresponds to the covariance matrix of each component. The default value for
StateCovariances is a 6-by-6-by-2 array, in which each page (6-by-6 matrix) is an identity matrix.
Data Types: single | double

StateTransitionFcn — State transition function
@constvel (default) | function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k–1. The function can also include noise values.

• If HasAdditiveProcessNoise is true, specify the function using one of these syntaxes:

x(k) = transitionfcn(x(k-1))

x(k) = transitionfcn(x(k-1),dT)

where x(k) is the state estimate at time k, and dT is the time step.
• If HasAdditiveProcessNoise is false, specify the function using one of these syntaxes:

x(k) = transitionfcn(x(k-1),w(k-1))

x(k) = transitionfcn(x(k-1),w(k-1),dT)

where x(k) is the state estimate at time k, w(k) is the process noise at time k, and dT is the time
step.

Example: @constacc
Data Types: function_handle

StateTransitionJacobianFcn — Jacobian of state transition function
@constveljac (default) | function handle

Jacobian of the state transition function, specified as a function handle. This function has the same
input arguments as the state transition function.

• If HasAdditiveProcessNoise is true, specify the Jacobian function using one of these
syntaxes:

Jx(k) = statejacobianfcn(x(k))

Jx(k) = statejacobianfcn(x(k),dT)

where x(k) is the state at time k, dT is the time step, and Jx(k) denotes the Jacobian of the state
transition function with respect to the state. The Jacobian is a P-by-P matrix at time k, where P is
the dimension of the state.

• If HasAdditiveProcessNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dT)

2 Classes

2-156

where w(k) is a Q-element vector of the process noise at time k. Unlike the case of additive
process noise, the process noise vector in the non-additive noise case doesn't need to have the
same dimensions as the state vector.

Jw(k) denotes the P-by-Q Jacobian of the predicted state with respect to the process noise
elements, where P is the dimension of the state.

If not specified, the Jacobians are computed by numerical differencing at each call of the predict
function. This computation can increase the processing time and numerical inaccuracy.
Example: @constaccjac
Data Types: function_handle

ProcessNoise — Process noise covariance
eye(3) (default) | positive real-valued scalar | positive definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a real-valued
scalar or a positive definite P-by-P matrix. P is the dimension of the state vector. When specified as
a scalar, the matrix is a multiple of the P-by-P identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector. You must specify ProcessNoise before any call
to the predict object function.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
false (default) | true

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.
Example: true

HasExtent — Indicate if components have extent
false (default) | true

Indicate if components have extent, specified as true or false. Set this property to true if the filter
is intended to track extended objects. An extended object can generate more than one measurement
per sensor scan. Set this property to false if the filter is only intended to track point targets.
Example: true

MeasurementOrigin — Origination of measurements from extended objects
'center' (default) | 'extent'

Origination of measurements from extended objects, specified as:

• 'center' — The filter assumes the measurements originate from the mean state of a target. This
approach is applicable when the state does not model the extent of the target even though the
target may generate more than one measurement.

• 'extent' — The filter assumes measurements are not centered at the mean state of a target. For
computational efficiency, the expected measurement is often calculated as a function of the
reported measurements specified by the measurement model function.

 gmphd

2-157

Note that the function setups of MeasurementFcn and MeasurementJacobianFcn are different for
'center' and 'extent' options. See the descriptions of MeasurementFcn and
MeasurementJacobianFcn for more details.
Dependencies

To enable this property, set the HasExtent property to 'true'.
Data Types: double

Labels — Label of each component in mixture
[0 0] (default) | 1-by-N row vector of nonnegative integer

Label of each component in the mixture, specified as a 1-by-N row vector of nonnegative integers. N
is the number of components in the mixture. Each component can only have one label, but multiple
components can share the same label.
Example: [1 2 3]
Data Types: single | double

Weights — Weight of each component in mixture
[1 1] (default) | 1-by-N row vector of positive real value

Weight of each component in the mixture, specified as a 1-by-N row vector of positive real values. N
is the number of components in the mixture. The weight of each component is given in the same
order as the Labels property.
Example: [1.1 0.82 1.1]
Data Types: single | double

Detections — Detections
D-element cell array of objectDetection objects

Detections, specified as a D-element cell array of objectDetection objects. You can create
detections directly, or you can obtain detections from the outputs of sensor objects, such as
radarSensor, monostaticRadarSensor, irSensor, and sonarSensor.
Data Types: single | double

MeasurementFcn — Measurement model function
@cvmeas (default) | function handle

Measurement model function, specified as a function handle. This function specifies the transition
from state to measurement. Depending on the HasExtent and MeasurementOrigin properties, the
measurement model function needs to be specified differently:

1 HasExtent is false, or HasExtent is true and MeasurementOrigin is 'center'. In these
two cases,

• If HasAdditiveMeasurementNoise is true, specify the function using one of these
syntaxes:

z = measurementfcn(x)

z = measurementfcn(x,parameters)

where the P-by-N matrix x is the estimated Gaussian states at time k and x(:,i) represents
the ith state component in the mixture. The M-by-N matrix z is the corresponding

2 Classes

2-158

measurement, and z(:,i) represents the measurement resulting from the ith component.
Parameters are MeasurementParameters provided in the objectDetections set in the
Detections property.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these
syntaxes:

z = measurementfcn(x,v)

z = measurementfcn(x,v,parameters)

where v is an R-dimensional measurement noise vector.
2 HasExtent is true and MeasurementOrigin is 'extent'. In this case, the expected

measurements originate from the extent of the target and rely on the actual distribution of the
detections:

• If HasAdditiveMeasurementNoise is true, specify the function using:

z = measurementfcn(x,detections)

where the P-by-N matrix x is the estimated Gaussian states at time k and x(:,i) represents
the ith state component in the mixture. detections is a cell array of objectDetection
objects, and z is the expected measurement. Note that z(:,i,j) must return the expected
measurement based on the ith state component and the jth objectDetection in
detections.

• If HasAdditiveMeasurementNoise is false, specify the function using:

z = measurementfcn(x,v,detections)

where v is an R-dimensional measurement noise vector.

HasExtent MeasurementOri
gin

Measurement Function Note

false NA HasAdditiveMeasure
mentNoise

Syntaxes

true z =
measurementfcn(x)

z = measurementfcn
(x,para)

false z =
measurementfcn(x,v
)

z = measurementfcn
(x,v,para)

x(:,i)
represents
the ith
state
component
in the
mixture.
z(:,i)
represents
the
measurem
ent
resulting
from the
ith
component
.

true 'center'

 gmphd

2-159

true 'extent' HasAdditiveMeasure
mentNoise

Syntaxes

true z =
measurementfcn(x,d
etections)

false z =
measurementfcn(x,v
,detections)

x(:,i)
represents
the ith
state
component
in the
mixture.
z(:,i,j)
must
return the
expected
measurem
ent based
on the ith
state
component
and the
jth
objectDe
tection
in
detectio
ns.

Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
@cvmeasjac (default) | function handle

Jacobian of the measurement function, specified as a function handle. Depending on the HasExtent
and MeasurementOrigin properties, the measurement Jacobian function needs to be specified
differently:

1 HasExtent is false, or HasExtent is true and MeasurementOrigin is 'center'. In these
two cases:

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using one of these
syntaxes:

Jmx = measjacobianfcn(x)

Jmx = measjacobianfcn(x,parameters)

where the P-element vector x is one state component at time k and Jmx is the M-by-P
Jacobian of the measurement function with respect to the state. M is the dimension of the
measurement. Parameters are MeasurementParameters provided in the
objectDetections set in the Detections property.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using one of
these syntaxes:

[Jmx,Jmv] = measjacobianfcn(x,v)

[Jmx,Jmv] = measjacobianfcn(x,v,parameters)

2 Classes

2-160

where v is an R-dimensional measurement noise vector, and Jmv is the M-by-R Jacobian of the
measurement function with respect to the measurement noise.

2 HasExtent is true and MeasurementOrigin is 'extent'. In this case, the expected
measurements originate from the extent of the target and rely on the actual distribution of the
detections. The measurement Jacobian function must support one of these two syntaxes:

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using:

Jmx = measjacobianfcn(x,detections)

where x is one state estimate component at time k. detections is a set of detections
defined as a cell array of objectDetection objects. Jmx denotes the M-by-P-by-D Jacobian
of the measurement function with respect to the state. M is the dimension of the
measurement, P is the dimension of the state, and D is the number of objectDetection
objects in detections.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using:

[Jmx,Jmv] = measjacobianfcn(x,v,detections)

where v is an R-dimensional measurement noise vector, and Jmv is the M-by-R-by-D Jacobian
of the measurement function with respect to the measurement noise.

Note that Jmx(:,:,j) must define the state Jacobian corresponding to the jth
objectDetection in detections. Jmv(:,:,j) defines the measurement noise Jacobian
corresponding to the jth objectDetection in detections.

HasExtent MeasurementOri
gin

Measurement Jacobian Function Note

false NA HasAdditiveMeasure
mentNoise

Syntaxes

true Jmx =
measjacobianfcn(x)

Jmx =
measjacobianfcn(x,
para)

false [Jmx,Jmv] =
measjacobianfcn(x,
v)

[Jmx,Jmv] =
measjacobianfcn(x,
v,para)

x is only
one
Gaussian
component
in the
mixture.

true 'center'

 gmphd

2-161

true 'extent' HasAdditiveMeasure
mentNoise

Syntaxes

true z =
measurementfcn(x,d
etections)

false z =
measurementfcn(x,v
,detections)

Jmx(:,:,
j) defines
the state
Jacobian
correspon
ding to the
jth
objectDe
tection
in
detectio
ns.
Jmv(:,:,
j) defines
the
measurem
ent noise
Jacobian
correspon
ding to the
jth
objectDe
tection
in
detectio
ns.

Data Types: function_handle

HasAdditiveMeasurementNoise — Model additive measurement noise
false (default) | true

Option to model measurement noise as additive, specified as true or false. When this property is
true, measurement noise is added to the state vector. Otherwise, noise is incorporated into the
measurement function.
Example: true

MaxNumDetections — Maximum number of detections
1000 (default) | positive integer

Maximum number of detections the gmphd filter can take as input, specified as a positive integer.
Example: 50
Data Types: single | double

MaxNumComponents — Maximum number of components
1000 (default) | positive integer

Maximum number of components the gmphd filter can maintain, specified as a positive integer.
Data Types: single | double

2 Classes

2-162

Object Functions
predict Predict probability hypothesis density of phd filter
correctUndetected Correct phd filter with no detection hypothesis
correct Correct phd filter with detections
likelihood Log-likelihood of association between detection cells and components in the

density
append Append two phd filter objects
merge Merge components in the density of phd filter
scale Scale weights of components in the density
prune Prune the filter by removing selected components
labeledDensity Keep components with a given label ID
extractState Extract target state estimates from the phd filter
clone Create duplicate phd filter object

Examples

Run gmphd Filter for Point Objects

Create a filter with two 3-D constant velocity components. The initial state of one component is
[0;0;0;0;0;0]. The initial state of the other component is [1;0;1;0;1;0]. Each component is initialized
with position covariance equal to 1 and velocity covariance equal to 100.

states = [zeros(6,1) [1;0;1;0;1;0]];
cov1 = diag([1 100 1 100 1 100]);
covariances = cat(3,cov1,cov1);
phd = gmphd(states, covariances, 'StateTransitionFcn', @constvel,...
 'StateTransitionJacobianFcn',@constveljac,...
 'MeasurementFcn',@cvmeas,...
 'MeasurementJacobianFcn',@cvmeasjac,...
 'ProcessNoise', eye(3),...
 'HasAdditiveProcessNoise',false);

Predict the filter 0.1 time step ahead.

predict(phd,0.1);

Define three detections using ojbectDetection.

rng(2019);
detections = cell(3,1);
detections{1} = objectDetection(0,[1;1;1] + randn(3,1));
detections{2} = objectDetection(0,[0;0;0] + randn(3,1));
detections{3} = objectDetection(0,[4;5;5] + randn(3,1));
phd.Detections = detections;

Calculate the likelihood of each detection. For a point-target filter, the partition of detections is
unnecessary, and each detection occupies a cell. Therefore, detectionIndices is an identity
matrix. The resulting likelihood of detection 1 and 2 is higher than that of detection 3 because they
are closer to the components.

detectionIndices = logical(eye(3));
logLikelihood = likelihood(phd,detectionIndices)

 gmphd

2-163

logLikelihood = 2×3

 -5.2485 -4.7774 -22.8899
 -4.5171 -5.0008 -17.3973

Correct the filter with the scaled likelihood.

lhood = exp(logLikelihood);
lhood = lhood./sum(lhood,2);
correct(phd,detectionIndices,lhood);

Merge the components with a merging threshold equal to 1.

merge(phd,1);

Extract state estimates with an extract threshold equal to 0.5.

minWeight = 0.5;
targetStates = extractState(phd,minWeight);
[ts1,ts2]= targetStates.State;

Visualize the results.

% Extract the measurements.
d = [detections{:}];
measurements = [d.Measurement];
% Plot the measurements and estimates.
figure()
plot3(measurements(1,:),measurements(2,:),measurements(3,:),'x','MarkerSize',10,'MarkerEdgeColor','b');
hold on;
plot3(ts1(1),ts1(3),ts1(5),'ro');
hold on;
plot3(ts2(1),ts2(3),ts2(5),'ro');
xlabel('x')
ylabel('y')
zlabel('z')
hold on;
legend('Detections','Components')

2 Classes

2-164

References
[1] Vo, B. -T, and W. K. Ma. "The Gaussian mixture Probability Hypothesis Density Filter." IEEE

Transactions on Signal Processing, Vol, 54, No, 11, pp. 4091–4104, 2006.

[2] Granstrom, Karl, Christian Lundquist, and Omut Orguner. "Extended target tracking using a
Gaussian-mixture PHD filter." IEEE Transactions on Aerospace and Electronic Systems 48, no.
4 (2012): 3268-3286.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The code generation configuration must allow recursion to use the merge method.

See Also
ggiwphd | initcagmphd | initctgmphd | initctrectgmphd | initcvgmphd |
partitionDetections | trackerPHD | trackingSensorConfiguration

 gmphd

2-165

Introduced in R2019b

2 Classes

2-166

pose
Current orientation and position estimate

Syntax
[orientation, position,velocity] = pose(FUSE)
[orientation, position,velocity] = pose(FUSE,format)

Description
[orientation, position,velocity] = pose(FUSE) returns the current estimate of the pose.

[orientation, position,velocity] = pose(FUSE,format)returns the current estimate of
the pose with orientation in the specified orientation format.

Input Arguments
FUSE — NHConstrainedIMUGPSFuser object
object

Object of NHConstrainedIMUGPSFuser, created by the insfilter function.

format — Output orientation format
'quaternion' (default) | 'rotmat'

Output orientation format, specified as either 'quaternion' for a quaternion or 'rotmat' for a
rotation matrix.
Data Types: char | string

Output Arguments
orientation — Orientation estimate in the local NED coordinate system
quaternion (default) | 3-by-3 rotation matrix

Orientation estimate in the local NED coordinate system, specified as a scalar quaternion or 3-by-3
rotation matrix. The quaternion or rotation matrix represents a frame rotation from the local NED
reference frame to the body reference frame.
Data Types: single | double | quaternion

position — Position estimate in the local NED coordinate system (m)
3-element row vector

Position estimate in the local NED coordinate system in meters, returned as a 3-element row vector.
Data Types: single | double

velocity — Velocity estimate in local NED coordinate system (m/s)
3-element row vector

 pose

2-167

Velocity estimate in the local NED coordinate system in m/s, returned as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
NHConstrainedIMUGPSFuser | insfilter

Introduced in R2018b

2 Classes

2-168

predict
Update states using accelerometer and gyroscope data

Syntax
predict(FUSE,accelReadings,gyroReadings)

Description
predict(FUSE,accelReadings,gyroReadings) fuses accelerometer and gyroscope data to
update the state estimate.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

accelReadings — Accelerometer readings in local sensor body coordinate system (m/s2)
3-element row vector

Accelerometer readings in m/s2, specified as a 3-element row vector.
Data Types: single | double

gyroReadings — Gyroscope readings in local sensor body coordinate system (rad/s)
3-element row vector

Gyroscope readings in rad/s, specified as a 3-element row vector.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b

 predict

2-169

reset
Reset internal states

Syntax
reset(FUSE)

Description
reset(FUSE) resets the State, StateCovariance, and internal integrators to their default values.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b

2 Classes

2-170

stateinfo
Display state vector information

Syntax
stateinfo(FUSE)

Description
stateinfo(FUSE) displays the meaning of each index of the State property and the associated
units.

Input Arguments
FUSE — insfilterNonholonomic object
object

insfilterNonholonomic, specified as an object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilter | insfilterNonholonomic

Introduced in R2018b

 stateinfo

2-171

insfilterNonholonomic
Estimate pose with nonholonomic constraints

Description
The insfilterNonholonomic object implements sensor fusion of inertial measurement unit (IMU)
and GPS data to estimate pose in the NED (or ENU) reference frame. IMU data is derived from
gyroscope and accelerometer data. The filter uses a 16-element state vector to track the orientation
quaternion, velocity, position, and IMU sensor biases. The insfilterNonholonomic object uses an
extended Kalman filter to estimate these quantities.

Creation

Syntax
filter = insfilterNonholonomic
filter = insfilterNonholonomic('ReferenceFrame',RF)
filter = insfilterNonholonomic(___ ,Name,Value)

Description

filter = insfilterNonholonomic creates an insfilterErrorState object with default
property values.

filter = insfilterNonholonomic('ReferenceFrame',RF) allows you to specify the
reference frame, RF, of the filter. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-
Up). The default value is 'NED'.

filter = insfilterNonholonomic(___ ,Name,Value) also allows you set properties of the
created filter using one or more name-value pairs. Enclose each property name in single quotes.

Properties
IMUSampleRate — Sample rate of the IMU (Hz)
100 (default) | positive scalar

Sample rate of the IMU in Hz, specified as a positive scalar.
Data Types: single | double

ReferenceLocation — Reference location (deg, deg, meters)
[0 0 0] (default) | 3-element positive row vector

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location units are [degrees degrees meters].
Data Types: single | double

2 Classes

2-172

DecimationFactor — Decimation factor for kinematic constraint correction
2 (default) | positive integer scalar

Decimation factor for kinematic constraint correction, specified as a positive integer scalar.
Data Types: single | double

GyroscopeNoise — Multiplicative process noise variance from gyroscope (rad/s)2

[4.8e-6 4.8e-6 4.8e-6] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If GyroscopeNoise is specified as a row vector, the elements correspond to the noise in the x, y,
and z axes of the gyroscope, respectively.

• If GyroscopeNoise is specified as a scalar, the single element is applied to the x, y, and z axes of
the gyroscope.

Data Types: single | double

GyroscopeBiasNoise — Multiplicative process noise variance from gyroscope bias (rad/s)2

[4e-14 4e-14 4e-14] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the gyroscope bias in (rad/s)2, specified as a scalar or 3-
element row vector of positive real finite numbers. Gyroscope bias is modeled as a lowpass filtered
white noise process.

• If GyroscopeBiasNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the gyroscope, respectively.

• If GyroscopeBiasNoise is specified as a scalar, the single element is applied to the x, y, and z
axes of the gyroscope.

Data Types: single | double

GyroscopeBiasDecayFactor — Decay factor for gyroscope bias
0.999 (default) | scalar in the range [0,1]

Decay factor for gyroscope bias, specified as a scalar in the range [0,1]. A decay factor of 0 models
gyroscope bias as a white noise process. A decay factor of 1 models the gyroscope bias as a random
walk process.
Data Types: single | double

AccelerometerNoise — Multiplicative process noise variance from accelerometer (m/s2)2

[4.8e-2 4.8e-2 4.8e-2] (default) | scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer in (m/s2)2, specified as a scalar or 3-
element row vector of positive real finite numbers.

• If AccelerometerNoise is specified as a row vector, the elements correspond to the noise in the
x, y, and z axes of the accelerometer, respectively.

• If AccelerometerNoise is specified as a scalar, the single element is applied to each axis.

Data Types: single | double

 insfilterNonholonomic

2-173

AccelerometerBiasNoise — Multiplicative process noise variance from accelerometer bias
(m/s2)2

[4e-14 4e-14 4e-14] (default) | positive scalar | 3-element row vector

Multiplicative process noise variance from the accelerometer bias in (m/s2)2, specified as a scalar or
3-element row vector of positive real numbers. Accelerometer bias is modeled as a lowpass filtered
white noise process.

• If AccelerometerBiasNoise is specified as a row vector, the elements correspond to the noise
in the x, y, and z axes of the accelerometer, respectively.

• If AccelerometerBiasNoise is specified as a scalar, the single element is applied to each axis.

AccelerometerBiasDecayFactor — Decay factor for accelerometer bias
0.9999 (default) | scalar in the range [0,1]

Decay factor for accelerometer bias, specified as a scalar in the range [0,1]. A decay factor of 0
models accelerometer bias as a white noise process. A decay factor of 1 models the accelerometer
bias as a random walk process.
Data Types: single | double

State — State vector of extended Kalman filter
[1;zeros(15,1)] | 16-element column vector

State vector of the extended Kalman filter. The state values represent:

State Units Index
Orientation (quaternion parts) N/A 1:4
Gyroscope Bias (XYZ) rad/s 5:7
Position (NED or ENU) m 8:10
Velocity (NED or ENU) m/s 11:13
Accelerometer Bias (XYZ) m/s2 14:16

Data Types: single | double

StateCovariance — State error covariance for extended Kalman filter
eye(16) (default) | 16-by-16 matrix

State error covariance for the extended Kalman filter, specified as a 16-by-16-element matrix, or real
numbers.
Data Types: single | double

ZeroVelocityConstraintNoise — Velocity constraints noise (m/s)2

1e-2 (default) | nonnegative scalar

Velocity constraints noise in (m/s)2, specified as a nonnegative scalar.
Data Types: single | double

Object Functions
correct Correct states using direct state measurements
residual Residuals and residual covariances from direct state measurements

2 Classes

2-174

fusegps Correct states using GPS data
residualgps Residuals and residual covariance from GPS measurements
pose Current orientation and position estimate
predict Update states using accelerometer and gyroscope data
reset Reset internal states
stateinfo Display state vector information

Examples

Estimate Pose of Ground Vehicle

This example shows how to estimate the pose of a ground vehicle from logged IMU and GPS sensor
measurements and ground truth orientation and position.

Load the logged data of a ground vehicle following a circular trajectory.

load('loggedGroundVehicleCircle.mat','imuFs','localOrigin','initialState','initialStateCovariance','accelData',...
 'gyroData','gpsFs','gpsLLA','Rpos','gpsVel','Rvel','trueOrient','truePos');

Initialize the insfilterNonholonomic object.

filt = insfilterNonholonomic;
filt.IMUSampleRate = imuFs;
filt.ReferenceLocation = localOrigin;
filt.State = initialState;
filt.StateCovariance = initialStateCovariance;

imuSamplesPerGPS = imuFs/gpsFs;

Log data for final metric computation. Use the predict object function to estimate filter state based
on accelerometer and gyroscope data. Then correct the filter state according to GPS data.

numIMUSamples = size(accelData,1);
estOrient = quaternion.ones(numIMUSamples,1);
estPos = zeros(numIMUSamples,3);

gpsIdx = 1;

for idx = 1:numIMUSamples
 predict(filt,accelData(idx,:),gyroData(idx,:)); %Predict filter state

 if (mod(idx,imuSamplesPerGPS) == 0) %Correct filter state
 fusegps(filt,gpsLLA(gpsIdx,:),Rpos,gpsVel(gpsIdx,:),Rvel);
 gpsIdx = gpsIdx + 1;
 end

 [estPos(idx,:),estOrient(idx,:)] = pose(filt); %Log estimated pose
end

Calculate and display RMS errors.

posd = estPos - truePos;
quatd = rad2deg(dist(estOrient,trueOrient));
msep = sqrt(mean(posd.^2));

 insfilterNonholonomic

2-175

fprintf('Position RMS Error\n\tX: %.2f, Y: %.2f, Z: %.2f (meters)\n\n',msep(1),msep(2),msep(3));

Position RMS Error
 X: 0.15, Y: 0.11, Z: 0.01 (meters)

fprintf('Quaternion Distance RMS Error\n\t%.2f (degrees)\n\n',sqrt(mean(quatd.^2)));

Quaternion Distance RMS Error
 0.26 (degrees)

Algorithms
Note: The following algorithm only applies to an NED reference frame.

insfilterNonholonomic uses a 16-axis error state Kalman filter structure to estimate pose in the
NED reference frame. The state is defined as:

x =

q0
q1
q2
q3

gyrobiasX
gyrobiasY
gyrobiasZ
positionN
positionE
positionD

vN
vE
vD

accelbiasX
accelbiasY
accelbiasZ

where

• q0, q1, q2, q3 –– Parts of orientation quaternion. The orientation quaternion represents a frame
rotation from the platform's current orientation to the local NED coordinate system.

• gyrobiasX, gyrobiasY, gyrobiasZ –– Bias in the gyroscope reading.
• positionN, positionE, positionD –– Position of the platform in the local NED coordinate system.
• νN, νE, νD –– Velocity of the platform in the local NED coordinate system.
• accelbiasX, accelbiasY, accelbiasZ –– Bias in the accelerometer reading.

Given the conventional formulation of the state transition function,

xk k− 1 = f (x k− 1 k− 1)

2 Classes

2-176

the predicted state estimate is:

 insfilterNonholonomic

2-177

xk k− 1 =

q0 + Δt ∗ q1(gyrobiasX/2− gyroX/2) + Δt ∗ q2 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q3 ∗ (gyrobiasZ/2− gyroZ/2)
q1− Δt ∗ q0(gyrobiasX/2− gyroX/2) + Δt ∗ q3 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q2 ∗ (gyrobiasZ/2− gyroZ/2)
q2− Δt ∗ q3(gyrobiasX/2− gyroX/2)− Δt ∗ q0 ∗ (gyrobiasY /2− gyroY /2) + Δt ∗ q1 ∗ (gyrobiasZ/2− gyroZ/2)
q3 + Δt ∗ q2(gyrobiasX/2− gyroX/2)− Δt ∗ q1 ∗ (gyrobiasY /2− gyroY /2)− Δt ∗ q0 ∗ (gyrobiasZ/2− gyroZ/2)

−gryobiasX ∗ (Δt ∗ λgyro− 1)
−gryobiasY ∗ (Δt ∗ λgyro− 1)
−gryobiasZ ∗ (Δt ∗ λgyro− 1)

positionN + Δt ∗ vN
positionE + Δt ∗ vE
positionD + Δt ∗ vD

vN + Δt ∗

q0 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ − gN +
q2 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q1 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ −
q3 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ

vE + Δt ∗

q0 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ − gE−
q1 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ +
q2 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ +
q3 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ

vD + Δt ∗

q0 ∗ q1 ∗ accelbiasY − accelY − q2 ∗ accelbiasX − accelX + q0 ∗ accelbiasZ − accelZ − gD +
q1 ∗ q3 ∗ accelbiasX − accelX + q0 ∗ accelbiasY − accelY − q1 ∗ accelbiasZ − accelZ −
q2 ∗ q0 ∗ accelbiasX − accelX − q3 ∗ accelbiasY − accelY + q2 ∗ accelbiasZ − accelZ −
q3 ∗ q1 ∗ accelbiasX − accelX + q2 ∗ accelbiasY − accelY + q3 ∗ accelbiasZ − accelZ

−accelbiasX ∗ (Δt ∗ λaccel− 1)
−accelbiasY ∗ (Δt ∗ λaccel− 1)
−accelbiasZ ∗ (Δt ∗ λaccel− 1)

2 Classes

2-178

where

• Δt –– IMU sample time.
• gN, gE, gD –– Constant gravity vector in the NED frame.
• accelX, accelY, accelZ –– Acceleration vector in the body frame.
• λaccel –– Accelerometer bias decay factor.
• λgyro –– Gyroscope bias decay factor.

References
[1] Munguía, R. "A GPS-Aided Inertial Navigation System in Direct Configuration." Journal of applied

research and technology. Vol. 12, Number 4, 2014, pp. 803 – 814.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
insfilterAsync | insfilterErrorState | insfilterMARG

Topics
“Estimate Position and Orientation of a Ground Vehicle”

Introduced in R2018b

 insfilterNonholonomic

2-179

accelparams class
Accelerometer sensor parameters

Description
The accelparams class creates an accelerometer sensor parameters object. You can use this object
to model an accelerometer when simulating an IMU with imuSensor.

Construction
params = accelparams returns an ideal accelerometer sensor parameters object with default
values.

params = accelparams(Name,Value) configures an accelerometer sensor parameters object
properties using one or more Name-Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any unspecified
properties take default values.

Properties
MeasurementRange — Maximum sensor reading (m/s2)
inf (default) | real positive scalar

Maximum sensor reading in m/s2, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((m/s2)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

ConstantBias — Constant sensor offset bias (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values ranging from 0
to 100. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

2 Classes

2-180

NoiseDensity — Power spectral density of sensor noise (m/s2/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (m/s2/√Hz), specified as a real scalar or 3-element row
vector. This property corresponds to the velocity random walk (VRW). Any scalar input is converted
into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((m/s2)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (m/s2)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature ((m/s2)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Examples

Generate Accelerometer Data from Stationary Inputs

Generate accelerometer data for an imuSensor object from stationary inputs.

Generate an accelerometer parameter object with a maximum sensor reading of 19.6 m/s2 and a
resolution of 0.598 mm/s2 /LSB. The constant offset bias is 0.49 m/s2. The sensor has a power
spectral density of 3920 μm/s2 / Hz. The bias from temperature is 0.294 m/s2 /0C. The scale factor
error from temperature is 0.02%/0C. The sensor axes are skewed by 2%.

 accelparams class

2-181

params = accelparams('MeasurementRange',19.6,'Resolution',0.598e-3,'ConstantBias',0.49,'NoiseDensity',3920e-6,'TemperatureBias',0.294,'TemperatureScaleFactor',0.02,'AxesMisalignment',2);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
accelerometer parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('SampleRate', Fs, 'Accelerometer', params);

Generate accelerometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);

accelData = imu(acc, angvel, orient);

Plot the resultant accelerometer data.

plot(t, accelData)
title('Accelerometer')
xlabel('s')
ylabel('m/s^2')

2 Classes

2-182

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
System Objects
imuSensor

Classes
gyroparams | magparams

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

 accelparams class

2-183

gyroparams class

Gyroscope sensor parameters

Description
The gyroparams class creates a gyroscope sensor parameters object. You can use this object to
model a gyroscope when simulating an IMU with imuSensor.

Construction
params = gyroparams returns an ideal gyroscope sensor parameters object with default values.

params = gyroparams(Name,Value) configures gyroparams object properties using one or more
Name,Value pair arguments. Name is a property name and Value is the corresponding value. Name
must appear inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (rad/s)
Inf (default) | real positive scalar

Maximum sensor reading in rad/s, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements ((rad/s)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (rad/s)/LSB, specified as a real nonnegative scalar
Data Types: single | double

ConstantBias — Constant sensor offset bias (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values ranging from 0
to 100. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

2 Classes

2-184

NoiseDensity — Power spectral density of sensor noise ((rad/s)/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in (rad/s)/√Hz, specified as a real scalar or 3-element row
vector. This property corresponds to the angle random walk (ARW). Any scalar input is converted into
a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor ((rad/s)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (rad/s)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature ((rad/s)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in ((rad/s)/℃), specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row vector with
values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where
each element has the input scalar value.
Data Types: single | double

AccelerationBias — Sensor bias from linear acceleration (rad/s)/(m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from linear acceleration in (rad/s)/(m/s2), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

 gyroparams class

2-185

Examples
Generate Gyroscope Data from Stationary Inputs

Generate gyroscope data for an imuSensor object from stationary inputs.

Generate a gyroscope parameter object with a maximum sensor reading of 4.363 rad/s and a
resolution of 1.332e-4 rad/s /LSB. The constant offset bias is 0.349 rad/s. The sensor has a power

spectral density of 8.727e-4 rad/s/ Hz
. The bias from temperature is 0.349 rad/s/0C

. The bias from

temperature is 0.349 rad/s2 /0C. The scale factor error from temperature is 0.2%/0C. The sensor
axes are skewed by 2%. The sensor bias from linear acceleration is 0.178e-3 (rad/s)/(m/s2)

params = gyroparams('MeasurementRange',4.363,'Resolution',1.332e-04,'ConstantBias',0.349,'NoiseDensity',8.727e-4,'TemperatureBias',0.349,'TemperatureScaleFactor',0.02,'AxesMisalignment',2,'AccelerationBias',0.178e-3);

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
gyroscope parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-gyro','SampleRate', Fs, 'Gyroscope', params);

Generate gyroscope data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);

[~, gyroData] = imu(acc, angvel, orient);

Plot the resultant gyroscope data.

plot(t, gyroData)
title('Gyroscope')
xlabel('s')
ylabel('rad/s')

2 Classes

2-186

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
accelparams | magparams

System Objects
imuSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

 gyroparams class

2-187

magparams class

Magnetometer sensor parameters

Description
The magparams class creates a magnetometer sensor parameters object. You can use this object to
model a magnetometer when simulating an IMU with imuSensor.

Construction
params = magarams returns an ideal magnetometer sensor parameters object with default values.

params = magparams(Name,Value) configures magparams object properties using one or more
Name,Value pair arguments. Name is a property name and Value is the corresponding value. Name
must appear inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Properties
MeasurementRange — Maximum sensor reading (μT)
Inf (default) | real positive scalar

Maximum sensor reading in μT, specified as a real positive scalar.
Data Types: single | double

Resolution — Resolution of sensor measurements (μT/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in μT/LSB, specified as a real nonnegative scalar
Data Types: single | double

ConstantBias — Constant sensor offset bias (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

AxesMisalignment — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in %, specified as a real scalar or 3-element row vector with values ranging from 0
to 100. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

2 Classes

2-188

NoiseDensity — Power spectral density of sensor noise (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in μT/√Hz, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

BiasInstability — Instability of the bias offset (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

RandomWalk — Integrated white noise of sensor (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (μT/√Hz), specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

TemperatureBias — Sensor bias from temperature (μT/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (μT/℃), specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

TemperatureScaleFactor — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in (%/℃), specified as a real scalar or 3-element row vector with
values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where
each element has the input scalar value.
Data Types: single | double

Examples
Generate Magnetometer Data from Stationary Inputs

Generate magnetometer data for an imuSensor object from stationary inputs.

Generate a magnetometer parameter object with a maximum sensor reading of 1200 μT and a
resolution of 0.1 μT/LSB. The constant offset bias is 1 μT. The sensor has a power spectral density of

0 . 6 0 . 6 0 . 9
100 μT/ Hz. The bias from temperature is [0.8 0.8 2.4] μT/0C. The scale factor error from

temperature is 0.1 %/0C.

params = magparams('MeasurementRange',1200,'Resolution',0.1,'ConstantBias',1,'NoiseDensity',[0.6 0.6 0.9]/sqrt(100),'TemperatureBias',[0.8 0.8 2.4],'TemperatureScaleFactor',0.1);

 magparams class

2-189

Use a sample rate of 100 Hz spaced out over 1000 samples. Create the imuSensor object using the
magnetometer parameter object.

Fs = 100;
numSamples = 1000;
t = 0:1/Fs:(numSamples-1)/Fs;

imu = imuSensor('accel-mag','SampleRate', Fs, 'Magnetometer', params);

Generate magnetometer data from the imuSensor object.

orient = quaternion.ones(numSamples, 1);
acc = zeros(numSamples, 3);
angvel = zeros(numSamples, 3);

[~, magData] = imu(acc, angvel, orient);

Plot the resultant magnetometer data.

plot(t, magData)
title('Magnetometer')
xlabel('s')
ylabel('\mu T')

2 Classes

2-190

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
accelparams | gyroparams

System Objects
imuSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

 magparams class

2-191

objectDetection
Report for single object detection

Description
An objectDetection object contains an object detection report that was obtained by a sensor for a
single object. You can use the objectDetection output as the input to trackers.

Creation

Syntax
detection = objectDetection(time,measurement)
detection = objectDetection(___ ,Name,Value)

Description

detection = objectDetection(time,measurement) creates an object detection at the
specified time from the specified measurement.

detection = objectDetection(___ ,Name,Value) creates a detection object with
properties specified as one or more Name,Value pair arguments. Any unspecified properties have
default values. You cannot specify the Time or Measurement properties using Name,Value pairs.

Input Arguments

time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. This argument sets the Time property.

measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. N is determined by the coordinate
system used to report detections and other parameters that you specify in the
MeasurementParameters property for the objectDetection object.

This argument sets the Measurement property.

Output Arguments

detection — Detection report
objectDetection object

Detection report for a single object, returned as an objectDetection object. An
objectDetection object contains these properties:

2 Classes

2-192

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Properties
Time — Detection time
nonnegative real scalar

Detection time, specified as a nonnegative real scalar. You cannot set this property as a name-value
pair. Use the time input argument instead.
Example: 5.0
Data Types: double

Measurement — Object measurement
real-valued N-element vector

Object measurement, specified as a real-valued N-element vector. You cannot set this property as a
name-value pair. Use the measurement input argument instead.
Example: [1.0;-3.4]
Data Types: double | single

MeasurementNoise — Measurement noise covariance
scalar | real positive semi-definite symmetric N-by-N matrix

Measurement noise covariance, specified as a scalar or a real positive semi-definite symmetric N-by-
N matrix. N is the number of elements in the measurement vector. For the scalar case, the matrix is a
square diagonal N-by-N matrix having the same data interpretation as the measurement.
Example: [5.0,1.0;1.0,10.0]
Data Types: double | single

SensorIndex — Sensor identifier
1 | positive integer

Sensor identifier, specified as a positive integer. The sensor identifier lets you distinguish between
different sensors and must be unique to the sensor.
Example: 5
Data Types: double

ObjectClassID — Object class identifier
0 (default) | positive integer

 objectDetection

2-193

Object class identifier, specified as a positive integer. Object class identifiers distinguish between
different kinds of objects. The value 0 denotes an unknown object type. If the class identifier is
nonzero, the trackers immediately create a confirmed track from the detection.
Example: 1
Data Types: double

MeasurementParameters — Measurement function parameters
{} (default) | structure array | cell containing structure array | cell array

Measurement function parameters, specified as a structure array, a cell containing a structure array,
or a cell array. The property contains all the arguments used by the measurement function specified
by the MeasurementFcn property of a nonlinear tracking filter such as trackingEKF or
trackingUKF.

The table shows sample fields for the MeasurementParameters structures.

Field Description Example
Frame Frame used to report

measurements, specified as one
of these values:

• 'rectangular' —
Detections are reported in
rectangular coordinates.

• 'spherical' — Detections
are reported in spherical
coordinates.

'spherical'

OriginPosition Position offset of the origin of
the frame relative to the parent
frame, specified as an [x y z]
real-valued vector.

[0 0 0]

OriginVelocity Velocity offset of the origin of
the frame relative to the parent
frame, specified as a [vx vy
vz] real-valued vector.

[0 0 0]

Orientation Frame rotation matrix, specified
as a 3-by-3 real-valued
orthonormal matrix.

[1 0 0; 0 1 0; 0 0 1]

HasAzimuth Logical scalar indicating if
azimuth is included in the
measurement.

1

HasElevation Logical scalar indicating if
elevation is included in the
measurement. For
measurements reported in a
rectangular frame, and if
HasElevation is false, the
reported measurements assume
0 degrees of elevation.

1

2 Classes

2-194

Field Description Example
HasRange Logical scalar indicating if

range is included in the
measurement.

1

HasVelocity Logical scalar indicating if the
reported detections include
velocity measurements. For
measurements reported in the
rectangular frame, if
HasVelocity is false, the
measurements are reported as
[x y z]. If HasVelocity is
true, measurements are
reported as [x y z vx vy
vz].

1

IsParentToChild Logical scalar indicating if
Orientation performs a frame
rotation from the parent
coordinate frame to the child
coordinate frame. When
IsParentToChild is false,
then Orientation performs a
frame rotation from the child
coordinate frame to the parent
coordinate frame.

0

ObjectAttributes — Object attributes
{} (default) | cell array

Object attributes passed through the tracker, specified as a cell array. These attributes are added to
the output of the trackers but not used by the trackers.
Example: {[10,20,50,100],'radar1'}

Examples

Create Detection from Position Measurement

Create a detection from a position measurement. The detection is made at a timestamp of one second
from a position measurement of [100;250;10] in Cartesian coordinates.

detection = objectDetection(1,[100;250;10])

detection =
 objectDetection with properties:

 Time: 1
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}

 objectDetection

2-195

 ObjectAttributes: {}

Create Detection With Measurement Noise

Create an objectDetection from a time and position measurement. The detection is made at a
time of one second for an object position measurement of [100;250;10]. Add measurement noise
and set other properties using Name-Value pairs.

detection = objectDetection(1,[100;250;10],'MeasurementNoise',10, ...
 'SensorIndex',1,'ObjectAttributes',{'Example object',5})

detection =
 objectDetection with properties:

 Time: 1
 Measurement: [3x1 double]
 MeasurementNoise: [3x3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: {}
 ObjectAttributes: {'Example object' [5]}

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
irSensor | monostaticRadarSensor | radarSensor | sonarSensor | trackerGNN |
trackerJPDA | trackerPHD | trackerTOMHT | trackingABF | trackingCKF | trackingEKF |
trackingGSF | trackingIMM | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

2 Classes

2-196

objectTrack
Single object track report

Description
objectTrack captures the track information of a single object. objectTrack is the standard output
format for trackers.

Creation

Syntax
track = objectTrack
track = objectTrack(Name,Value)

Description

track = objectTrack creates an objectTrack object with default property values. An
objectTrack object contains information like the age and state of a single track.

track = objectTrack(Name,Value) allows you to set properties using one or more name-value
pairs. Enclose each property name in single quotes.

Properties
TrackID — Unique track identifier
1 (default) | nonnegative integer

Unique track identifier, specified as a nonnegative integer. This property distinguishes different
tracks.
Example: 2

BranchID — Unique track branch identifier
0 (default) | nonnegative integer

Unique track branch identifier, specified as a nonnegative integer. This property distinguishes
different track branches.
Example: 1

SourceIndex — Index of source track reporting system
1 (default) | nonnegative integer

Index of source track reporting system, specified as a nonnegative integer. This property identifies
the source that reports the track.
Example: 3

 objectTrack

2-197

ObjectClassID — Object class identifier
0 (default) | nonnegative integer

Object class identifier, specified as a nonnegative integer. This property distinguishes between
different user-defined types of objects. For example, you can use 1 for objects of type "car", and 2 for
objects of type "pedestrian". 0 is reserved for unknown classification.
Example: 3

UpdateTime — Update time of track
0 (default) | nonnegative real scalar

Time at which the track was updated by a tracker, specified as a nonnegative real scalar.
Example: 1.2
Data Types: single | double

Age — Number of times track was updated
1 (default) | positive integer

Number of times the track was updated, specified as a positive integer. When a track is initialized, its
Age is equal to 1. Any subsequent update with a hit or miss increases the track Age by 1.
Example: 2

State — Current state of track
zeros(6,1) (default) | real-valued N-element vector

The current state of the track at the UpdateTime, specified as a real-valued N-element vector, where
N is the dimension of the state. The format of track state depends on the model used to track the
object. For example, for 3-D constant velocity model used with constvel, the state vector is [x; vx; y;
vy; z; vz].
Example: [1 0.2 3 0.2]
Data Types: single | double

StateCovariance — Current state uncertainty covariance of track
eye(6,6) (default) | real positive semidefinite symmetric N-by-N matrix

The current state uncertainty covariance of the track, specified as a real positive semidefinite
symmetric N-by-N matrix, where N is the dimension of state specified in the State property.
Data Types: single | double

TrackLogic — Track confirmation and deletion logic type
'History' (default) | 'Integrated' | 'Score'

Confirmation and deletion logic type, specified as:

• 'History' – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• 'Score' – Track confirmation and deletion is based on a log-likelihood track score. A high score
means that the track is more likely to be valid. A low score means that the track is more likely to
be a false alarm.

• 'Integrated' – Track confirmation and deletion is based on the integrated probability of track
existence.

2 Classes

2-198

TrackLogicState — State of track logic
1-by-M logical vector | 1-by-2 real-valued scar | nonnegative scalar

The current state of the track logic type. Based on the logic type specified in the TrackLogic
property, the logic state is specified as:

• 'History' – A 1-by-M logical vector, where M is the number of latest track logical states
recorded. true (1) values indicate hits, and false (0) values indicate misses. For example, [1 0
1 1 1] represents four hits and one miss in the last five updates. The default value for logic state
is 1.

• 'Score' – A 1-by-2 real-valued vector, [cs, ms]. cs is the current score, and ms is the maximum
score. The default value is [0, 0].

• 'Integrated' – A nonnegative scalar. The scalar represents the integrated probability of
existence of the track. The default value is 0.5.

IsConfirmed — Indicate if track is confirmed
true (default) | false

Indicate if the track is confirmed, specified as true or false.
Data Types: logical

IsCoasted — Indicate if track is coasted
false (default) | true

Indicate if the track is coasted, specified as true or false. A track is coasted if its latest update is
based on prediction instead of correction using detections.
Data Types: logical

IsSelfReported — Indicate if track is self reported
true (default) | false

Indicate if the track is self reported, specified as true or false. A track is self reported if it is
reported from internal sources (senors, trackers, or fusers). To limit the propagation of rumors in a
tracking system, use the value false if the track was updated by an external source.
Example: false
Data Types: logical

ObjectAttributes — Object attributes
struct() (default) | structure

Object attributes passed by the tracker, specified as a structure.

StateParameters — Parameters of the track state reference frame
struct() (default) | structure | structure array

Parameters of the track state reference frame, specified as a structure or a structure array. Use this
property to define the track state reference frame and how to transform the track from the source
coordinate system to the fuser coordinate system.

Object Functions
toStruct Convert objectTrack object to struct

 objectTrack

2-199

Examples

Create Track Report using objectTrack

Create a report of a track using objectTrack.

x = (1:6)';
P = diag(1:6);
track = objectTrack('State',x,'StateCovariance',P);
disp(track)

 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 1
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: 1
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• The TrackLogic property can only be set during construction.

See Also
fuserSourceConfiguration | objectDetection | trackFuser

Introduced in R2019b

2 Classes

2-200

toStruct
Convert objectTrack object to struct

Syntax
S = toStruct(objTrack)

Description
S = toStruct(objTrack) converts an array of objectTrack objects, objTrack, to an array of
structures whose fields are equivalent to the properties of objTrack.

Examples

Convert objectTrack to Struct

Create a report of a track using objectTrack.

 x = (1:6)';
 P = diag(1:6);
 track = objectTrack('State', x, 'StateCovariance', P)

track =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 1
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: 1
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Convert the track object to a structure.

 S = toStruct(track)

S = struct with fields:
 TrackID: 1
 BranchID: 0
 SourceIndex: 1
 UpdateTime: 0

 toStruct

2-201

 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: 1
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Input Arguments
objTrack — Reports of object track
array of objectTrack object

Reports of object tracks, specified as an array of objectTrack objects.

Output Arguments
S — Structures converted from objectTrack
array of structure

Structures converted from objectTrack, returned as an array of structures. The dimension of the
returned structure is same with the dimension of the objTrack input. The fields of each structure
are equivalent to the properties of objectTrack.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
objectTrack

Introduced in R2019b

2 Classes

2-202

quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')

 quaternion

2-203

quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.

2 Classes

2-204

Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'

 quaternion

2-205

• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

 0.7071 -0.0000 0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

 0.8536 0.1464 0.5000

2 Classes

2-206

Data Types: char | string

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
ctranspose, ' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
ldivide, .\ Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
minus, - Quaternion subtraction
mtimes, * Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
power, .^ Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
rdivide, ./ Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
times, .* Element-wise quaternion multiplication
transpose, .' Transpose a quaternion array
uminus, - Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion
quat = quaternion()

 quaternion

2-207

quat =

 0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans =
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
 1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector=2×1 quaternion array
 1.1 + 2.1i + 3.1j + 4.1k
 1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
 1.2,1.4];
B = [2.1,2.3; ...
 2.2,2.4];
C = [3.1,3.3; ...
 3.2,3.4];
D = [4.1,4.3; ...
 4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix=2×2 quaternion array
 1.1 + 2.1i + 3.1j + 4.1k 1.3 + 2.3i + 3.3j + 4.3k
 1.2 + 2.2i + 3.2j + 4.2k 1.4 + 2.4i + 3.4j + 4.4k

2 Classes

2-208

Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) =

 0.53767 + 0i + 0j + 0k -2.2588 + 0i + 0j + 0k
 1.8339 + 0i + 0j + 0k 0.86217 + 0i + 0j + 0k

quatMultiDimArray(:,:,2) =

 0.31877 + 0i + 0j + 0k -0.43359 + 0i + 0j + 0k
 -1.3077 + 0i + 0j + 0k 0.34262 + 0i + 0j + 0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

quat = quaternion(quatParts)

quat=3×1 quaternion array
 0.81472 + 0.91338i + 0.2785j + 0.96489k
 0.90579 + 0.63236i + 0.54688j + 0.15761k
 0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

 0.8147 0.9134 0.2785 0.9649
 0.9058 0.6324 0.5469 0.1576
 0.1270 0.0975 0.9575 0.9706

 quaternion

2-209

Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
 0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

 0.3491 0.6283 0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
 0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

 20.0000 36.0000 20.0000

2 Classes

2-210

Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0 0; ...
 0 sqrt(3)/2 0.5; ...
 0 -0.5 sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
 0.96593 + 0.25882i + 0j + 0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

 1.0000 0 0
 0 0.8660 0.5000
 0 -0.5000 0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
 0.65328 + 0.2706i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

 1.5708 0 0.7854

 quaternion

2-211

Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
 0.65328 + 0.2706i + 0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

 90.0000 0 45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
 1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
 9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
 10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
 10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2

2 Classes

2-212

Q1minusQ2 = quaternion
 -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
 8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
 6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
 -4 + 2i + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
 -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
 -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
 0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
 5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.

 quaternion

2-213

isequal(Q1*5,5*Q1)

ans = logical
 1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
 1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
 1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
 1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector=1×2 quaternion array
 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix=2×2 quaternion array
 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k

2 Classes

2-214

 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
 -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 1 + 0i + 0j + 0k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped=4×1 quaternion array
 1 + 2i + 3j + 4k
 -1 - 2i - 3j - 4k
 9 + 8i + 7j + 6k
 -9 - 8i - 7j - 6k

 quaternion

2-215

Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed=2×2 quaternion array
 1 + 2i + 3j + 4k -1 - 2i - 3j - 4k
 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 1 + 0i + 0j + 0k -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) =

 1 + 2i + 3j + 4k 9 + 8i + 7j + 6k
 -1 - 2i - 3j - 4k -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) =

 1 + 2i + 3j + 4k 1 + 0i + 0j + 0k
 1 + 2i + 3j + 4k -1 - 2i - 3j - 4k

qMatPermute(:,:,2) =

 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k
 9 + 8i + 7j + 6k -9 - 8i - 7j - 6k

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Topics
“Rotations, Orientation, and Quaternions”
“Lowpass Filter Orientation Using Quaternion SLERP”

2 Classes

2-216

Introduced in R2018b

 quaternion

2-217

trackingScenario
Create tracking scenario

Description
trackingScenario creates a tracking scenario object. A tracking scenario simulates a 3-D arena
containing multiple platforms. Platforms represent anything that you want to simulate, such as
aircraft, ground vehicles, or ships. Some platforms carry sensors, such as radar, sonar, or infrared.
Other platforms act as sources of signals or reflect signals. Platforms can also include stationary
obstacles that can influence the motion of other platforms. Platforms can be modeled as points or
cuboids by specifying the 'Dimension' property when calling platform. Platforms can have
aspect-dependent properties including radar cross-section or sonar target strength. You can populate
a tracking scenario by calling the platform method for each platform you want to add. Platforms are
Platform objects. You can create trajectories for any platform using the kinematicTrajectory or
waypointTrajectory System objects. After creating the scenario, run the simulation by calling the
advance object function.

Creation
sc = trackingScenario creates an empty tracking scenario with default property values.

sc = trackingScenario(Name,Value) configures a trackingScenario object with properties
using one or more Name,Value pair arguments. Name is a property name and Value is the
corresponding value. Name must appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1,...,NameN,ValueN. Any unspecified properties
take default values.

Properties
StopTime — Stop time of simulation
Inf (default) | positive scalar

Stop time of simulation, specified as a positive scalar. A simulation stops when either of these
conditions is met:

• The stop time is reached.
• Any platform reaches the end of its trajectory and you have specified the platform Motion

property using waypoints, waypointTrajectory.

Units are in seconds.
Example: 60.0
Data Types: double

SimulationTime — Current time of simulation
positive scalar

This property is read-only.

2 Classes

2-218

Current time of the simulation, defined as a positive scalar. To reset the simulation time to zero and
restart the simulation, call the restart method. Units are in seconds.
Data Types: double

UpdateRate — Frequency of simulation updates
10.0 (default) | positive scalar

Frequency of simulation updates, specified as a positive scalar. This is the rate at which to provide
successive updates of the scenario simulation. Units are in Hz.
Example: 2.0
Data Types: double

IsRunning — Run-state of simulation
true | false

This property is read-only.

Run-state of simulation, defined as true or false. If the simulation is running, IsRunning is true.
If the simulation has stopped, IsRunning is false. A simulation stops when either of these
conditions is met:

• The stop time is reached.
• Any platform reaches the end of its trajectory, and you have specified that platform Motion

strategy with waypoints using the waypointTrajectory System object.

Units are in seconds.
Data Types: logical

Platforms — Platforms in the simulation
cell | cell array

This property is read-only.

Platforms in the scenario, returned as a cell or cell array of Platform objects. To add a platform to
the scenario, use the platform object function.

Object Functions
platform Add platform to tracking scenario
advance Advance tracking scenario simulation by one time step
restart Restart tracking scenario simulation
record Run tracking scenario and record platform, sensor, and emitter information
emit Collect emissions from emitters in tracking scenario
propagate Propagate emissions in tracking scenario
detect Collect detections from all the sensors in tracking scenario
platformPoses Positions, velocities, and orientations of all platforms in tracking scenario
platformProfiles Profiles of platforms in tracking scenario
coverageConfig Sensor and emitter coverage configuration

Examples

 trackingScenario

2-219

Create Tracking Scenario with Two Platforms

Construct a tracking scenario with two platforms that follow different trajectories.

sc = trackingScenario('UpdateRate',100.0,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by placing
waypoints in a circular shape, ensuring that the first and last waypoint are the same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1, time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

 {1×1 fusion.scenario.Platform} {1×1 fusion.scenario.Platform}

Run the simulation and plot the current position of each platform. Use an animated line to plot the
position of each platform.

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));

while advance(sc)
 p1 = pose(platfm1);
 p2 = pose(platfm2);
 addpoints(line1,p1.Position(1),p1.Position(2));
 addpoints(line2,p2.Position(2),p2.Position(2));
 pause(0.1)
end

2 Classes

2-220

Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off

 trackingScenario

2-221

See Also
System Objects
kinematicTrajectory | waypointTrajectory

Introduced in R2018b

2 Classes

2-222

Platform
Platform object belonging to tracking scenario

Description
Platform defines a platform object belonging to a tracking scenario. Platforms represent the moving
objects in a scenario and are modeled as points or cuboids with aspect-dependent properties.

Creation
You can create Platform objects using the platform method of trackingScenario.

Properties
PlatformID — Scenario-defined platform identifier
1 (default) | positive integer

This property is read-only.

Scenario-defined platform identifier, specified as a positive integer. The scenario automatically
assigns PlatformID values to each platform.
Data Types: double

ClassID — Platform classification identifier
0 (default) | nonnegative integer

Platform classification identifier specified as a nonnegative integer. You can define your own platform
classification scheme and assign ClassID values to platforms according to the scheme. The value of
0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double | single

Dimensions — Platform dimensions and origin offset
struct

Platform dimensions and origin offset, specified as a structure. The structure contains the Length,
Width, Height, and OriginOffset of a cuboid that approximates the dimensions of the platform.
The OriginOffset is the position vector from the center of the cuboid to the origin of the platform
coordinate frame. The OriginOffset is expressed in the platform coordinate system. For example, if
the platform origin is at the center of the cuboid rear face as shown in the following figure, then set
OriginOffset as [-L/2, 0, 0]. The default value for Dimensions is a structure with all fields
set to zero, which corresponds to a point model.

 Platform

2-223

Fields of Dimensions

Fields Description Default
Length Dimension of a cuboid along the

x direction
0

Width Dimension of a cuboid along the
y direction

0

Height Dimension of a cuboid along the
z direction

0

OriginOffset Position of the platform
coordinate frame origin with
respect to the cuboid center

[0 0 0]

Example: struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[-2.5 0 0])
Data Types: struct

Trajectory — Platform motion
kinematicTrajectory object with default property values (default) | waypointTrajectory object

Platform motion, specified as either a kinematicTrajectory object or a waypointTrajectory
object.

The motion defines the time evolution of the position and velocity of the platform frame origin, as well
as the orientation of the platform frame relative to the scenario frame.

Signatures — Platform signatures
{rcsSignature irSignature tsSignature} (default) | cell array of signature objects

Platform signatures, specified as a cell array of irSignature, rcsSignature, and tsSignature
objects or an empty cell array. The cell array contains at most only one instance for each type of
signature objects listed. A signature represents the reflection or emission pattern of a platform such
as its radar cross-section, target strength, or IR intensity.

PoseEstimator — Platform pose-estimator
insSensor object (default) | pose estimator object

A pose estimator, specified as a pose-estimator object such as insSensor. The pose estimator
determines platform pose with respect to the local NED scenario coordinate. The interface of any
pose estimator must match the interface of insSensor. By default, pose-estimator accuracy
properties are set to zero.

Emitters — Emitters mounted on platform
cell array of emitter objects

2 Classes

2-224

Emitters mounted on platform, specified as a cell array of emitter objects, such as radarEmitter or
sonarEmitter.

Sensors — Sensors mounted on platform
cell array of sensor objects

Sensors mounted on platform, specified as a cell array of sensor objects such as irSensor,
radarSensor, monostaticRadarSensor, or sonarSensor.

Object Functions
detect Detect signals using platform-mounted sensors
emit Radiate signals from emitters mounted on platform
pose Pose of platform
targetPoses Target positions and orientations as seen from platform

Examples

Platform Follows Circular Trajectory

Create a tracking scenario and a platform following a circular path.

scene = trackingScenario('UpdateRate',1/50);

% Create a platform
plat = platform(scene);

% Follow a circular trajectory 1 km in radius completing in 400 hundred seconds.
plat.Trajectory = waypointTrajectory('Waypoints', [0 1000 0; 1000 0 0; 0 -1000 0; -1000 0 0; 0 1000 0], ...
 'TimeOfArrival', [0; 100; 200; 300; 400]);

% Perform the simulation
while scene.advance
 p = pose(plat);
 fprintf('Time = %f ', scene.SimulationTime);
 fprintf('Position = [');
 fprintf('%f ', p.Position);
 fprintf('] Velocity = [');
 fprintf('%f ', p.Velocity);
 fprintf(']\n');
end

Time = 50.000000 Position = [707.095476 707.100019 0.000000] Velocity = [11.107152 -11.107075 0.000000]
Time = 100.000000 Position = [1000.000000 0.000000 0.000000] Velocity = [0.000476 -15.707961 0.000000]
Time = 150.000000 Position = [707.115558 -707.115461 0.000000] Velocity = [-11.107346 -11.107341 0.000000]
Time = 200.000000 Position = [0.000000 -1000.000000 0.000000] Velocity = [-15.707963 0.000460 0.000000]
Time = 250.000000 Position = [-707.098004 -707.098102 0.000000] Velocity = [-11.107069 11.107074 0.000000]
Time = 300.000000 Position = [-1000.000000 0.000000 0.000000] Velocity = [-0.000476 15.707966 0.000000]
Time = 350.000000 Position = [-707.118086 707.113543 0.000000] Velocity = [11.107262 11.107340 0.000000]
Time = 400.000000 Position = [-0.000000 1000.000000 0.000000] Velocity = [15.708226 -0.000493 0.000000]

 Platform

2-225

Cuboid Platforms Follow Circular Trajectories

Create a tracking scenario with two cuboid platforms following circular trajectories.

sc = trackingScenario;

% Create the platform for a truck with dimension 5 x 2.5 x 3.5 (m).
p1 = platform(sc);
p1.Dimensions = struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[0 0 0]);

% Specify the truck's trajectory as a circle with radius 20 meters.
p1.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*(0:10)'/10)...
 20*sin(2*pi*(0:10)'/10) -1.75*ones(11,1)], ...
 'TimeOfArrival', linspace(0,50,11)');

% Create the platform for a small quadcopter with dimension .3 x .3 x .1 (m).
p2 = platform(sc);
p2.Dimensions = struct('Length',.3,'Width',.3,'Height',.1,'OriginOffset',[0 0 0]);

% The quadcopter follows the truck at 10 meteres above with small angular delay.
% Note that the negative z coordinates correspond to positive elevation.
p2.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*((0:10)'-.6)/10)...
 20*sin(2*pi*((0:10)'-.6)/10) -11.80*ones(11,1)], ...
 'TimeOfArrival', linspace(0,50,11)');

Visualize the results using theaterPlot.

tp = theaterPlot('XLim',[-30 30],'YLim',[-30 30],'Zlim',[-12 5]);
pp1 = platformPlotter(tp,'DisplayName','truck','Marker','s');
pp2 = platformPlotter(tp,'DisplayName','quadcopter','Marker','o');

% Specify a view direction and animate.
view(-28,37);
set(gca,'Zdir','reverse');

while advance(sc)
 poses = platformPoses(sc);
 plotPlatform(pp1, poses(1).Position, p1.Dimensions, poses(1).Orientation);
 plotPlatform(pp2, poses(2).Position, p2.Dimensions, poses(2).Orientation);
end

2 Classes

2-226

See Also
Classes
rcsSignature | tsSignature

System Objects
insSensor | irSensor | kinematicTrajectory | monotstaticRadarSensor | radarEmitter |
radarSensor | sonarEmitter | sonarSensor | waypointTrajectory

Introduced in R2018b

 Platform

2-227

Platform.emit
Radiate signals from emitters mounted on platform

Syntax
[signals,emitterconfigs] = emit(ptfm,time)

Description
[signals,emitterconfigs] = emit(ptfm,time) returns signals, signals, radiated by all the
emitters mounted on the platform, ptfm, at the specified time. The function also returns all emitter
configurations, emitterconfigs.

Input Arguments
ptfm — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform method.

time — Emission time
0 (default) | positive scalar

Emission time, specified as a positive scalar.
Example: 100.5
Data Types: single | double

Output Arguments
signals — Signals radiated by emitters on platform
cell array of emission objects

Signals radiated by emitters on platform, returned as a cell array of radarEmission and
sonarEmission objects.

emitterconfigs — Emitter configurations
structure

Emitter configurations, returned as a structure. An emitter configuration has these fields:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.

2 Classes

2-228

IsValidTime Valid emission time, returned as 0 or 1.
IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Data Types: single | double

See Also
detect | pose | targetPoses

Introduced in R2018b

 Platform.emit

2-229

Platform.detect
Detect signals using platform-mounted sensors

Syntax
dets = detect(ptfm,time)
dets = detect(ptfm,signals,time)
dets = detect(ptfm,signals,emitterconfigs,time)
[dets,numDets] = detect(___)
[dets,numDets,sensorconfigs] = detect(___)

Description
dets = detect(ptfm,time) returns detections, dets, from all the sensors mounted on the
platform, ptfm, at the specified time. This syntax applies when sensors do not require knowledge of
any signals present in the scenario, for example, when the monostaticRadarSensor object
property HasInterference is set to false.

dets = detect(ptfm,signals,time) also specifies any signals, signals, present in the
scenario. This syntax applies when sensors require knowledge of these signals, for example, when a
radarSensor object is configured as an EM sensor.

dets = detect(ptfm,signals,emitterconfigs,time) also specifies emitter configurations,
emitterconfigs. This syntax applies when sensors require knowledge of the configurations of
emitters generating signals in the scenario. For example, when an radarSensor object is configured
as a monostatic radar.

[dets,numDets] = detect(___) also returns the number of detections, numDets. This output
syntax can be used with any of the input syntaxes.

[dets,numDets,sensorconfigs] = detect(___) also returns all sensor configurations,
sensorconfigs. This output syntax can be used with any of the input syntaxes.

Input Arguments
ptfm — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform method.

time — Simulation time
0 (default) | positive scalar

Simulation time specified as a positive scalar.
Example: 1.5
Data Types: single | double

signals — Signals in scenario
cell array of emission objects

2 Classes

2-230

Signals in the scenario, specified as a cell array of radarEmission and sonarEmission emission
objects.

emitterconfigs — Emitter configurations
structure

Emitter configurations, specified as a structure. The fields of the emitter configuration are:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Data Types: struct

Output Arguments
dets — sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects.

sensorconfigs — Sensor configurations
structure

Sensor configurations, returned as a structure. The fields of this structure are:

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

 Platform.detect

2-231

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.
Data Types: double

More About
Object Detections
Measurements

This section describes the structure of object detections.

The sensor measures the coordinates of the target. The Measurement and MeasurementNoise
values are reported in the coordinate system specified by the DetectionCoordinates property of
the sensor.

When the DetectionCoordinates property is 'Scenario', 'Body', or 'Sensor rectangular',
the Measurement and MeasurementNoise values are reported in rectangular coordinates.
Velocities are only reported when the range rate property, HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical', the Measurement and
MeasurementNoise values are reported in a spherical coordinate system derived from the sensor
rectangular coordinate system. Elevation and range rate are only reported when HasElevation and
HasRangeRate are true.

Measurements are ordered as [azimuth, elevation, range, range rate]. Reporting of elevation and
range rate depends on the corresponding HasElevation and HasRangeRate property values.
Angles are in degrees, range is in meters, and range rate is in meters per second.

2 Classes

2-232

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x; y; z; vx; vy; vz]
false [x; y; z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az; el; rng; rr]
true false [az; rng; rr]
false true [az; el; rng]
false false [az; rng]

Measurement Parameters

The MeasurementParameters property consists of an array of structures that describe a sequence
of coordinate transformations from a child frame to a parent frame or the inverse transformations
(see “Frame Rotation”). In most cases, the longest required sequence of transformations is Sensor →
Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to false, then the
sequence consists only of one transformation from sensor to platform. In the transformation, the
OriginPosition is same as the MountingLocation property of the sensor. The Orientation
consists of two consecutive rotations. The first rotation, corresponding to the MountingAngles
property of the sensor, accounts for the rotation from the platform frame (P) to the sensor mounting
frame (M). The second rotation, corresponding to the azimuth and elevation angles of the sensor,
accounts for the rotation from the sensor mounting frame (M) to the sensor scanning frame (S). In
the S frame, the x direction is the boresight direction, and the y direction lies within the x-y plane of
the sensor mounting frame (M).

 Platform.detect

2-233

If HasINS is true, the sequence of transformations consists of two transformations – first form the
scenario frame to the platform frame then from platform frame to the sensor scanning frame. In the
first transformation, the Orientation is the rotation from the scenario frame to the platform frame,
and the OriginPosition is the position of the platform frame origin relative to the scenario frame.

Trivially, if the detections are reported in platform rectangular coordinates and HasINS is set to
false, the transformation consists only of the identity.

The fields of MeasurementParameters are shown here. Not all fields have to be present in the
structure. The set of fields and their default values can depend on the type of sensor.

Field Description
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

OriginVelocity Velocity offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

2 Classes

2-234

Orientation 3-by-3 real-valued orthonormal frame rotation
matrix. The direction of the rotation depends on
the IsParentTochild field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child coordinate frame to the parent
coordinate frame.

HasElevation A logical scalar indicating if elevation is included
in the measurement. For measurements reported
in a rectangular frame, and if HasElevation is
false, the measurements are reported assuming
0 degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is included
in the measurement.

HasRange A logical scalar indicating if range is included in
the measurement.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. For
measurements reported in the rectangular frame,
if HasVelocity is false, the measurements are
reported as [x y z]. If HasVelocity is true,
measurements are reported as [x y z vx vy
vz].

Object Attributes

Object attributes contain additional information about a detection:

Attribute Description
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

SNR Detection signal-to-noise ratio in dB.

See Also
emit | pose | targetPoses

Introduced in R2018b

 Platform.detect

2-235

Platform.targetPoses
Target positions and orientations as seen from platform

Syntax
poses = targetPoses(ptfm)

Description
poses = targetPoses(ptfm) returns the poses of all targets in a scenario with respect to the
platform ptfm. Targets are defined as platforms as seen by another platform and are located with
respect to the coordinate system of that platform. Pose represents the position, velocity, and
orientation of a target with respect to the coordinate system belonging to the platform, ptfm. The
targets must already exist in the tracking scenario. Add targets using the platform method.

Input Arguments
ptfm — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform method.

Output Arguments
poses — Poses of all targets
structure | array of structures

Poses for all targets, returned as a structure or an array of structures. The pose of the input platform,
ptfm, is not included. Pose consists of the position, velocity, orientation, and signature of a target in
platform coordinates. The returned structure has these fields:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
with no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

2 Classes

2-236

Field Description
Acceleration Acceleration of target in platform coordinates

specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

See Also
detect | emit | pose

Introduced in R2018b

 Platform.targetPoses

2-237

Platform.pose
Pose of platform

Syntax
pse = pose(ptfm,type)

Description
pse = pose(ptfm,type) returns the pose, pse, of the platform ptfm, in scenario coordinates. The
platform must already exist in the tracking scenario. Add platforms to a scenario using the platform
method.

Input Arguments
ptfm — Scenario platform
Platform object

Scenario platform, specified as a Platform object. To create platforms, use the platform method.

type — Source of platform pose information
'estimated' (default) | 'true'

Source of platform pose information, specified as 'estimated' or 'true'. When set to
'estimated', the pose is estimated using the pose estimator specified in the PoseEstimator
property of the tracking scenario. When 'true' is selected, the true pose of the platform is returned.
Example: 'true'
Data Types: char

Output Arguments
pse — Pose of platform
structure

Pose of platform, returned as a structure. Pose consists of the position, velocity, orientation, and
angular velocity of the platform with respect to scenario coordinates. The returned structure has
these fields:

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

2 Classes

2-238

Field Description
Position Position of target in scenario coordinates,

specified as a real-valued 1-by-3 row vector. This
is a required field with no default value. units are
meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. units are degrees per second.
The default value is [0 0 0].

See Also
detect | emit | targetPoses

Introduced in R2018b

 Platform.pose

2-239

platform
Add platform to tracking scenario

Syntax
ptfm = platform(sc)
ptfm = platform(sc,Name,Value)

Description
ptfm = platform(sc) adds a Platform object, ptfm, to the tracking scenario, sc. The function
creates a platform with default property values. Platforms are defined as points or cuboids with
aspect-dependent properties. Each platform is automatically assigned a unique ID specified in the
platformID field of the Platform object.

ptfm = platform(sc,Name,Value) adds a platform with additional properties specified by one or
more Name,Value pair arguments. Name is a property name and Value is the corresponding value.
Name must appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ClassID — Platform classification identifier
0 (default) | nonnegative integer

Platform classification identifier specified as a nonnegative integer. You can define your own platform
classification scheme and assign ClassID values to platforms according to the scheme. The value of
0 is reserved for an object of unknown or unassigned class.
Example: 5
Data Types: double

Dimensions — Platform dimensions and origin offset
struct

Platform dimensions and origin offset, specified as a structure. The structure contains the Length,
Width, Height, and OriginOffset of a cuboid that approximates the dimensions of the platform.
The OriginOffset is the position vector from the center of the cuboid to the origin of the platform
coordinate frame. The OriginOffset is expressed in the platform coordinate system. For example, if

2 Classes

2-240

the platform origin is at the center of the cuboid rear face as shown in the following figure, then set
OriginOffset as [-L/2, 0, 0]. The default value for Dimensions is a structure with all fields
set to zero, which corresponds to a point model.

Fields of Dimensions

Fields Description Default
Length Dimension of a cuboid along the

x direction
0

Width Dimension of a cuboid along the
y direction

0

Height Dimension of a cuboid along the
z direction

0

OriginOffset Position of the platform
coordinate frame origin with
respect to the cuboid center

[0 0 0]

Example: struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[-2.5 0 0])
Data Types: struct

Trajectory — Platform motion
kinematicTrajectory object with default property values (default) | waypointTrajectory object

Platform motion, specified as either a kinematicTrajectory object or a waypointTrajectory
object.

The motion defines the time evolution of the position and velocity of the platform frame origin, as well
as the orientation of the platform frame relative to the scenario frame.

Signatures — Platform signatures
{rcsSignature irSignature tsSignature} (default) | cell array of signature objects

Platform signatures, specified as a cell array of irSignature, rcsSignature, and tsSignature
objects or an empty cell array. The cell array contains at most only one instance for each type of
signature objects listed. A signature represents the reflection or emission pattern of a platform such
as its radar cross-section, target strength, or IR intensity.

PoseEstimator — Platform pose estimator
insSensor System object (default) | pose estimator object

A pose estimator, specified as a pose estimator object. The pose estimator determines platform pose
with respect to the local NED scenario coordinate. The interface of any pose estimator must match
the interface of insSensor. By default, pose estimator accuracy properties are set to zero.

 platform

2-241

Emitters — Emitters mounted on platform
cell array of emitter objects

Emitters mounted on the platform, specified as a cell array of emitter objects, such as
radarEmitter or sonarEmitter.

Sensors — Sensors mounted on platform
cell array of sensor objects

Sensors mounted on platform, specified as a cell array of sensor objects such as irSensor,
radarSensor, monostaticRadarSensor, or sonarSensor.

Output Arguments
ptfm — Scenario platform
Platform object

Scenario platform, returned as a Platform object.

Examples

Platform Follows Circular Trajectory

Create a tracking scenario and a platform following a circular path.

scene = trackingScenario('UpdateRate',1/50);

% Create a platform
plat = platform(scene);

% Follow a circular trajectory 1 km in radius completing in 400 hundred seconds.
plat.Trajectory = waypointTrajectory('Waypoints', [0 1000 0; 1000 0 0; 0 -1000 0; -1000 0 0; 0 1000 0], ...
 'TimeOfArrival', [0; 100; 200; 300; 400]);

% Perform the simulation
while scene.advance
 p = pose(plat);
 fprintf('Time = %f ', scene.SimulationTime);
 fprintf('Position = [');
 fprintf('%f ', p.Position);
 fprintf('] Velocity = [');
 fprintf('%f ', p.Velocity);
 fprintf(']\n');
end

Time = 50.000000 Position = [707.095476 707.100019 0.000000] Velocity = [11.107152 -11.107075 0.000000]
Time = 100.000000 Position = [1000.000000 0.000000 0.000000] Velocity = [0.000476 -15.707961 0.000000]
Time = 150.000000 Position = [707.115558 -707.115461 0.000000] Velocity = [-11.107346 -11.107341 0.000000]
Time = 200.000000 Position = [0.000000 -1000.000000 0.000000] Velocity = [-15.707963 0.000460 0.000000]
Time = 250.000000 Position = [-707.098004 -707.098102 0.000000] Velocity = [-11.107069 11.107074 0.000000]
Time = 300.000000 Position = [-1000.000000 0.000000 0.000000] Velocity = [-0.000476 15.707966 0.000000]
Time = 350.000000 Position = [-707.118086 707.113543 0.000000] Velocity = [11.107262 11.107340 0.000000]
Time = 400.000000 Position = [-0.000000 1000.000000 0.000000] Velocity = [15.708226 -0.000493 0.000000]

2 Classes

2-242

Cuboid Platforms Follow Circular Trajectories

Create a tracking scenario with two cuboid platforms following circular trajectories.

sc = trackingScenario;

% Create the platform for a truck with dimension 5 x 2.5 x 3.5 (m).
p1 = platform(sc);
p1.Dimensions = struct('Length',5,'Width',2.5,'Height',3.5,'OriginOffset',[0 0 0]);

% Specify the truck's trajectory as a circle with radius 20 meters.
p1.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*(0:10)'/10)...
 20*sin(2*pi*(0:10)'/10) -1.75*ones(11,1)], ...
 'TimeOfArrival', linspace(0,50,11)');

% Create the platform for a small quadcopter with dimension .3 x .3 x .1 (m).
p2 = platform(sc);
p2.Dimensions = struct('Length',.3,'Width',.3,'Height',.1,'OriginOffset',[0 0 0]);

% The quadcopter follows the truck at 10 meteres above with small angular delay.
% Note that the negative z coordinates correspond to positive elevation.
p2.Trajectory = waypointTrajectory('Waypoints', [20*cos(2*pi*((0:10)'-.6)/10)...
 20*sin(2*pi*((0:10)'-.6)/10) -11.80*ones(11,1)], ...
 'TimeOfArrival', linspace(0,50,11)');

Visualize the results using theaterPlot.

tp = theaterPlot('XLim',[-30 30],'YLim',[-30 30],'Zlim',[-12 5]);
pp1 = platformPlotter(tp,'DisplayName','truck','Marker','s');
pp2 = platformPlotter(tp,'DisplayName','quadcopter','Marker','o');

% Specify a view direction and animate.
view(-28,37);
set(gca,'Zdir','reverse');

while advance(sc)
 poses = platformPoses(sc);
 plotPlatform(pp1, poses(1).Position, p1.Dimensions, poses(1).Orientation);
 plotPlatform(pp2, poses(2).Position, p2.Dimensions, poses(2).Orientation);
end

 platform

2-243

See Also
Objects
Platform

System Objects
kinematicTrajectory | waypointTrajectory

Introduced in R2018b

2 Classes

2-244

advance
Advance tracking scenario simulation by one time step

Syntax
isrunning = advance(sc)

Description
isrunning = advance(sc) advances the tracking scenario simulation, sc, by one time step. To
specify the step time, set the UpdateRate property of the trackingScenario object. The function
returns the status, isrunning, of the simulation. advance updates a platform location only if the
platform has an assigned path. You can generate assigned paths using the Motion property of a
platform. To update platforms that have no assigned paths, you can set the Position, Velocity,
Orientation, or AngularVelocity properties at any time during the simulation.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

Output Arguments
isrunning — Run-state of simulation
0 | 1

The run-state of the simulation, returned as 0 or 1. If isrunning is 1, the simulation is running. If
isrunning is 0, the simulation has stopped. A simulation stops when either of these conditions is
met:

• The stop time is reached.
• Any platform reaches the end of its trajectory, and you have specified the platform Motion

property using waypoints (with a waypointTrajectory object).

Units are in seconds.

Introduced in R2018b

 advance

2-245

detect
Collect detections from all the sensors in tracking scenario

Syntax
detections = detect(sc)
detections = detect(sc,signals)
detections = detect(sc,signals,configs)
[detections,sensorConfigs] = detect(___)
[detections,sensorConfigs,configIDS] = detect(___)

Description
detections = detect(sc) reports the detections from all sensors mounted on every platform in
the tracking scenario, sc.

Tip Use this syntax only when none of the sensors requires knowledge of the signals present in the
scenario. For example, the HasInterference property of monostaticRadarSensor is set to
false.

detections = detect(sc,signals) reports the detections from all sensors when at least one
sensor requires the knowledge of signals in the scenario. For example, when a radarSensor is
operating in an ESM mode.

detections = detect(sc,signals,configs) reports the detections from all sensors when at
least one sensor also requires the knowledge of emitter configurations in the scenario. For example,
when a radarSensor is configured as a monostatic radar.

[detections,sensorConfigs] = detect(___) additionally returns the configurations of each
sensor at the detection time.

[detections,sensorConfigs,configIDS] = detect(___) additionally returns all platform
IDs corresponding to the sensor configurations, sensorConfigs.

Examples

Obtain Detections from Two Platforms in Tracking Scenario

Create a tracking scenario.

s = rng(0); % For repeatable result
ts = trackingScenario('UpdateRate',1);

Create the first platform and mount one emitter and one sensor on it.

plat1 = platform(ts);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);

2 Classes

2-246

sensor1 = radarSensor(1,'DetectionMode','Monostatic','EmitterIndex',1,'RangeResolution',1);
plat1.Emitters = emitter1;
plat1.Sensors = sensor1;

Create the second platform and mount one emitter and one sensor on it.

plat2 = platform(ts);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
sensor2 = radarSensor(2,'DetectionMode','Monostatic','EmitterIndex',2,'RangeResolution',1);
plat2.Emitters = emitter2;
plat2.Sensors = sensor2;

Advance the tracking scenario, transmit and propagate emissions, and collect signals using the
detect function.

advance(ts);
[emtx,emitterConfs,emitterConfPIDs] = emit(ts); % Transmitted emissions
emprop = propagate(ts,emtx,'HasOcclusion',true); % Propagate emissions
[dets,sensorConfs,sensorConfPIDs] = detect(ts,emprop,emitterConfs);

Display the detection results: Sensor 1 on platform 1 detected platform 2.

disp(dets{1})

 objectDetection with properties:

 Time: 1
 Measurement: [3×1 double]
 MeasurementNoise: [3×3 double]
 SensorIndex: 1
 ObjectClassID: 0
 MeasurementParameters: [1×1 struct]
 ObjectAttributes: {[1×1 struct]}

sensor = dets{1}.SensorIndex

sensor = 1

detectedPlatform = dets{1}.ObjectAttributes{1}.TargetIndex

detectedPlatform = 2

rng(s) % Return the random number generator to its previous state

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

signals — Signal emissions
cell array of signal emission object

Signal emissions, specified as a cell array of signal emission objects, such as radarEmission and
sonarEmission.

 detect

2-247

configs — Emitter configurations
array of emitter configuration structures

Emitter configurations, specified as an array of emitter configuration structures. The fields of each
structure are:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Output Arguments
detections — Detections
cell array of objectDetection objects

Detections, returned as a cell array of objectDetection objects.

sensorConfigs — Sensor configurations
array of sensor configuration structure

Sensor configurations, return as an array of sensor configuration structures. The fields of each
structure are:

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

2 Classes

2-248

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

configIDS — Platform IDs for sensor configurations
array of positive integer

Platform IDs for sensor configurations in the sensorConfigs output, returned as an array of
positive integers.

See Also
emit | objectDetection | propagate | record | trackingScenario

Introduced in R2020a

 detect

2-249

emit
Collect emissions from emitters in tracking scenario

Syntax
emissions = emit(sc)
[emissions,configs] = emit(sc)
[emissions,configs,platformIDs] = emit(sc)

Description
emissions = emit(sc) reports signals emitted from all the emitters mounted on platforms in the
tracking scenario sc.

[emissions,configs] = emit(sc) also returns the configurations of all the emitters at the
emission time.

[emissions,configs,platformIDs] = emit(sc) also returns the IDs of platforms on which the
emitters are mounted.

Examples

Obtain Emissions from Platforms in Tracking Scenario

Create a tracking scenario and add two platforms. Set the position of each platform and add an
emitter.

ts = trackingScenario('UpdateRate',1);
plat1 = platform(ts);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);
plat1.Emitters = emitter1;
plat2 = platform(ts);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
plat2.Emitters = emitter2;

Advance the tracking scenario and generate emissions.

advance(ts);
[emissions, configs, sensorConfigPIDs] = emit(ts);

Print the results.

disp("There are " + numel(emissions) + " emissions.");

There are 2 emissions.

The first emission is:

disp(emissions{1});

2 Classes

2-250

 radarEmission with properties:

 PlatformID: 1
 EmitterIndex: 1
 OriginPosition: [0 0 0]
 OriginVelocity: [0 0 0]
 Orientation: [1×1 quaternion]
 FieldOfView: [1 5]
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 EIRP: 100
 RCS: 0

The second emission is:

disp(emissions{2});

 radarEmission with properties:

 PlatformID: 2
 EmitterIndex: 2
 OriginPosition: [100 0 0]
 OriginVelocity: [0 0 0]
 Orientation: [1×1 quaternion]
 FieldOfView: [1 5]
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 EIRP: 100
 RCS: 0

The emitter configuration associated with the first emission is:

disp(configs(1));

 EmitterIndex: 1
 IsValidTime: 1
 IsScanDone: 0
 FieldOfView: [1 5]
 MeasurementParameters: [1×1 struct]

The emitter configuration associated with the second emission is:

disp(configs(2));

 EmitterIndex: 2
 IsValidTime: 1
 IsScanDone: 0
 FieldOfView: [1 5]
 MeasurementParameters: [1×1 struct]

The emitter configurations are connected with platform IDs:

 emit

2-251

disp(sensorConfigPIDs');

 1 2

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

Output Arguments
emissions — Emissions of all emitters
cell array of emission objects

Emissions of all emitters in the tracking scenario, returned as a cell array of emission objects, such as
radarEmission and sonarEmission objects.

configs — Configuration of emitters
array of emitter configuration structures

Configuration of all the emitters in the tracking scenario, returned as an array of emitter
configuration structures. The fields of each structure are:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

platformIDs — Platform IDs
vector of positive integers

Platform IDs, returned as a vector of positive integers. The order of platform IDs output is the same
as that of the configs output.

2 Classes

2-252

See Also
radarEmitter | radarSensor | sonarEmitter | sonarSensor | trackingScenario

Introduced in R2020a

 emit

2-253

platformPoses
Positions, velocities, and orientations of all platforms in tracking scenario

Syntax
poses = platformPoses(sc)
poses = platformPoses(sc,fmt)

Description
poses = platformPoses(sc) returns the current poses for all platforms in the tracking scenario,
sc. Pose is the position, velocity, and orientation of a platform relative to scenario coordinates.
Platforms are Platform objects.

poses = platformPoses(sc,fmt) also specifies the format, fmt, of the returned platform
orientation.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

fmt — Pose orientation format
'quaternion' (default) | 'rotmat'

Pose orientation format, specified as 'quaternion' or 'rotmat'. When specified as
'quaternion', the Orientation field of the platform pose structure is a quaternion. When
specified as 'rotmat', the Orientation field is a rotation matrix.
Example: 'rotmat'
Data Types: char

Output Arguments
poses — Platform poses in scenario coordinates
structures | array of structures

Poses of all platforms in the tracking scenario, returned as a structure or array of structures. The
pose structure contains these fields:

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

2 Classes

2-254

Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector. This
is a required field with no default value. units are
meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. units are degrees per second.
The default value is [0 0 0].

Data Types: struct

Introduced in R2018b

 platformPoses

2-255

platformProfiles
Profiles of platforms in tracking scenario

Syntax
profiles = platformProfiles(sc)

Description
profiles = platformProfiles(sc) returns the profiles of all platforms in the tracking
scenario, sc.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

Output Arguments
profiles — Platform profiles
array of structures

Profiles of all platforms in the tracking scenario, returned as an array of structures. The number of
structures in the array is equal to the number platforms. Each profile contains the signatures of a
platform and identifying information. The structure contains these fields:

Field Description
PlatformID Scenario-defined platform identifier, defined as a

positive integer
ClassID User-defined platform classification identifier,

defined as a nonnegative integer
Signatures Platform signatures defined as a cell array of

radar cross-section (rcsSignature), IR emission
pattern (irSignature), and sonar target
strength (tsSignature) objects.

See Platform for more completed definitions of the fields.

Examples

Generate Platform Profiles from Tracking Scenario

Create a tracking scenario.

scene = trackingScenario;

2 Classes

2-256

Add two platforms to the tracking scenario. Specify the ClassID of the second platform as 3.

p1 = platform(scene);
p2 = platform(scene);
p2.ClassID = 3;

Extract the profiles for platforms in the scene.

profiles = platformProfiles(scene)

profiles=1×2 struct array with fields:
 PlatformID
 ClassID
 Signatures

See Also
Platform | trackingScenario

Introduced in R2018b

 platformProfiles

2-257

propagate
Propagate emissions in tracking scenario

Syntax
propEmissions = propagate(sc,emissions)
propEmissions = propagate(sc,emissions,'HasOcclusion',tfOcclusion)

Description
propEmissions = propagate(sc,emissions) returns propagated emissions that are a
combination of the input emissions and the reflections of these input emissions from the platforms in
the tracking scenario sc.

propEmissions = propagate(sc,emissions,'HasOcclusion',tfOcclusion) specifies
whether the radar channel models occlusion or not. By default, tfOcclusion is set to true.

Examples

Propagate Emissions from Platforms in Tracking Scenario

Create a tracking scenario and add two platforms. Set the position of each platform and add an
emitter.

ts = trackingScenario('UpdateRate',1);
plat1 = platform(ts);
plat1.Trajectory.Position = [0,0,0];
emitter1 = radarEmitter(1,'UpdateRate',1);
plat1.Emitters = emitter1;
plat2 = platform(ts);
plat2.Trajectory.Position = [100,0,0];
emitter2 = radarEmitter(2,'UpdateRate',1);
plat2.Emitters = emitter2;

Advance the tracking scenario, generate emissions, and obtain propagated emissions.

advance(ts);
emtx = emit(ts); % Get emissions
emprop = propagate(ts, emtx, 'HasOcclusion', true)

emprop=3×1 cell array
 {1x1 radarEmission}
 {1x1 radarEmission}
 {1x1 radarEmission}

The last emission was emitted by emitter 1 and reflected from platform 2.

disp(emprop{end})

 radarEmission with properties:

2 Classes

2-258

 PlatformID: 2
 EmitterIndex: 1
 OriginPosition: [100 0 0]
 OriginVelocity: [0 0 0]
 Orientation: [1x1 quaternion]
 FieldOfView: [180 180]
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 100.0313
 PropagationRangeRate: 0
 EIRP: 38.0131
 RCS: 10

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

emissions — Emissions in the tracking scenario
cell array of emission objects

Emissions in the tracking scenario, specified as a cell array of emission objects, such as
radarEmission and sonarEmission objects. You can obtain emissions from a tracking scenario
using the emit function.

tfOcclusion — Indicate HasOcculusion status
true (default) | false

Indicate HasOcculusion status, specified as true or false.

Output Arguments
propEmissions — Propagated emissions
cell array of emission objects

Propagated emissions in the tracking scenario, specified as a cell array of emission objects, such as
radarEmission and sonarEmission objects. The propagated emissions contain the source
emissions and the emissions reflected from the platforms.

See Also
emit | radarChannel | trackingScenario | underwaterChannel

Introduced in R2020a

 propagate

2-259

record
Run tracking scenario and record platform, sensor, and emitter information

Syntax
rec = record(sc)
rec = record(sc,format)
rec = record(___ ,Name,Value)

Description
rec = record(sc) returns a record, rec, of the evolution of the tracking scenario simulation, sc.
The function starts from the beginning of the simulation and stores the record until the end of the
simulation. A scenario simulation ends when either the scenario's StopTime is reached or any
platform in the scenario has finished its trajectory specified by the Trajectory property.

rec = record(sc,format) also specifies the format, format, of the returned platform
orientation.

rec = record(___ ,Name,Value) specifies additional recording quantities using name-value
pairs. Enclose each Name in quotes.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

format — Pose orientation format
'quaternion' (default) | 'rotmat'

Pose orientation format, specified as 'quaternion' or 'rotmat'. When specified as
'quaternion', the Orientation field of the platform pose structure is a quaternion. When
specified as 'rotmat', the Orientation field is a rotation matrix.
Example: 'rotmat'
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

IncludeEmitters — Enable recording emission information
false (default) | true

2 Classes

2-260

Enable recording emission information, specified as true or false. When specified as true, the rec
output contains Emissions, EmitterConfigurations, EmitterPlatformIDs, and
CoverageConfig fields.

IncludeSensors — Enable recording sensor information
false (default) | true

Enable recording sensor information, specified as true or false. When specified as true, the rec
output contains Detections, SensorConfiguration, SensorPlatformIDs, and
CoverageConfig fields.

InitialSeed — Initial random seed for recording
current random seed (default) | positive integer

Initial random seed for recording, specified as a positive integer. If specified as a positive integer, the
function assigns this number to the random number generator "Twister" before the recording and
resets the random number generator at the end of the recording.

HasOcclusion — Enable occlusion in signal transmission
true (default) | false

Enable occlusion in signal transmission, specified as true or false. When specified as true, the
function accounts for the effect of occlusion in radar emission propagation.

RecordingFormat — Format of recording
'Struct' (default) | 'Recording'

Format of recording, specified as 'Struct' or 'Recording'. When specified as 'Struct', the rec
output is an array of structures. When specified as 'Recording', the rec output is a
trackingScenarioRecording object.

Output Arguments
rec — Records of platform states during simulation
M-by-1 array of structures | trackingScenarioRecording object

Records of platform states during the simulation, returned as an M-by-1 array of structures if the
RecordingFormat is specified as 'struct' (default), or a trackingScenarioRecording object if
the RecordingFormat is specified as 'Recording'. M is the number of time steps in the
simulation.

Each record contains the simulation time step and the recorded information at that time. The record
structure has at least two fields: SimulationTime and Poses. It can also have other optional fields
depending on the input.

The SimulationTime field contains the simulation time of the record. Poses is an N-by-1 array of
structures, where N is the number of platforms. Each Poses structure contains these fields:

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

 record

2-261

Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector. This
is a required field with no default value. units are
meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. units are degrees per second.
The default value is [0 0 0].

The optional fields in the rec output are:

Field Description
Emissions a cell array of emissions (such as

radarEmission and sonarEmission) in the
scenario

EmitterConfigurations a struct array of emitter configurations for each
emitter

EmitterPlatformIDs a numeric array of platform IDs for each emitter
Detections a cell array of objectDetection objects

generated by the sensors in the scenario
SensorConfigurations a struct array of sensor configurations for each

sensor
SensorPlatformIDs a numeric array of platform IDs for each sensor

2 Classes

2-262

Field Description
CoverageConfig a struct array of coverage configurations for each

sensor or emitter

Each emitter configuration structure contains the following fields:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Each sensor configuration structure contains the following fields:

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Each coverage configuration structure contains these fields:

 record

2-263

Fields of configurations

Field Description
Index A unique integer to distinguish sensors or

emitters. In practice, you can use SensorIndex
or EmitterIndex of the sensor or emitter
objects, respectively.

LookAngle The current boresight angles of the sensor or
emitter, specified as:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.

FieldOfView The field of view of the sensor or emitter,
specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can only scan in the
azimuth direction, specify the limits as a 1-
by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, specify the limits as a 2-
by-2 matrix [minAz, maxAz; minEl, maxEl] in
degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the theater plot's axes.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

Examples

Record a Tracking Scenario

Create a new scenario and add a platform.

scene = trackingScenario;
plat = platform(scene);

2 Classes

2-264

Specify the platform trajectory. The distance of the trajectory is 25 meters. The trajectory velocity is
20 m/s in the x-direction.

plat.Trajectory = waypointTrajectory('Waypoints',[0 0 0; 25 0 0], ...
 'TimeOfArrival', [0 25/20]);

Run simulation and record results.

r = record(scene)

r=13×1 struct array with fields:
 SimulationTime
 Poses

Show the record at the initial time.

r(1)

ans = struct with fields:
 SimulationTime: 0
 Poses: [1×1 struct]

r(1).Poses

ans = struct with fields:
 PlatformID: 1
 ClassID: 0
 Position: [0 0 0]
 Velocity: [20 0 0]
 Acceleration: [0 0 0]
 Orientation: [1×1 quaternion]
 AngularVelocity: [0 0 0]

Show the record at the final time.

r(end)

ans = struct with fields:
 SimulationTime: 1.2000
 Poses: [1×1 struct]

r(end).Poses

ans = struct with fields:
 PlatformID: 1
 ClassID: 0
 Position: [24 0 0]
 Velocity: [20 0 0]
 Acceleration: [0 0 0]
 Orientation: [1×1 quaternion]
 AngularVelocity: [0 0 0]

 record

2-265

Load and Record Tracking Scenario

Load an air traffic control tracking scenario.

load ATCScenario scenario

Run simulation and record results.

r = record(scenario, 'quaternion', 'IncludeEmitters', true,...
 'IncludeSensors', true, 'InitialSeed', 2019)

r=3215×1 struct array with fields:
 SimulationTime
 Poses
 Emissions
 EmitterConfigurations
 EmitterPlatformIDs
 Detections
 SensorConfigurations
 SensorPlatformIDs
 CoverageConfig

Show the record at the initial time.

r(1)

ans = struct with fields:
 SimulationTime: 0
 Poses: [4×1 struct]
 Emissions: {0×1 cell}
 EmitterConfigurations: [0×1 struct]
 EmitterPlatformIDs: [0×1 double]
 Detections: {}
 SensorConfigurations: [1×1 struct]
 SensorPlatformIDs: 1
 CoverageConfig: [1×1 struct]

Show the record at the final time.

r(end)

ans = struct with fields:
 SimulationTime: 59.9947
 Poses: [4×1 struct]
 Emissions: {0×1 cell}
 EmitterConfigurations: [0×1 struct]
 EmitterPlatformIDs: [0×1 double]
 Detections: {}
 SensorConfigurations: [1×1 struct]
 SensorPlatformIDs: 1
 CoverageConfig: [1×1 struct]

See Also
trackingScenario | trackingScenarioRecording

2 Classes

2-266

Introduced in R2018b

 record

2-267

restart
Restart tracking scenario simulation

Syntax
restart(sc)

Description
restart(sc) restarts the simulation of the tracking scenario, sc, from the beginning and sets the
SimulationTime property of sc to zero.

Input Arguments
sc — Tracking scenario
trackingScenario object

Tracking scenario, specified as a trackingScenario object.

Introduced in R2018b

2 Classes

2-268

trackingScenarioRecording
Tracking scenario recording

Description
Use the trackingScenarioRecording object to record a tracking scenario.

Creation

Syntax
TSR = trackingScenarioRecording(recordedData)
TSR = trackingScenarioRecording(recordedData,Name,Value)

Description

TSR = trackingScenarioRecording(recordedData) returns a
trackingScenarioRecording object TSR using the recorded data. recordedData sets the value
of the RecordedData property.

TSR = trackingScenarioRecording(recordedData,Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes.

Input Arguments

recordedData — Recorded data
structure

Recorded data, specified as a structure. The fields of the structure are the same as the fields of the
output of the record method of trackingScenario.

Properties
RecordedData — Recorded data stored in the recording object
structure

Recorded data stored in the recording object, specified as a structure. You can set this property only
when creating the object. The fields of the structure are the same as the fields of the output of the
record method of trackingScenario.

CurrentTime — Timestamp of latest read data
0 | nonnegative scalar

Timestamp of the latest read data, specified as a nonnegative scalar. When you use the read method
on the object, the method reads the recorded dataset that has SimulationTime larger than the
CurrentTime.

 trackingScenarioRecording

2-269

CurrentStep — Step index of the latest read data
0 | nonnegative integer

Step index of the latest read data, specified as a nonnegative integer. When you use the read method
on the object, the method reads the next-step dataset.

Object Functions
read Read recorded data
isDone End-of-data status

Examples

Run a Recorded Scenario

Load recorded data from a prerecorded scenario called recordedScenario. Construct a
trackingScenarioRecording object using the recorded data.

load recordedScenario recordedData
recording = trackingScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits', ["km" "km" "km"], 'XLimits',[-50 50]*1e3,...
 'YLimits',[-50 50]*1e3,'ZLimits', [-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10],...
 'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15],...
 'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
 % Step the reader to read the next frame of data.
 [simTime,poses,dets,configs] = read(recording);
 scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
 m = configs.MeasurementParameters(1).Orientation;
 coverage.LookAngle(1) = atan2d(m(1,2),m(1,1));
 plotPlatform(to,poses(1).Position);
 plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
 plotCoverage(cp,coverage);
 if ~isempty(dets)
 plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));
 end

 % Clear the buffer when a 360 degree scan is complete.
 if configs.IsScanDone
 scanBuffer = {};
 dp.clearData;

2 Classes

2-270

 end
end

See Also
record | trackingScenario

Introduced in R2020a

 trackingScenarioRecording

2-271

read
Read recorded data

Syntax
[simTime,poses,detections,sensorConfigs,sensorPlatformIDs,emissions,
emitterConfigs,emitterPlatformIDs] = read(TSR)

Description
[simTime,poses,detections,sensorConfigs,sensorPlatformIDs,emissions,
emitterConfigs,emitterPlatformIDs] = read(TSR) returns one recorded dataset at the
simulation time, simTime, from a tracking scenario recording TSR.

Examples

Run a Recorded Scenario

Load recorded data from a prerecorded scenario called recordedScenario. Construct a
trackingScenarioRecording object using the recorded data.

load recordedScenario recordedData
recording = trackingScenarioRecording(recordedData);

Construct a theater plot to display the recorded data using multiple plotters.

tp = theaterPlot('AxesUnits', ["km" "km" "km"], 'XLimits',[-50 50]*1e3,...
 'YLimits',[-50 50]*1e3,'ZLimits', [-20 20]*1e3);
to = platformPlotter(tp,'DisplayName','Tower','Marker','d');
pp = platformPlotter(tp,'DisplayName','Targets');
dp = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','black');
cp = coveragePlotter(tp,'DisplayName','Radar Beam');

coverage = struct('Index',1,'LookAngle',[0;-7],'FieldOfView',[1;10],...
 'ScanLimits',[0 365;-12 -2],'Range',100e3,'Position',[0;0;-15],...
 'Orientation',eye(3));

Run the recorded scenario and animate the results.

scanBuffer = {};
while ~isDone(recording)
 % Step the reader to read the next frame of data.
 [simTime,poses,dets,configs] = read(recording);
 scanBuffer = [scanBuffer;dets]; %#ok<AGROW>
 m = configs.MeasurementParameters(1).Orientation;
 coverage.LookAngle(1) = atan2d(m(1,2),m(1,1));
 plotPlatform(to,poses(1).Position);
 plotPlatform(pp,reshape([poses(2:4).Position]',3,[])');
 plotCoverage(cp,coverage);
 if ~isempty(dets)
 plotDetection(dp,cell2mat(cellfun(@(c) c.Measurement(:)', scanBuffer, 'UniformOutput', false)));

2 Classes

2-272

 end

 % Clear the buffer when a 360 degree scan is complete.
 if configs.IsScanDone
 scanBuffer = {};
 dp.clearData;
 end
end

Input Arguments
TSR — Tracking scenario recording
trackingScenarioRecording object

Tracking scenario recording, specified as a trackingScenarioRecording object.

Output Arguments
simTime — Simulation time
nonnegative scalar

Simulation time, returned as a nonnegative scalar.

poses — Poses of platforms
array of structures

 read

2-273

Poses of platforms, returned as an array of structures. The fields of each structure are:

Field Description
PlatformID Unique identifier for the platform, specified as a

positive integer. This is a required field with no
default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 row vector. This
is a required field with no default value. units are
meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 row vector. units
are meters per second. The default value is [0 0
0].

Acceleration Acceleration of the platform in scenario
coordinates, specified as a 1-by-3 row vector in
meters per second squared. The default value is
[0 0 0].

Orientation Orientation of the platform with respect to the
local scenario navigation frame, specified as a
scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local navigation coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default value is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of the platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. units are degrees per second.
The default value is [0 0 0].

detections — Detections
cell array of objectDetection objects

Detections, returned as a cell array of objectDetection objects.

sensorConfigs — Sensor configurations
array of structures

Sensor configurations, returned as an array of structures. The fields of each structure are:

Field Description

2 Classes

2-274

SensorIndex Unique sensor index, returned as a positive
integer.

IsValidTime Valid detection time, returned as 0 or 1.
IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

sensorPlatformIDs — Platform IDs of sensors
array of nonnegative integers

Platform IDs of sensors, returned as an array of nonnegative integers.

emissions — Emissions
cell array of radarEmission or sonarEmission objects

Emissions, returned as a cell array of radarEmission or sonarEmission objects.

emitterConfigs — Emitter configurations
array of structures

Emitter configurations, returned as an array of structures. The fields of each structure are:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

 read

2-275

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

emitterPlatformIDs — Platform IDs of emitters
array of nonnegative integers

Platform IDs of emitters, returned as an array of nonnegative integers.

See Also
record | trackingScenario | trackingScenarioRecording

Introduced in R2020a

2 Classes

2-276

coverageConfig
Sensor and emitter coverage configuration

Syntax
configs = converageConfig(sc)
configs = converageConfig(sensors)
configs = converageConfig(sensors,positions,orientations)

Description
configs = converageConfig(sc) returns sensor coverage configuration structures in a tracking
scenario sc.

configs = converageConfig(sensors) returns sensor coverage configuration structures from a
list of sensors and emitters.

configs = converageConfig(sensors,positions,orientations) allows you to specify the
position and orientation of the platform on which each sensor or emitter is mounted.

Examples

Obtain Coverage Configuration

Create a radar sensor and a radar emitter.

radar = monostaticRadarSensor(1,'Rotator');
emitter = radarEmitter(2);

Obtain coverage configurations based on sensor's position information.

cfg = coverageConfig({radar, emitter})

cfg=1×2 struct array with fields:
 Index
 LookAngle
 FieldOfView
 ScanLimits
 Range
 Position
 Orientation

cfg2 = coverageConfig({radar, emitter},[1000 0 0 ; 0 1000 0])

cfg2=1×2 struct array with fields:
 Index
 LookAngle
 FieldOfView
 ScanLimits
 Range

 coverageConfig

2-277

 Position
 Orientation

Input Arguments
sc — Tracking scenario
trakcingScenario object

Tracking scenario, specified as a trackingScenario object.

sensors — Sensors or emitters
sensor or emitter object | N-element cell array of sensor or emitter object

Sensors or emitters, specified as a sensor or emitter object, or an N-element cell array of sensor or
emitter objects, where N is the number of sensor or emitter objects. The applicable sensor or emitter
objects include monostaticRadarSensor, radarSensor, radarEmitter, sonarSensor,
sonarEmitter, and irSensor.

positions — Position of sensor or emitter's platform
N-by-3 matrix of scalar

Position of sensor or emitter's platform, specified as an N-by-3 matrix of scalars. The ith row of the
matrix is the [x, y, z] Cartesian coordinates of the ith sensor or emitter's platform.

orientations — Orientation of sensor or emitter's platform
N-by-1 vector of quaternion

Orientation of sensor or emitter's platform, specified as an N-by-1 vector of quaternions. The ith
quaternion in the vector represents the rotation from the global or scenario frame to the ith sensor or
emitter's platform frame.

Output Arguments
configs — Sensor or emitter coverage configurations
N-element array of configuration structure

Sensor or emitter coverage configurations, returned as an N-element array of configuration
structures. N is the number of sensor or emitter objects specified in the sensors input. Each
configuration structure contains seven fields:

2 Classes

2-278

Fields of configurations

Field Description
Index A unique integer to distinguish sensors or

emitters. In practice, you can use SensorIndex
or EmitterIndex of the sensor or emitter
objects, respectively.

LookAngle The current boresight angles of the sensor or
emitter, specified as:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.

FieldOfView The field of view of the sensor or emitter,
specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can only scan in the
azimuth direction, specify the limits as a 1-
by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, specify the limits as a 2-
by-2 matrix [minAz, maxAz; minEl, maxEl] in
degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the theater plot's axes.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

See Also
coveragePlotter | plotCoverage | trackingScenario

Introduced in R2020a

 coverageConfig

2-279

rcsSignature class

Radar cross-section pattern

Description
rcsSignature creates a radar cross-section (RCS) signature object. You can use this object to model
an angle-dependent and frequency-dependent radar cross-section pattern. The radar cross-section
determines the intensity of reflected radar signal power from a target. The object models only non-
polarized signals.

Construction
rcssig = rcsSignature creates an rcsSignature object with default property values.

rcssig = rcsSignature(Name,Value) sets object properties using one or more Name,Value
pair arguments. Name is a property name and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Note You can only set property values of rcsSignature when constructing the object. The property
values are not changeable after construction.

Properties
Pattern — Sampled radar cross-section pattern
[10 10; 10 10] (default) | Q-by-P real-valued matrix | Q-by-P-by-K real-valued array

Sampled radar cross-section (RCS) pattern, specified as a scalar, a Q-by-P real-valued matrix, or a Q-
by-P-by-K real-valued array. The pattern is an array of RCS values defined on a grid of elevation
angles, azimuth angles, and frequencies. Azimuth and elevation are defined in the body frame of the
target.

• Q is the number of RCS samples in elevation.
• P is the number of RCS samples in azimuth.
• K is the number of RCS samples in frequency.

Q, P, and K usually match the length of the vectors defined in the Elevation, Azimuth, and
Frequency properties, respectively, with these exceptions:

• To model an RCS pattern for an elevation cut (constant azimuth), you can specify the RCS pattern
as a Q-by-1 vector or a 1-by-Q-by-K matrix. Then, the elevation vector specified in the Elevation
property must have length 2.

• To model an RCS pattern for an azimuth cut (constant elevation), you can specify the RCS pattern
as a 1-by-P vector or a 1-by-P-by-K matrix. Then, the azimuth vector specified in the Azimuth
property must have length 2.

2 Classes

2-280

• To model an RCS pattern for one frequency, you can specify the RCS pattern as a Q-by-P matrix.
Then, the frequency vector specified in the Frequency property must have length 2.

Example: [10,0;0,-5]
Data Types: double

Azimuth — Azimuth angles
[-180 180] (default) | length-P real-valued vector

Azimuth angles used to define the angular coordinates of each column of the matrix or array,
specified by the Pattern property. Specify the azimuth angles as a length-P vector. P must be greater
than two. Angle units are in degrees.
Example: [-45:0.5:45]
Data Types: double

Elevation — Elevation angles
[-90 90] (default) | length-Q real-valued vector

Elevation angles used to define the coordinates of each row of the matrix or array, specified by the
Pattern property. Specify the elevation angles as a length-Q vector. Q must be greater than two.
Angle units are in degrees.
Example: [-30:0.5:30]
Data Types: double

Frequency — Pattern frequencies
[-90 90] (default) | length-K real-valued vector

Frequencies used to define the applicable RCS for each page of the Pattern property. Specify the
frequencies as a length-K vector. K must be greater than two. Frequency units are in hertz.
Example: [-30:0.1:30]
Data Types: double

Methods

value Radar cross-section at specified angle and frequency

Examples

Radar Cross-Section of Ellipsoid

Specify the radar cross-section (RCS) of a triaxial ellipsoid and plot RCS values along an azimuth cut.

Specify the lengths of the axes of the ellipsoid. Units are in meters.

a = 0.15;
b = 0.20;
c = 0.95;

 rcsSignature class

2-281

Create an RCS array. Specify the range of azimuth and elevation angles over which RCS is defined.
Then, use an analytical model to compute the radar cross-section of the ellipsoid. Create an image of
the RCS.

az = [-180:1:180];
el = [-90:1:90];
rcs = rcs_ellipsoid(a,b,c,az,el);
rcsdb = 10*log10(rcs);
imagesc(az,el,rcsdb)
title('Radar Cross-Section')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

Create an rcsSignature object and plot an elevation cut at 30∘ azimuth.

rcssig = rcsSignature('Pattern',rcsdb,'Azimuth',az,'Elevation',el,'Frequency',[300e6 300e6]);
rcsdb1 = value(rcssig,30,el,300e6);
plot(el,rcsdb1)
grid
title('Elevation Profile of Radar Cross-Section')
xlabel('Elevation (deg)')
ylabel('RCS (dBsm)')

2 Classes

2-282

function rcs = rcs_ellipsoid(a,b,c,az,el)
sinaz = sind(az);
cosaz = cosd(az);
sintheta = sind(90 - el);
costheta = cosd(90 - el);
denom = (a^2*(sintheta'.^2)*cosaz.^2 + b^2*(sintheta'.^2)*sinaz.^2 + c^2*(costheta'.^2)*ones(size(cosaz))).^2;
rcs = (pi*a^2*b^2*c^2)./denom;
end

References

[1] Richards, Mark A. Fundamentals of Radar Signal Processing. New York, McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
tsSignature

 rcsSignature class

2-283

Introduced in R2018b

2 Classes

2-284

value
Class: rcsSignature

Radar cross-section at specified angle and frequency

Syntax
rcsval = value(rcssig,az,el,freq)

Description
rcsval = value(rcssig,az,el,freq) returns the value, rcsval, of the radar cross-section
(RCS) specified by the radar signature object, rcssig, computed at the specified azimuth az,
elevation el, and frequency freq. If the specified azimuth and elevation is outside of the region in
which the RCS signature is defined, the RCS value, rcsval, is returned as -Inf in dBsm.

Input Arguments
rcssig — RCS signature object
rcsSignature object

Radar cross-section signature, specified as an rcsSignature object.

az — Azimuth angle
scalar | length-M real-valued vector

Azimuth angle, specified as scalar or length-M real-valued vector. Units are in degrees. The az, el,
and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M.
Data Types: double

el — Elevation angle
scalar | length-M real-valued vector

Elevation angle, specified as scalar or length-M real-valued vector. The az, el, and freq arguments
must have the same size. You can, however, specify one or two arguments as scalars, in which case
the arguments are expanded to length-M. Units are in degrees.
Data Types: double

freq — RCS frequency
positive scalar | length-M vector with positive, real elements

RCS frequency, specified as a positive scalar or length-M vector with positive, real elements. The az,
el, and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M vectors. Units are in Hertz.
Example: 100e6
Data Types: double

 value

2-285

Output Arguments
rcsval — Radar cross-section
scalar | real-valued length-M vector

Radar cross-section, returned as a scalar or real-valued length-M vector. Units are in dBsm.

Examples

Radar Cross-Section of Ellipsoid

Specify the radar cross-section (RCS) of a triaxial ellipsoid and plot RCS values along an azimuth cut.

Specify the lengths of the axes of the ellipsoid. Units are in meters.

a = 0.15;
b = 0.20;
c = 0.95;

Create an RCS array. Specify the range of azimuth and elevation angles over which RCS is defined.
Then, use an analytical model to compute the radar cross-section of the ellipsoid. Create an image of
the RCS.

az = [-180:1:180];
el = [-90:1:90];
rcs = rcs_ellipsoid(a,b,c,az,el);
rcsdb = 10*log10(rcs);
imagesc(az,el,rcsdb)
title('Radar Cross-Section')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

2 Classes

2-286

Create an rcsSignature object and plot an elevation cut at 30∘ azimuth.

rcssig = rcsSignature('Pattern',rcsdb,'Azimuth',az,'Elevation',el,'Frequency',[300e6 300e6]);
rcsdb1 = value(rcssig,30,el,300e6);
plot(el,rcsdb1)
grid
title('Elevation Profile of Radar Cross-Section')
xlabel('Elevation (deg)')
ylabel('RCS (dBsm)')

 value

2-287

function rcs = rcs_ellipsoid(a,b,c,az,el)
sinaz = sind(az);
cosaz = cosd(az);
sintheta = sind(90 - el);
costheta = cosd(90 - el);
denom = (a^2*(sintheta'.^2)*cosaz.^2 + b^2*(sintheta'.^2)*sinaz.^2 + c^2*(costheta'.^2)*ones(size(cosaz))).^2;
rcs = (pi*a^2*b^2*c^2)./denom;
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2018b

2 Classes

2-288

tsSignature class
Target strength pattern

Description
tsSignature creates a sonar target strength (TS) signature object. You can use this object to model
an angle-dependent and frequency-dependent target strength pattern. Target strength determines
the intensity of reflected sound signal power from a target.

Construction
tssig = tsSignature creates a tsSignature object with default property values.

tssig = tsSignature(Name,Value) sets object properties using one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Note You can only set property values of tsSignature when constructing the object. The property
values are not changeable after construction.

Properties
Pattern — Target strength pattern
[10 10; 10 10] (default) | Q-by-P real-valued matrix | Q-by-P-by-K real-valued array

Sampled target strength pattern, specified as a scalar, a Q-by-P real-valued matrix, or a Q-by-P-by-K
real-valued array. The pattern is an array of TS values defined on a grid of elevation angles, azimuth
angles, and frequencies. Azimuth and elevation are defined in the body frame of the target.

• Q is the number of TS samples in elevation.
• P is the number of TS samples in azimuth.
• K is the number of TS samples in frequency.

Q, P, and K usually match the length of the vectors defined in the Elevation, Azimuth, and
Frequency properties, respectively, with these exceptions:

• To model a TS pattern for an elevation cut (constant azimuth), you can specify the TS pattern as a
Q-by-1 vector or a 1-by-Q-by-K matrix. Then, the elevation vector specified in the Elevation
property must have length 2.

• To model a TS pattern for an azimuth cut (constant elevation), you can specify the TS pattern as a
1-by-P vector or a 1-by-P-by-K matrix. Then, the azimuth vector specified in the Azimuth property
must have length 2.

• To model a TS pattern for one frequency, you can specify the TS pattern as a Q-by-P matrix. Then,
the frequency vector specified in the Frequency property must have length 2.

Example: [10,0;0,-5]

 tsSignature class

2-289

Data Types: double

Azimuth — Azimuth angles
[-180 180] (default) | length-P real-valued vector

Azimuth angles used to define the angular coordinates of each column of the matrix or array specified
by the Pattern property. Specify the azimuth angles as a length-P vector. P must be greater than
two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

Elevation — Elevation angles
[-90 90] (default) | length-Q real-valued vector

Elevation angles used to define the coordinates of each row of the matrix or array specified by the
Pattern property. Specify the elevation angles as a length-Q vector. Q must be greater than two.
Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

Frequency — Pattern frequencies
[-90 90] (default) | length-K real-valued vector

Frequencies used to define the applicable RCS for each page of the Pattern property. Specify the
frequencies as a length-K vector. K must be greater than two. Frequency units are in hertz.
Example: [-30:0.1:30]
Data Types: double

Methods
value Target strength at specified angle and frequency

Examples

Target Strength of Rigid Cylinder

Specify the target strength (TS) of a 5m long rigid cylinder immersed in water and plot TS values
along an azimuth cut. Assume the short-wavelength approximation. The cylinder radius is 2m. The
speed of sound is 1520 m/s.

L = 5;
a = 2;

Create an array of target strengths at two wavelengths. First, specify the range of azimuth and
elevation angles over which TS is defined. Then, use an analytical model to compute the target
strength. Create an image of the TS.

lambda = [0.12, .1];
c = 1520.0;

2 Classes

2-290

az = [-20:0.1:20];
el = [-10:0.1:10];
ts1 = ts_cylinder(L,a,az,el,lambda(1));
ts2 = ts_cylinder(L,a,az,el,lambda(2));
tsdb1 = 10*log10(ts1);
tsdb2 = 10*log10(ts2);
imagesc(az,el,tsdb1)
title('Target Strength')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

Create a tsSignature object and plot an elevation cut at 30∘ azimuth.

tsdb(:,:,1) = tsdb1;
tsdb(:,:,2) = tsdb2;
freq = c./lambda;
tssig = tsSignature('Pattern',tsdb,'Azimuth',az,'Elevation',el,'Frequency',freq);
ts = value(tssig,30,el,freq(1));
plot(el,tsdb1)
grid
title('Elevation Profile of Target Strength')
xlabel('Elevation (deg)')
ylabel('TS (dBsm)')

 tsSignature class

2-291

function ts = ts_cylinder(L,a,az,el,lambda)
k = 2*pi/lambda;
beta = k*L*sind(el')*ones(size(az));
gamma = cosd(el')*ones(size(az));
ts = a*L^2*(sinc(beta).^2).*gamma.^2/2/lambda;
ts = max(ts,10^(-5));
end

function s = sinc(theta)
s = ones(size(theta));
idx = (abs(theta) <= 1e-2);
s(idx) = 1 - 1/6*(theta(idx)).^2;
s(~idx) = sin(theta(~idx))./theta(~idx);
end

References

[1] Urich, Robert J. Principles of Underwater Sound, 3rd ed. New York: McGraw-Hill, Inc. 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Classes

2-292

See Also
Classes
rcsSignature

Introduced in R2018b

 tsSignature class

2-293

value
Class: tsSignature

Target strength at specified angle and frequency

Syntax
tsval = value(tssig,az,el,freq)

Description
tsval = value(tssig,az,el,freq) returns the value, tsval, of the target strength specified by
the target strength signature object, tssig, computed at azimuth az, elevation el, and frequency
freq. If the specified azimuth and elevation is outside of the region in which the target strength
signature is defined, the target strength value, tsval, is returned as -Inf in dBsm.

Input Arguments
tssig — Target strength signature
tsSignature object

Target strength signature, specified as a tsSignature object.

az — Azimuth angle
scalar | length-M real-valued vector

Azimuth angle, specified as scalar or length-M real-valued vector. Units are in degrees. The az, el,
and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M.
Data Types: double

el — Elevation angle
scalar | length-M real-valued vector

Elevation angle, specified as scalar or length-M real-valued vector. The az, el, and freq arguments
must have the same size. You can, however, specify one or two arguments as scalars, in which case
the arguments are expanded to length-M. Units are in degrees.
Data Types: double

freq — TS frequency
positive scalar | length-M vector with positive, real elements

TS frequency, specified as a positive scalar or length-M vector with positive, real elements. The az,
el, and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case the arguments are expanded to length-M. Units are in Hertz.
Example: 20e3
Data Types: double

2 Classes

2-294

Output Arguments
tssval — Target strength
scalar | real-valued length-M vector

Target strength, returned as a scalar or real-valued length-M vector. Units are in dBsm.

Examples

Target Strength of Rigid Cylinder

Specify the target strength (TS) of a 5m long rigid cylinder immersed in water and plot TS values
along an azimuth cut. Assume the short-wavelength approximation. The cylinder radius is 2m. The
speed of sound is 1520 m/s.

L = 5;
a = 2;

Create an array of target strengths at two wavelengths. First, specify the range of azimuth and
elevation angles over which TS is defined. Then, use an analytical model to compute the target
strength. Create an image of the TS.

lambda = [0.12, .1];
c = 1520.0;
az = [-20:0.1:20];
el = [-10:0.1:10];
ts1 = ts_cylinder(L,a,az,el,lambda(1));
ts2 = ts_cylinder(L,a,az,el,lambda(2));
tsdb1 = 10*log10(ts1);
tsdb2 = 10*log10(ts2);
imagesc(az,el,tsdb1)
title('Target Strength')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

 value

2-295

Create a tsSignature object and plot an elevation cut at 30∘ azimuth.

tsdb(:,:,1) = tsdb1;
tsdb(:,:,2) = tsdb2;
freq = c./lambda;
tssig = tsSignature('Pattern',tsdb,'Azimuth',az,'Elevation',el,'Frequency',freq);
ts = value(tssig,30,el,freq(1));
plot(el,tsdb1)
grid
title('Elevation Profile of Target Strength')
xlabel('Elevation (deg)')
ylabel('TS (dBsm)')

2 Classes

2-296

function ts = ts_cylinder(L,a,az,el,lambda)
k = 2*pi/lambda;
beta = k*L*sind(el')*ones(size(az));
gamma = cosd(el')*ones(size(az));
ts = a*L^2*(sinc(beta).^2).*gamma.^2/2/lambda;
ts = max(ts,10^(-5));
end

function s = sinc(theta)
s = ones(size(theta));
idx = (abs(theta) <= 1e-2);
s(idx) = 1 - 1/6*(theta(idx)).^2;
s(~idx) = sin(theta(~idx))./theta(~idx);
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2018b

 value

2-297

irSignature class

Infrared platform signature

Description
The irSignature creates an infrared (IR) signature object. You can use this object to model an
angle-dependent contrast radiant intensity of a platform. The radiant intensity is with respect to the
background.

Construction
irsig = irSignature creates an irSignature object with default property values.

irsig = irSignature(Name,Value) sets object properties using one or more Name,Value pair
arguments. Name is a property name and Value is the corresponding value. Name must appear inside
single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN. Any unspecified properties take default values.

Note You can only set property values of irSignature when constructing the object. The property
values are not changeable after construction.

Properties
Pattern — Sampled IR intensity pattern
[50 50; 50 50] (default) | Q-by-P real-valued matrix

Sampled contrast IR intensity pattern, specified as a scalar, or a Q-by-P real-valued matrix. The
pattern is an array of IR values defined on a grid of elevation angles and azimuth angles. Azimuth and
elevation are defined in the body frame of the target. Units are dBw/sr.

• Q is the number of IR samples in elevation.
• P is the number of IR samples in azimuth.

Q and P usually match the length of the vectors defined in the Elevation and Azimuth properties,
respectively, with these exceptions:

• If you want to model an IR pattern for an elevation cut (constant azimuth), you can specify the IR
pattern as a Q-by-1 vector. Then, the elevation vector specified in the Elevation property must
have length-2.

• If you want to model an IR pattern for an azimuth cut (constant elevation), you can specify the IR
pattern as a 1-by-P vector. Then, the azimuth vector specified in the Azimuth property must have
length-2.

Example: [10,0;0,-5]
Data Types: double

2 Classes

2-298

Azimuth — Azimuth angles
[-180 180] (default) | length-P real-valued vector

Azimuth angles used to define the angular coordinates of each column of the matrix or array specified
by the Pattern property. Specify the azimuth angles as a length P vector. P must be greater than
two. Angle units are in degrees.
Example: [-45:0.5:45]
Data Types: double

Elevation — Elevation angles
[-90 90] (default) | length-Q real-valued vector

Elevation angles used to define the coordinates of each row of the matrix or array specified by the
Pattern property. Specify the elevation angles as a length Q vector. Q must be greater than two.
Angle units are in degrees.
Example: [-30:0.5:30]
Data Types: double

Methods
value Infrared intensity at specified angle and frequency

Examples

Create Direction-Dependent IR Signature

Create and display an IR intensity signature. The signature depends on azimuth and elevation.

Define the azimuth and elevation angle sample points.

az = -90:90;
el = [-30:30];

Create the IR intensity signature pattern.

pat = 50*cosd(2*el.')*cosd(az).^2;
irsig = irSignature('Pattern',pat,'Azimuth',az,'Elevation',el);

Display the IR pattern.

imagesc(irsig.Azimuth,irsig.Elevation,irsig.Pattern)
xlabel('Azimuth (deg)')
ylabel('Elevation')
title('Infrared Signature Pattern (dBw/sr)')

 irSignature class

2-299

Get the IR intensity value at 25 degrees azimuth and 10 degrees elevation.

value(irsig,25,10)

ans = 38.5929

Get IR intensity value outside of the valid elevation span.

value(irsig,25,35)

ans = -Inf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
rcsSignature | tsSignature

Introduced in R2018b

2 Classes

2-300

value
Class: irSignature

Infrared intensity at specified angle and frequency

Syntax
irval = value(irsig,az,el)

Description
irval = value(irsig,az,el) returns the value of the IR intensity, irval, specified by the IR
signature object, irsig, computed at the azimuth, az, and elevation, el. If the specified azimuth and
elevation is outside of the region in which the IR signature is defined, the IR intensity is returned as -
Inf in dBw/sr.

Input Arguments
irsig — IR signature object
irSignature object

Radar cross-section signature, specified as an irSignature object.

az — Azimuth angle
scalar | real-valued length-M vector

Azimuth angle, specified as scalar or length-M real-valued vector. Units are in degrees. The az, el,
and freq arguments must have the same size. You can, however, specify one or two arguments as
scalars, in which case, the arguments are expanded to length-M.
Example: 30
Data Types: double

el — Elevation angle
scalar | real-valued length-M vector

Elevation angle, specified as scalar or real-valued length-M vector. The az and el arguments must
have the same size. You can, however, specify one or two arguments as scalars, in which case, the
arguments are expanded to length-M. Units are in degrees.
Example: -4
Data Types: double

Output Arguments
irval — Infrared intensity
scalar | real-valued length-M vector

Infrared intensity, returned as a scalar or real-valued length-M vector. Units are in dBw/sr.

 value

2-301

Examples

Create Direction-Dependent IR Signature

Create and display an IR intensity signature. The signature depends on azimuth and elevation.

Define the azimuth and elevation angle sample points.

az = -90:90;
el = [-30:30];

Create the IR intensity signature pattern.

pat = 50*cosd(2*el.')*cosd(az).^2;
irsig = irSignature('Pattern',pat,'Azimuth',az,'Elevation',el);

Display the IR pattern.

imagesc(irsig.Azimuth,irsig.Elevation,irsig.Pattern)
xlabel('Azimuth (deg)')
ylabel('Elevation')
title('Infrared Signature Pattern (dBw/sr)')

Get the IR intensity value at 25 degrees azimuth and 10 degrees elevation.

value(irsig,25,10)

2 Classes

2-302

ans = 38.5929

Get IR intensity value outside of the valid elevation span.

value(irsig,25,35)

ans = -Inf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2018b

 value

2-303

trackingKF
Linear Kalman filter for object tracking

Description
A trackingKF object is a discrete-time linear Kalman filter used to track the positions and velocities
of target platforms.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The filter is linear when the evolution of the state follows a
linear motion model and the measurements are linear functions of the state. The filter assumes that
both the process and measurements have additive noise. When the process noise and measurement
noise are Gaussian, the Kalman filter is the optimal minimum mean squared error (MMSE) state
estimator for linear processes.

You can use this object in these ways:

• Explicitly set the motion model. Set the motion model property, MotionModel, to Custom, and
then use the StateTransitionModel property to set the state transition matrix.

• Set the MotionModel property to a predefined state transition model:

Motion Model
'1D Constant Velocity'
'1D Constant Acceleration'
'2D Constant Velocity'
'2D Constant Acceleration'
'3D Constant Velocity'
'3D Constant Acceleration'

Creation
Syntax
filter = trackingKF
filter = trackingKF(F,H)
filter = trackingKF(F,H,G)
filter = trackingKF('MotionModel',model)
filter = trackingKF(___ ,Name,Value)

Description

filter = trackingKF creates a linear Kalman filter object for a discrete-time, 2-D, constant-
velocity moving object. The Kalman filter uses default values for the StateTransitionModel,
MeasurementModel, and ControlModel properties. The function also sets the MotionModel
property to '2D Constant Velocity'.

2 Classes

2-304

filter = trackingKF(F,H) specifies the state transition model, F, and the measurement model,
H. With this syntax, the function also sets the MotionModel property to 'Custom'.

filter = trackingKF(F,H,G) also specifies the control model, G. With this syntax, the function
also sets the MotionModel property to 'Custom'.

filter = trackingKF('MotionModel',model) sets the motion model property, MotionModel,
to model.

filter = trackingKF(___ ,Name,Value) configures the properties of the Kalman filter by using
one or more Name,Value pair arguments and any of the previous syntaxes. Any unspecified
properties take default values.

Properties
State — Kalman filter state
0 (default) | real-valued scalar | real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector. M is the size of the state vector.
Typical state vector sizes are described in the MotionModel property. When the initial state is
specified as a scalar, the state is expanded into an M-element vector.

You can set the state to a scalar in these cases:

• When the MotionModel property is set to 'Custom', M is determined by the size of the state
transition model.

• When the MotionModel property is set to '2D Constant Velocity', '3D Constant
Velocity', '2D Constant Acceleration', or '3D Constant Acceleration', you must
first specify the state as an M-element vector. You can use a scalar for all subsequent
specifications of the state vector.

Example: [200;0.2;-40;-0.01]
Data Types: double

StateCovariance — State estimation error covariance
1 (default) | positive scalar | positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive scalar or a positive-definite real-valued M-by-M matrix,
where M is the size of the state. Specifying the value as a scalar creates a multiple of the M-by-M
identity matrix. This matrix represents the uncertainty in the state.
Example: [20 0.1; 0.1 1]
Data Types: double

MotionModel — Kalman filter motion model
'Custom' (default) | '1D Constant Velocity' | '2D Constant Velocity' | '3D Constant
Velocity' | '1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Kalman filter motion model, specified as 'Custom' or one of these predefined models. In this case,
the state vector and state transition matrix take the form specified in the table.

 trackingKF

2-305

Motion Model Form of State Vector Form of State Transition
Model

'1D Constant Velocity' [x;vx] [1 dt; 0 1]
'2D Constant Velocity' [x;vx;y;vy] Block diagonal matrix with the

[1 dt; 0 1] block repeated
for the x and y spatial
dimensions

'3D Constant Velocity' [x;vx;y;vy;z;vz] Block diagonal matrix with the
[1 dt; 0 1] block repeated
for the x, y, and z spatial
dimensions.

'1D Constant
Acceleration'

[x;vx;ax] [1 dt 0.5*dt^2; 0 1 dt;
0 0 1]

'2D Constant
Acceleration'

[x;vx;ax;y;vy;ay] Block diagonal matrix with [1
dt 0.5*dt^2; 0 1 dt; 0 0
1] blocks repeated for the x and
y spatial dimensions

'3D Constant
Acceleration'

[x;vx,ax;y;vy;ay;z;vz;az
]

Block diagonal matrix with the
[1 dt 0.5*dt^2; 0 1 dt;
0 0 1] block repeated for the
x, y, and z spatial dimensions

When the ControlModel property is defined, every nonzero element of the state transition model is
replaced by dt.

When MotionModel is 'Custom', you must specify a state transition model matrix, a measurement
model matrix, and optionally, a control model matrix as input arguments to the Kalman filter.
Data Types: char

StateTransitionModel — State transition model between time steps
[1 1 0 0; 0 1 0 0; 0 0 1 1; 0 0 0 1] (default) | real-valued M-by-M matrix

State transition model between time steps, specified as a real-valued M-by-M matrix. M is the size of
the state vector. In the absence of controls and noise, the state transition model relates the state at
any time step to the state at the previous step. The state transition model is a function of the filter
time step size.
Example: [1 0; 1 2]
Dependencies

To enable this property, set MotionModel to 'Custom'.
Data Types: double

ControlModel — Control model
[] (default) | M-by-L real-valued matrix

Control model, specified as an M-by-L matrix. M is the dimension of the state vector and L is the
number of controls or forces. The control model adds the effect of controls on the evolution of the
state.
Example: [.01 0.2]

2 Classes

2-306

Data Types: double

ProcessNoise — Covariance of process noise
1 (default) | positive scalar | real-valued positive-definite M-by-M matrix

Covariance of process noise, specified as a positive scalar or an M-by-M matrix where M is the
dimension of the state. If you specify this property as a scalar, the filter uses the value as a multiplier
of the M-by-M identity matrix. Process noise expresses the uncertainty in the dynamic model and is
assumed to be zero-mean Gaussian white noise.
Example: [1.0 0.05; 0.05 2]
Data Types: double

MeasurementModel — Measurement model from state vector
[1 0 0 0; 0 0 1 0] (default) | real-valued N-by-M matrix

Measurement model from the state vector, specified as a real-valued N-by-M matrix, where N is the
size of the measurement vector and M is the size of the state vector. The measurement model is a
linear matrix that determines predicted measurements from the predicted state.
Example: [1 0.5 0.01; 1.0 1 0]
Data Types: double

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued N-by-N matrix

Covariance of the measurement noise, specified as a positive scalar or a positive-definite, real-valued
N-by-N matrix, where N is the size of the measurement vector. If you specify this property as a scalar,
the filter uses the value as a multiplier of the N-by-N identity matrix. Measurement noise represents
the uncertainty of the measurement and is assumed to be zero-mean Gaussian white noise.
Example: 0.2
Data Types: double

Object Functions
predict Predict state and state estimation error covariance of linear Kalman filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Constant-Velocity Linear Kalman Filter

Create a linear Kalman filter that uses a 2D Constant Velocity motion model. Assume that the
measurement consists of the object's x-y location.

Specify the initial state estimate to have zero velocity.

 trackingKF

2-307

x = 5.3;
y = 3.6;
initialState = [x;0;y;0];
KF = trackingKF('MotionModel','2D Constant Velocity','State',initialState);

Create the measured positions from a constant-velocity trajectory.

vx = 0.2;
vy = 0.1;
T = 0.5;
pos = [0:vx*T:2;5:vy*T:6]';

Predict and correct the state of the object.

for k = 1:size(pos,1)
 pstates(k,:) = predict(KF,T);
 cstates(k,:) = correct(KF,pos(k,:));
end

Plot the tracks.

plot(pos(:,1),pos(:,2),'k.', pstates(:,1),pstates(:,3),'+', ...
 cstates(:,1),cstates(:,3),'o')
xlabel('x [m]')
ylabel('y [m]')
grid
xt = [x-2 pos(1,1)+0.1 pos(end,1)+0.1];
yt = [y pos(1,2) pos(end,2)];
text(xt,yt,{'First measurement','First position','Last position'})
legend('Object position', 'Predicted position', 'Corrected position')

2 Classes

2-308

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector. L is the size of the control model.

Model Parameter Description Filter Property Size
Fk State transition model

that specifies a linear
model of the force-free
equations of motion of
the object. This model,
together with the
control model,
determines the state at
time k+1 as a function
of the state at time k.
The state transition
model depends on the
time step of the filter.

StateTransitionMod
el

M-by-M

 trackingKF

2-309

Model Parameter Description Filter Property Size
Hk Measurement model

that specifies how the
measurements are
linear functions of the
state.

MeasurementModel N-by-M

Gk Control model
describing the controls
or forces acting on the
object.

ControlModel M-by-L

xk Estimate of the state of
the object.

State M-

Pk Estimated covariance
matrix of the state. The
covariance represents
the uncertainty in the
values of the state.

StateCovariance M-by-M

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is a measure of the
uncertainty in your
dynamic model and is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
represents the
uncertainty of the
measurement and is
assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N

Algorithms
The Kalman filter describes the motion of an object by estimating its state. The state generally
consists of object position and velocity and possibly its acceleration. The state can span one, two, or
three spatial dimensions. Most frequently, you use the Kalman filter to model constant-velocity or
constant-acceleration motion. A linear Kalman filter assumes that the process obeys the following
linear stochastic difference equation:

xk + 1 = Fkxk + Gkuk + vk

xk is the state at step k. Fk is the state transition model matrix. Gk is the control model matrix. uk
represents known generalized controls acting on the object. In addition to the specified equations of
motion, the motion may be affected by random noise perturbations, vk. The state, the state transition

2 Classes

2-310

matrix, and the controls together provide enough information to determine the future motion of the
object in the absence of noise.

In the Kalman filter, the measurements are also linear functions of the state,

zk = Hkxk + wk

where Hk is the measurement model matrix. This model expresses the measurements as functions of
the state. A measurement can consist of an object position, position and velocity, or its position,
velocity, and acceleration, or some function of these quantities. The measurements can also include
noise perturbations, wk.

These equations, in the absence of noise, model the actual motion of the object and the actual
measurements. The noise contributions at each step are unknown and cannot be modeled. Only the
noise covariance matrices are known. The state covariance matrix is updated with knowledge of the
noise covariance only.

For a brief description of the linear Kalman filter algorithm, see “Linear Kalman Filters”.

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems." Transaction of the
ASME–Journal of Basic Engineering, Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House. 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• When you create a trackingKF object, and you specify the MotionModel property as any value
other than 'Custom', then you must specify the state vector explicitly at construction time using
the State property. The choice of motion model determines the size of the state vector. However,
motion models do not specify the data type, for example, double precision or single precision. Both
size and data type are required for code generation.

See Also
Functions
initcakf | initcvkf

Objects
trackerGNN | trackerTOMHT | trackingABF | trackingCKF | trackingEKF | trackingGSF |
trackingIMM | trackingMSCEKF | trackingPF | trackingUKF

Topics
“Linear Kalman Filters”

 trackingKF

2-311

Introduced in R2018b

2 Classes

2-312

trackingEKF
Extended Kalman filter for object tracking

Description
A trackingEKF object is a discrete-time extended Kalman filter used to track the positions and
velocities of target platforms.

A Kalman filter is a recursive algorithm for estimating the evolving state of a process when
measurements are made on the process. The extended Kalman filter can model the evolution of a
state when the state follows a nonlinear motion model, when the measurements are nonlinear
functions of the state, or when both conditions apply. The extended Kalman filter is based on the
linearization of the nonlinear equations. This approach leads to a filter formulation similar to the
linear Kalman filter, trackingKF.

The process and measurements can have Gaussian noise, which you can include in these ways:

• Add noise to both the process and the measurements. In this case, the sizes of the process noise
and measurement noise must match the sizes of the state vector and measurement vector,
respectively.

• Add noise in the state transition function, the measurement model function, or in both functions.
In these cases, the corresponding noise sizes are not restricted.

Creation

Syntax
filter = trackingEKF
filter = trackingEKF(transitionfcn,measurementfcn,state)
filter = trackingEKF(___ ,Name,Value)

Description

filter = trackingEKF creates an extended Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingEKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingEKF(___ ,Name,Value) configures the properties of the extended Kalman
filter object by using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.

 trackingEKF

2-313

Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values.

The valid syntaxes for the state transition function depend on whether the filter has additive process
noise. The table shows the valid syntaxes based on the value of the HasAdditiveProcessNoise
property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingEKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc

2 Classes

2-314

Data Types: function_handle

StateTransitionJacobianFcn — Jacobian of state transition function
function handle

Jacobian of the state transition function, specified as a function handle. This function has the same
input arguments as the state transition function.

The valid syntaxes for the Jacobian of the state transition function depend on whether the filter has
additive process noise. The table shows the valid syntaxes based on the value of the
HasAdditiveProcessNoise property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

Jx(k) = statejacobianfcn(x(k))
Jx(k) = statejacobianfcn(x(k),parameters)

• x(k) is the state at time k.
• Jx(k) denotes the Jacobian of the predicted

state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k))
[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dt)
[Jx(k),Jw(k)] = statejacobianfcn(__,parameters)

• x(k) is the state at time k
• w(k) is a sample Q-element vector of the

process noise at time k. Q is the size of the
process noise covariance. The process noise
vector in the nonadditive case does not need
to have the same dimensions as the state
vector.

• Jx(k) denotes the Jacobian of the predicted
state with respect to the previous state. This
Jacobian is an M-by-M matrix at time k. The
Jacobian function can take additional input
parameters, such as control inputs or time-
step size.

• Jw(k) denotes the M-by-Q Jacobian of the
predicted state with respect to the process
noise elements.

• dt is the time step of the trackingEKF filter,
filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the Jacobian function,
such as control inputs or time-step size.

If this property is not specified, the Jacobians are computed by numeric differencing at each call of
the predict function. This computation can increase the processing time and numeric inaccuracy.
Example: @constaccjac

 trackingEKF

2-315

Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a nonlinear
function that models measurements from the predicted state. Input to the function is the M-element
state vector. The output is the N-element measurement vector. The function can take additional input
arguments, such as sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
function handle

2 Classes

2-316

Jacobian of the measurement function, specified as a function handle. The function has the same
input arguments as the measurement function. The function can take additional input parameters,
such sensor position and orientation.

• If HasAdditiveMeasurmentNoise is true, specify the Jacobian function using one of these
syntaxes:

Jmx(k) = measjacobianfcn(x(k))

Jmx(k) = measjacobianfcn(x(k),parameters)

x(k) is the state at time k. Jx(k) denotes the N-by-M Jacobian of the measurement function with
respect to the state. The parameters argument stands for all arguments required by the
measurement function.

• If HasAdditiveMeasurmentNoise is false, specify the Jacobian function using one of these
syntaxes:

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k))

[Jmx(k),Jmv(k)] = measjacobianfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is an R-dimensional sample noise vector. Jmx(k) denotes the
N-by-M Jacobian of the measurement function with respect to the state. Jmv(k) denotes the
Jacobian of the N-by-R measurement function with respect to the measurement noise. The
parameters argument stands for all arguments required by the measurement function.

If not specified, measurement Jacobians are computed using numerical differencing at each call to
the correct function. This computation can increase processing time and numerical inaccuracy.
Example: @cameasjac
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

 trackingEKF

2-317

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Constant-Velocity Extended Kalman Filter

Create a two-dimensional trackingEKF object and use name-value pairs to define the
StateTransitionJacobianFcn and MeasurementJacobianFcn properties. Use the predefined
constant-velocity motion and measurement models and their Jacobians.

EKF = trackingEKF(@constvel,@cvmeas,[0;0;0;0], ...
 'StateTransitionJacobianFcn',@constveljac, ...
 'MeasurementJacobianFcn',@cvmeasjac);

Run the filter. Use the predict and correct functions to propagate the state. You may call predict
and correct in any order and as many times you want. Specify the measurement in Cartesian
coordinates.

measurement = [1;1;0];
[xpred, Ppred] = predict(EKF);
[xcorr, Pcorr] = correct(EKF,measurement);
[xpred, Ppred] = predict(EKF);
[xpred, Ppred] = predict(EKF)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 0 0
 4.7500 3.7500 0 0
 0 0 11.7500 4.7500
 0 0 4.7500 3.7500

2 Classes

2-318

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Filter Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector

h Measurement function
that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the object
state.

State M-element vector

Pk State error covariance
matrix representing the
uncertainty in the
values of the state.

StateCovariance M-by-M matrix

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is a measure of the
uncertainty in the
dynamic model. It is
assumed to be zero-
mean white Gaussian
noise.

ProcessNoise M-by-M matrix when
HasAdditiveProcess
Noise is true. Q-by-Q
matrix when
HasAdditiveProcess
Noise is false

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement. It
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N matrix when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.

 trackingEKF

2-319

Filter Parameter Description Filter Property Size
F Function determining

Jacobian of propagated
state with respect to
previous state.

StateTransitionJac
obianFcn

M-by-M matrix

H Function determining
Jacobians of
measurement with
respect to the state and
measurement noise.

MeasurementJacobia
nFcn

N-by-M for state vector
Jacobian and N-by-R for
measurement vector
Jacobian

Algorithms
The extended Kalman filter estimates the state of a process governed by this nonlinear stochastic
equation:

xk + 1 = f (xk, uk, wk, t)

xk is the state at step k. f() is the state transition function. Random noise perturbations, wk, can affect
the object motion. The filter also supports a simplified form,

xk + 1 = f (xk, uk, t) + wk

To use the simplified form, set HasAdditiveProcessNoise to true.

In the extended Kalman filter, the measurements are also general functions of the state:

zk = h(xk, vk, t)

h(xk,vk,t) is the measurement function that determines the measurements as functions of the state.
Typical measurements are position and velocity or some function of position and velocity. The
measurements can also include noise, represented by vk. Again, the filter offers a simpler formulation.

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion and the actual measurements of the object. However,
the noise contribution at each step is unknown and cannot be modeled deterministically. Only the
statistical properties of the noise are known.

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.” Transactions of the
ASME–Journal of Basic Engineering. Vol. 82, Series D, March 1960, pp. 35–45.

[3] Blackman, Samuel and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech
House.1999.

[4] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House. 1986.

2 Classes

2-320

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaekf | initctekf |
initcvekf

Objects
trackerGNN | trackerTOMHT | trackingABF | trackingCKF | trackingGSF | trackingIMM |
trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Topics
“Extended Kalman Filters”

Introduced in R2018b

 trackingEKF

2-321

trackingUKF
Unscented Kalman filter for object tracking

Description
The trackingUKF object is a discrete-time unscented Kalman filter used to track the positions and
velocities of objects target platforms.

An unscented Kalman filter is a recursive algorithm for estimating the evolving state of a process
when measurements are made on the process. The unscented Kalman filter can model the evolution
of a state that obeys a nonlinear motion model. The measurements can also be nonlinear functions of
the state, and the process and measurements can have noise.

Use an unscented Kalman filter when one of both of these conditions apply:

• The current state is a nonlinear function of the previous state.
• The measurements are nonlinear functions of the state.

The unscented Kalman filter estimates the uncertainty about the state, and its propagation through
the nonlinear state and measurement equations, by using a fixed number of sigma points. Sigma
points are chosen by using the unscented transformation, as parameterized by the Alpha, Beta, and
Kappa properties.

Creation

Syntax
filter = trackingUKF
filter = trackingUKF(transitionfcn,measurementfcn,state)
filter = trackingUKF(___ ,Name,Value)

Description

filter = trackingUKF creates an unscented Kalman filter object for a discrete-time system by
using default values for the StateTransitionFcn, MeasurementFcn, and State properties. The
process and measurement noises are assumed to be additive.

filter = trackingUKF(transitionfcn,measurementfcn,state) specifies the state
transition function, transitionfcn, the measurement function, measurementfcn, and the initial
state of the system, state.

filter = trackingUKF(___ ,Name,Value) configures the properties of the unscented Kalman
filter object using one or more Name,Value pair arguments and any of the previous syntaxes. Any
unspecified properties have default values.

2 Classes

2-322

Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector, where M is the size of the filter state.
Example: [200; 0.2]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

State error covariance, specified as a positive-definite real-valued M-by-M matrix where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: [20 0.1; 0.1 1]

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values.

The valid syntaxes for the state transition function depend on whether the filter has additive process
noise. The table shows the valid syntaxes based on the value of the HasAdditiveProcessNoise
property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingUKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc

 trackingUKF

2-323

Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real scalar | positive-definite real-valued matrix

Process noise covariance, specified as a scalar or matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive-definite real-valued M-by-M matrix. M is the dimension of the state vector.
When specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

You must specify ProcessNoise before any call to the predict function. In later calls to
predict, you can optionally specify the process noise as a scalar. In this case, the process noise
matrix is a multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05; 0.05 2]

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a nonlinear
function that models measurements from the predicted state. Input to the function is the M-element
state vector. The output is the N-element measurement vector. The function can take additional input
arguments, such as sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

x(k) is the state at time k and z(k) is the predicted measurement at time k. The parameters
argument stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

x(k) is the state at time k and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

2 Classes

2-324

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

You must specify MeasurementNoise before any call to the correct function. After the first call
to correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

Alpha — Sigma point spread around state
1.0e-3 (default) | positive scalar greater than 0 and less than or equal to 1

Sigma point spread around state, specified as a positive scalar greater than 0 and less than or equal
to 1.

Beta — Distribution of sigma points
2 (default) | nonnegative scalar

Distribution of sigma points, specified as a nonnegative scalar. This parameter incorporates
knowledge of the noise distribution of states for generating sigma points. For Gaussian distributions,
setting Beta to 2 is optimal.

Kappa — Secondary scaling factor for generating sigma points
0 (default) | scalar from 0 to 3

Secondary scaling factor for generation of sigma points, specified as a scalar from 0 to 3. This
parameter helps specify the generation of sigma points.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples

 trackingUKF

2-325

Constant-Velocity Unscented Kalman Filter

Create a trackingUKF object using the predefined constant-velocity motion model, constvel, and
the associated measurement model, cvmeas. These models assume that the state vector has the form
[x;vx;y;vy] and that the position measurement is in Cartesian coordinates, [x;y;z]. Set the sigma point
spread property to 1e-2.

filter = trackingUKF(@constvel,@cvmeas,[0;0;0;0],'Alpha',1e-2);

Run the filter. Use the predict and correct functions to propagate the state. You can call predict
and correct in any order and as many times as you want.

meas = [1;1;0];
[xpred, Ppred] = predict(filter);
[xcorr, Pcorr] = correct(filter,meas);
[xpred, Ppred] = predict(filter);
[xpred, Ppred] = predict(filter)

xpred = 4×1

 1.2500
 0.2500
 1.2500
 0.2500

Ppred = 4×4

 11.7500 4.7500 -0.0000 0.0000
 4.7500 3.7500 -0.0000 0.0000
 -0.0000 -0.0000 11.7500 4.7500
 0.0000 0.0000 4.7500 3.7500

More About
Filter Parameters

This table relates the filter model parameters to the object properties. M is the size of the state
vector. N is the size of the measurement vector.

Model Parameter Description Filter Property Size
f State transition function

that specifies the
equations of motion of
the object. This function
determines the state at
time k+1 as a function
of the state and the
controls at time k. The
state transition function
depends on the time-
increment of the filter.

StateTransitionFcn Function returns M-
element vector

2 Classes

2-326

Model Parameter Description Filter Property Size
h Measurement function

that specifies how the
measurements are
functions of the state
and measurement noise.

MeasurementFcn Function returns N-
element vector

xk Estimate of the object
state.

State M

Pk State error covariance
matrix representing the
uncertainty in the
values of the state

StateCovariance M-by-M

Qk Estimate of the process
noise covariance matrix
at step k. Process noise
is measure of the
uncertainty in your
dynamic model and is
assumed to be zero-
mean white Gaussian
noise

ProcessNoise M-by-M when
HasAdditiveProcess
Noise is true. Q-by-Q
when
HasAdditiveProcess
Noiseis false.

Rk Estimate of the
measurement noise
covariance at step k.
Measurement noise
reflects the uncertainty
of the measurement and
is assumed to be zero-
mean white Gaussian
noise.

MeasurementNoise N-by-N when
HasAdditiveMeasure
mentNoise is true. R-
by-R when
HasAdditiveMeasure
mentNoise is false.

α Determines spread of
sigma points.

Alpha scalar

β A priori knowledge of
sigma point distribution.

Beta scalar

κ Secondary scaling
parameter.

Kappa scalar

Algorithms
The unscented Kalman filter estimates the state of a process governed by a nonlinear stochastic
equation

xk + 1 = f (xk, uk, wk, t)

where xk is the state at step k. f() is the state transition function, uk are the controls on the process.
The motion may be affected by random noise perturbations, wk. The filter also supports a simplified
form,

xk + 1 = f (xk, uk, t) + wk

 trackingUKF

2-327

To use the simplified form, set HasAdditiveProcessNoise to true.

In the unscented Kalman filter, the measurements are also general functions of the state,

zk = h(xk, vk, t)

where h(xk,vk,t) is the measurement function that determines the measurements as functions of the
state. Typical measurements are position and velocity or some function of these. The measurements
can include noise as well, represented by vk. Again the class offers a simpler formulation

zk = h(xk, t) + vk

To use the simplified form, set HasAdditiveMeasurmentNoise to true.

These equations represent the actual motion of the object and the actual measurements. However,
the noise contribution at each step is unknown and cannot be modeled exactly. Only statistical
properties of the noise are known.

References
[1] Brown, R.G. and P.Y.C. Wang. Introduction to Random Signal Analysis and Applied Kalman

Filtering. 3rd Edition. New York: John Wiley & Sons, 1997.

[2] Kalman, R. E. “A New Approach to Linear Filtering and Prediction Problems.” Transactions of the
ASME–Journal of Basic Engineering. Vol. 82, Series D, March 1960, pp. 35–45.

[3] Wan, Eric A. and R. van der Merwe. “The Unscented Kalman Filter for Nonlinear Estimation”.
Adaptive Systems for Signal Processing, Communications, and Control. AS-SPCC, IEEE, 2000,
pp.153–158.

[4] Wan, Merle. “The Unscented Kalman Filter.” In Kalman Filtering and Neural Networks. Edited by
Simon Haykin. John Wiley & Sons, Inc., 2001.

[5] Sarkka S. “Recursive Bayesian Inference on Stochastic Differential Equations.” Doctoral
Dissertation. Helsinki University of Technology, Finland. 2006.

[6] Blackman, Samuel. Multiple-Target Tracking with Radar Applications. Artech House, 1986.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
cameas | cameasjac | constacc | constaccjac | constturn | constturnjac | constvel |
constveljac | ctmeas | ctmeasjac | cvmeas | cvmeasjac | initcaukf | initctukf |
initcvukf

Objects
trackerGNN | trackerTOMHT | trackingABF | trackingCKF | trackingEKF | trackingGSF |
trackingIMM | trackingKF | trackingMSCEKF | trackingPF

2 Classes

2-328

Introduced in R2018b

 trackingUKF

2-329

radarEmission class
Emitted radar signal structure

Description
The radarEmission class creates a radar emission object. This object contains all the properties
that describe a signal radiated by a radar source.

Construction
signal = radarEmission creates a sonarEmission object with default properties. The object
represents radar signals from emitters, channels, and sensors.

signal = radarEmission(Name,Value) sets object properties specified by one or more
Name,Value pair arguments. Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
PlatformID — Platform identifier
positive integer

Platform identifier, specified as a positive integer. The emitter is mounted on the platform with this
ID. Each platform identifier is unique within a scenario.
Example: 5
Data Types: double

EmitterIndex — Emitter identifier
positive integer

Emitter identifier, specified as a positive integer. Each emitter index is unique.
Example: 2
Data Types: double

OriginPosition — Location of emitter
[0 0 0] (default) | 1-by-3 real-valued vector

Location of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters.
Example: [100 -500 1000]
Data Types: double

OriginVelocity — Velocity of emitter
[0 0 0] (default) | 1-by-3 real-valued vector

2 Classes

2-330

Velocity of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters per second.
Example: [0 -50 100]
Data Types: double

Orientation — Orientation of emitter
quaternion(1,0,0,0) (default) | quaternion | 3-by-3 real-valued orthogonal matrix

Orientation of the emitter in scenario coordinates, specified as a quaternion or 3-by-3 real-valued
orthogonal matrix.
Example: eye(3)
Data Types: double

FieldOfView — Field of view of emitter
[1;5] | 2-by-1 vector of positive real values

Field of view of emitter, specified as a 2-by-1 vector of positive real values, [azfov; elfov]. The field of
view defines the total angular extent of the signal emitted. Each component must lie in the interval
(0, 180]. Units are in degrees.
Example: [14;7]
Data Types: double

EIRP — Effective isotropic radiated power
0 (default) | scalar

Effective isotropic radiated power, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

RCS — Cumulative radar cross-section
0 (default) | scalar

Cumulative radar cross-section, specified as a scalar. Units are in dBsm.
Example: 10
Data Types: double

CenterFrequency — Center frequency of radar signal
300e6 (default) | positive scalar

Center frequency of the signal, specified as a positive scalar. Units are in Hz.
Example: 100e6
Data Types: double

Bandwidth — Half-power bandwidth of radar signal
30e6 (default) | positive scalar

Half-power bandwidth of the radar signal, specified as a positive scalar. Units are in Hz.
Example: 5e3

 radarEmission class

2-331

Data Types: double

WaveformType — Waveform type identifier
0 (default) | nonnegative integer

Waveform type identifier, specified as a nonnegative integer.
Example: 5e3
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain associated with the signal waveform, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

PropagationRange — Distance signal propagates
0 (default) | nonnegative scalar

Total distance over which the signal has propagated, specified as a nonnegative scalar. For direct-
path signals, the range is zero. Units are in meters.
Example: 1000
Data Types: double

PropagationRangeRate — Range rate of signal propagation path
0 (default) | scalar

Total range rate for the path over which the signal has propagated, specified as a scalar. For direct-
path signals, the range rate is zero. Units are in meters per second.
Example: 10
Data Types: double

Examples

Create Radar Emission Object

Create a radarEmission object with specified properties.

signal = radarEmission('PlatformID',10,'EmitterIndex',25, ...
 'OriginPosition',[100,3000,50],'EIRP',10,'CenterFrequency',200e6, ...
 'Bandwidth',10e3)

signal =
 radarEmission with properties:

 PlatformID: 10
 EmitterIndex: 25
 OriginPosition: [100 3000 50]
 OriginVelocity: [0 0 0]
 Orientation: [1x1 quaternion]

2 Classes

2-332

 FieldOfView: [180 180]
 CenterFrequency: 200000000
 Bandwidth: 10000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 EIRP: 10
 RCS: 0

Detect Radar Emission with ESM Sensor

Create an radar emission and then detect the emission using a radarSensor object.

First, create an radar emission.

orient = quaternion([180 0 0],'eulerd','zyx','frame');
rfSig = radarEmission('PlatformID',1,'EmitterIndex',1,'EIRP',100, ...
 'OriginPosition',[30 0 0],'Orientation',orient);

Then, create an ESM sensor using radarSensor.

sensor = radarSensor(1);

Detect the RF emission.

time = 0;
[dets,numDets,config] = sensor(rfSig,time)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
emissionsInBody | radarChannel | radarEmitter | sonarEmission

Introduced in R2018b

 radarEmission class

2-333

sonarEmission class
Emitted sonar signal structure

Description
The sonarEmission class creates a sonar emission object. This object contains all the properties
that describe a signal radiated by a sonar source.

Construction
signal = sonarEmission creates a sonarEmission object with default properties. The object
represents sonar signals from emitters, channels, and sensors.

signal = sonarEmission(Name,Value) sets object properties specified by one or more
Name,Value pair arguments. Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
PlatformID — Platform identifier
positive integer

Platform identifier, specified as a positive integer. The emitter is mounted on the platform with this
ID. Each platform identifier is unique within a scenario.
Example: 5
Data Types: double

EmitterIndex — Emitter identifier
positive integer

Emitter identifier, specified as a positive integer. Each emitter index is unique.
Example: 2
Data Types: double

OriginPosition — Location of emitter
[0 0 0] (default) | 1-by-3 real-valued vector

Location of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters.
Example: [100 -500 1000]
Data Types: double

OriginVelocity — Velocity of emitter
[0 0 0] (default) | 1-by-3 real-valued vector

2 Classes

2-334

Velocity of the emitter in scenario coordinates, specified as a 1-by-3 real-valued vector. Units are in
meters per second.
Example: [0 -50 100]
Data Types: double

Orientation — Orientation of emitter
quaternion(1,0,0,0) (default) | quaternion | 3-by-3 real-valued orthogonal matrix

Orientation of the emitter in scenario coordinates, specified as a quaternion or 3-by-3 real-valued
orthogonal matrix.
Example: eye(3)
Data Types: double

FieldOfView — Field of view of emitter
[1;5] | 2-by-1 vector of positive real values

Field of view of emitter, specified as a 2-by-1 vector of positive real values, [azfov; elfov]. The field of
view defines the total angular extent of the signal emitted. Each component must lie in the interval
(0, 180]. Units are in degrees.
Example: [14;7]
Data Types: double

SourceLevel — Cumulative source level
0 (default) | scalar

Cumulative source level of an emitted signal, specified as a scalar. The cumulative source level of the
emitted signal in decibels is relative to the intensity of a sound wave having an rms pressure of 1
micro-pascal. Units are in dB // 1 micro-pascal.
Example: 10
Data Types: double

TargetStrength — Cumulative target strength
0 (default) | scalar

Cumulative target strength of the source platform emitting the signal, specified as a scalar. Units are
in dB.
Example: 10
Data Types: double

CenterFrequency — Center frequency of sonar signal
20e3 (default) | positive scalar

Center frequency of the signal, specified as a positive scalar. Units are in Hz.
Example: 10.5e3
Data Types: double

Bandwidth — Half-power bandwidth of sonar signal
2e3 (default) | positive scalar

 sonarEmission class

2-335

Half-power bandwidth of the sonar signal, specified as a positive scalar. Units are in Hz.
Example: 1e3
Data Types: double

WaveformType — Waveform type identifier
0 (default) | nonnegative integer

Waveform type identifier, specified as a nonnegative integer.
Example: 5e3
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain associated with the signal waveform, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

PropagationRange — Distance signal propagates
0 (default) | nonnegative scalar

Total distance over which the signal has propagated, specified as a nonnegative scalar. For direct-
path signals, the range is zero. Units are in meters.
Example: 1000
Data Types: double

PropagationRangeRate — Range rate of signal propagation path
0 (default) | scalar

Total range rate for the path over which the signal has propagated, specified as a scalar. For direct-
path signals, the range rate is zero. Units are in meters per second.
Example: 10
Data Types: double

Examples
Create Sonar Emission Object

Create a sonarEmission object with specified properties.

signal = sonarEmission('PlatformID',6,'EmitterIndex',2, ...
 'OriginPosition',[100,3000,50],'TargetStrength',20, ...
 'CenterFrequency',20e3,'Bandwidth',500.0)

signal =
 sonarEmission with properties:

 PlatformID: 6
 EmitterIndex: 2
 OriginPosition: [100 3000 50]

2 Classes

2-336

 OriginVelocity: [0 0 0]
 Orientation: [1x1 quaternion]
 FieldOfView: [180 180]
 CenterFrequency: 20000
 Bandwidth: 500
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 SourceLevel: 0
 TargetStrength: 20

Detect Sonar Emission with Passive Sensor

Create a sonar emission and then detect the emission using a sonarSensor object.

First, create a sonar emission.

orient = quaternion([180 0 0],'eulerd','zyx','frame');
sonarSig = sonarEmission('PlatformID',1,'EmitterIndex',1, ...
 'OriginPosition',[30 0 0],'Orientation',orient, ...
 'SourceLevel',140,'TargetStrength',100);

Then create a passive sonar sensor.

sensor = sonarSensor(1,'No scanning');

Detect the sonar emission.

time = 0;
[dets, numDets, config] = sensor(sonarSig,time)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
emissionsInBody | emissionsInBody | radarEmission | sonarEmitter |
underwaterChannel

Introduced in R2018b

 sonarEmission class

2-337

theaterPlot
Plot objects, detections, and tracks in trackingScenario

Description
The theaterPlot object is used to display a plot of a trackingScenario. This type of plot can be
used with sensors capable of detecting objects.

To display aspects of a driving scenario on a bird’s-eye plot:

1 Create a theaterPlot object.
2 Create plotters for the aspects of the tracking scenario that you want to plot.
3 Use the plotters with their corresponding plot functions to display those aspects on the theater

plot.

This table shows the plotter functions to use based on the tracking scenario aspect that you want to
plot.

Tracking Scenario Aspect to
Plot

Plotter Creation Function Plotter Display Function

Sensor coverage areas coveragePlotter plotCoverage
Sensor detections detectionPlotter plotDetection
Object orientation orientationPlotter plotOrientation
Platform platformPlotter plotPlatform
Track trackPlotter plotTrack
Object trajectory trajectoryPlotter plotTrajectory

Creation

Syntax
tp = theaterPlot
tp = theaterPlot(Name,Value)

Description

tp = theaterPlot creates a theater plot in a new figure.

tp = theaterPlot(Name,Value) creates a theater plot in a new figure with optional input
“Properties” on page 2-339 specified by one or more Name,Value pair arguments. Properties can be
specified in any order as Name1,Value1,...,NameN,ValueN. Enclose each property name in
quotes.

2 Classes

2-338

Properties
Parent — Parent axes
theaterPlot handle

Parent axes, specified as a theaterPlot handle. If you do not specify Parent, then theaterPlot
creates axes in a new figure.

Plotters — Plotters created for theater plot
array of plotter objects

Plotters created for the theater plot, specified as an array of plotter objects.

XLimits — Limits of x-axis
two-element row vector

Limits of the x-axis, specified as a two-element row vector, [x1,x2]. The values x1 and x2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used. See “Orientation, Position, and Coordinate” for
coordinate system definitions.
Data Types: double

YLimits — Limits of y-axis
two-element row vector

Limits of the y-axis, specified as a two-element row vector, [y1,y2]. The values y1 and y2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used. See “Orientation, Position, and Coordinate” for
coordinate system definitions.
Data Types: double

ZLimits — Limits of z-axis
two-element row vector

Limits of the z-axis, specified as a two-element row vector, [z1,z2]. The values z1 and z2 are the lower
and upper limits, respectively, for the theater plot display. If you do not specify the limits, then the
default values for the Parent property are used. See “Orientation, Position, and Coordinate” for
coordinate system definitions.
Data Types: double

Object Functions

Plotter Creation
coveragePlotter Create coverage plotter
detectionPlotter Create detection plotter
orientationPlotter Create orientation plotter
platformPlotter Create platform plotter
trackPlotter Create track plotter
trajectoryPlotter Create trajectory plotter

 theaterPlot

2-339

Plotter Display
plotCoverage Plot set of coverages in theater coverage plotter
plotDetection Plot set of detections in theater detection plotter
plotOrientation Plot set of orientations in orientation plotter
plotPlatform Plot set of platforms in platform plotter
plotTrack Plot set of tracks in theater track plotter
plotTrajectory Plot set of trajectories in trajectory plotter

Plotter Utilities
clearData Clear data from specific plotter of theater plot
clearPlotterData Clear plotter data from theater plot
findPlotter Return array of plotters associated with theater plot

Examples

Create and Display Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0 90],'YLim',[-35 35],'ZLim',[0 50]);

Display radar detections with coordinates at 30, − 5, 5 , 50, − 10, 10 , and 40, 7, 40 . Set the
view so that you are looking on the yz-plane. Confirm the y- and z-coordinates of the radar
detections are correct.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');
plotDetection(radarPlotter, [30 -5 5; 50 -10 10; 40 7 40])
grid on
view(90,0)

2 Classes

2-340

The view can be changed by opening the plot in a figure window and selecting Tools > Rotate 3D in
the figure menu.

Limitations
You cannot use the rectangle-zoom feature in the theaterPlot figure.

See Also
trackingScenario

Introduced in R2018b

 theaterPlot

2-341

clearPlotterData
Clear plotter data from theater plot

Syntax
clearPlotterData(tp)

Description
clearPlotterData(tp) clears data shown in the plot from all the plotters used in the theater plot,
tp. Legend entries and coverage areas are not cleared from the plot.

Examples

Clear Plotter Data from Theater Plot

Create a theater plot and a detection plotter.

tp = theaterPlot('XLim',[0, 90],'YLim',[-35, 35],'ZLim',[0, 10]);
detectionPlotter(tp,'DisplayName','Radar Detections');

2 Classes

2-342

Use findPlotter to locate the plotter by its display name.

radarPlotter = findPlotter(tp,'DisplayName','Radar Detections');

Plot three detections.

plotDetection(radarPlotter, [30, 5, 1; 30, -10, 2; 30, 15, 1]);

Clear data from the plot.

clearPlotterData(tp);

 clearPlotterData

2-343

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

See Also
clearData | findPlotter | theaterPlot

Introduced in R2018b

2 Classes

2-344

coveragePlotter
Create coverage plotter

Syntax
cPlotter = coveragePlotter(tp)
cPlotter = coveragePlotter(tp,Name,Value)

Description
cPlotter = coveragePlotter(tp) creates a CoveragePlotter object use with the theater plot
object, tp.

cPlotter = coveragePlotter(tp,Name,Value) creates a coverage plotter with additional
options specified by one or more Name,Value pair arguments.

Examples

Plot Coverage in Theater Plot

Create a theater plot and set the limits for its axes. Create a coverage plotter with DisplayName set
to 'Sensor Coverage'.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40],'ZLim',[-40 40]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');

Set up the configuration of the sensors whose coverage is to be plotted.

 sensor = struct('Index',1,'ScanLimits',[-45 45],'FieldOfView',[10;40],...
 'LookAngle',-10,'Range',30,'Position',zeros(1,3),'Orientation',zeros(1,3));

Plot the coverage using the plotCoverage function and and visualize the results. The dark blue
represents the current sensor beam, and the light blue repreents the coverage area.

plotCoverage(covp,sensor)
view(70,30)

 coveragePlotter

2-345

Animate Sensor Coverage Plot

Create a theater plot and create a coverage plotter.

tp = theaterPlot('XLim',[-1e7 1e7],'YLim',[-1e7 1e7],'ZLim',[-2e6 1e6]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');
view(25,20)

Model a non-scanning radar and a raster scanning radar.

radarIndex = 1;
radar = monostaticRadarSensor(radarIndex,'No Scanning');
RasterIndex = 2;
raster = monostaticRadarSensor(RasterIndex,'Raster');

Create a target platform.

tgt = struct(...
 'PlatformID', 1, ...
 'Position', [0 -50e3 -1e3], ...
 'Speed', -1e3);

Simulate sensors and visualize their scanning pattern.

time = 0;
timestep = 1;

2 Classes

2-346

stopTime = 90;
while time < stopTime
 time = time+timestep;
 radar(tgt,time);
 raster(tgt,time);

 % Obtain sensor configuration using coverageConfig.
 radarcov = coverageConfig(radar);
 ircov = coverageConfig(raster);

 % Update plotter
 plotCoverage(covp,[radarcov,ircov],...
 [radarIndex, RasterIndex],...
 {'blue','red'}...
);
 pause(0.03)
end

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

 coveragePlotter

2-347

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName', 'Radar1'

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

Color — Coverage area and sensor beam color
'auto' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Coverage area and sensor beam color, specified as a character vector, a string scalar, an RGB triplet,
a hexadecimal color code, or 'auto'. When a color is specified, the plotter draws all coverage areas
and beams with the specified color. If the color is set to 'auto', the plotter uses the axis color order
to assign colors to sensors based on their sensor indices.

Alpha — Face alpha values of coverage area and sensor beam
[0.7 0.05] (default) | 2-element vector of nonnegative scalars

Face alpha values of the coverage area and the sensor beam, specified as a 2-element vector of
nonnegative scalars. The first element is the value applied to the beam and the second element is the
value applied to the coverage area.

Tag — Tag associated with plotter
'PlotterN' (default) | character vector | string

Tag associated with the plotter, specified as a character vector or string. You can use the
findPlotter function to identify plotters based on their tag. The default value is 'PlotterN',
where N is an integer that corresponds to the Nth plotter associated with the theaterPlot.

Output Arguments
cPlotter — Coverage plotter
CoveragePlotter object

Coverage plotter, returned as a CoveragePlotter object. You can modify this object by changing its
property values. The property names correspond to the name-value pair arguments of the
coveragePlotter function.

To plot the coverage, use the plotCoverage function.

See Also
clearData | clearPlotterData | plotCoverage | theaterPlot

Introduced in R2020a

2 Classes

2-348

plotCoverage
Plot set of coverages in theater coverage plotter

Syntax
plotCoverage(cPlotter,configurations)
plotCoverage(cPlotter,configurations,indices,colors)

Description
plotCoverage(cPlotter,configurations) specifies configurations of M sensors or emitters
whose coverage areas and beams are plotted by the CoveragePlotter object, cPlotter. See
coveragePlotter on how to create a CoveragePlotter object.

plotCoverage(cPlotter,configurations,indices,colors) specifies the color of each
coverage and beam plot pair using a list of indices and colors.

Examples

Plot Coverage in Theater Plot

Create a theater plot and set the limits for its axes. Create a coverage plotter with DisplayName set
to 'Sensor Coverage'.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40],'ZLim',[-40 40]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');

Set up the configuration of the sensors whose coverage is to be plotted.

 sensor = struct('Index',1,'ScanLimits',[-45 45],'FieldOfView',[10;40],...
 'LookAngle',-10,'Range',30,'Position',zeros(1,3),'Orientation',zeros(1,3));

Plot the coverage using the plotCoverage function and and visualize the results. The dark blue
represents the current sensor beam, and the light blue repreents the coverage area.

plotCoverage(covp,sensor)
view(70,30)

 plotCoverage

2-349

Animate Sensor Coverage Plot

Create a theater plot and create a coverage plotter.

tp = theaterPlot('XLim',[-1e7 1e7],'YLim',[-1e7 1e7],'ZLim',[-2e6 1e6]);
covp = coveragePlotter(tp,'DisplayName','Sensor Coverage');
view(25,20)

Model a non-scanning radar and a raster scanning radar.

radarIndex = 1;
radar = monostaticRadarSensor(radarIndex,'No Scanning');
RasterIndex = 2;
raster = monostaticRadarSensor(RasterIndex,'Raster');

Create a target platform.

tgt = struct(...
 'PlatformID', 1, ...
 'Position', [0 -50e3 -1e3], ...
 'Speed', -1e3);

Simulate sensors and visualize their scanning pattern.

time = 0;
timestep = 1;

2 Classes

2-350

stopTime = 90;
while time < stopTime
 time = time+timestep;
 radar(tgt,time);
 raster(tgt,time);

 % Obtain sensor configuration using coverageConfig.
 radarcov = coverageConfig(radar);
 ircov = coverageConfig(raster);

 % Update plotter
 plotCoverage(covp,[radarcov,ircov],...
 [radarIndex, RasterIndex],...
 {'blue','red'}...
);
 pause(0.03)
end

Input Arguments
cPlotter — Coverage plotter object
CoveragePloter object

Coverage plotter object, created by the coveragePlotter function.

 plotCoverage

2-351

configurations — Sensor or emitter configurations
array of structures

Sensor or emitter configurations, specified as an array of structures. Each structure corresponds to
the configuration of a sensor or emitter. The fields of each structure are:

Fields of configurations

Field Description
Index A unique integer to distinguish sensors or

emitters. In practice, you can use SensorIndex
or EmitterIndex of the sensor or emitter
objects, respectively.

LookAngle The current boresight angles of the sensor or
emitter, specified as:

• A scalar in degrees if scanning only in the
azimuth direction.

• A two-element vector [azimuth; elevation]
in degrees if scanning both in the azimuth and
elevation directions.

FieldOfView The field of view of the sensor or emitter,
specified as a two-element vector [azimuth;
elevation] in degrees.

ScanLimits The minimum and maximum angles the sensor or
emitter can scan from its Orientation.

• If the sensor or emitter can only scan in the
azimuth direction, specify the limits as a 1-
by-2 row vector [minAz, maxAz] in degrees.

• If the sensor or emitter can also scan in the
elevation direction, specify the limits as a 2-
by-2 matrix [minAz, maxAz; minEl, maxEl] in
degrees.

Range The range of the beam and coverage area of the
sensor or emitter in meters.

Position The origin position of the sensor or emitter,
specified as a three-element vector [X, Y, Z] on
the theater plot's axes.

Orientation The rotation transformation from the scenario or
global frame to the sensor or emitter mounting
frame, specified as a rotation matrix, a
quaternion, or three Euler angles in ZYX
sequence.

Tip If either the value of Position field or the value of the Orientation field is NaN, the
corresponding coverage area and beam will not be plotted.

2 Classes

2-352

indices — Sensor or emitter indices
N-element array of nonnegative integers

Sensor or emitter indices, specified as an N-element array of nonnegative integers. This argument
allows you to specify the color of each coverage area and beam pair with the corresponding index.
Example: [1;2;4]

colors — Coverage plotter colors
N-element array of character vector | N-element array of string scalar | N-element array of RGB
triplet | N-element array of hexadecimal color code

Coverage plotter colors, specified as an N-element vector of character vectors, string scalars, RGB
triplets, or hexadecimal color codes. N is the number of elements in the indices array. The coverage
area and beam pair indexed by the ith element in the indices array is plotted with the color
specified by the ith element of the colors array.

See Also
clearData | clearPlotterData | coveragePlotter | theaterPlot

Introduced in R2020a

 plotCoverage

2-353

detectionPlotter
Create detection plotter

Syntax
detPlotter = detectionPlotter(tp)
detPlotter = detectionPlotter(tp,Name,Value)

Description
detPlotter = detectionPlotter(tp) creates a detection plotter for use with the theater plot
tp.

detPlotter = detectionPlotter(tp,Name,Value) creates a detection plotter with additional
options specified by one or more Name,Value pair arguments.

Examples

Create and Update Detections for Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a detection plotter with the name Radar Detections.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');

Update the detection plotter with three detections labeled 'R1', 'R2', and 'R3' positioned in units
of meters at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 with corresponding velocities (in m/s) of
−10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotDetection(radarPlotter, positions, velocities, labels)

2 Classes

2-354

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

HistoryDepth — Number of previous updates to display
0 (default) | nonnegative integer less than or equal to 10,000

 detectionPlotter

2-355

Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 10,000. If set to 0, then no
previous updates are rendered.

Marker — Marker symbol
'o' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Value Description
'+' Plus sign
'o' Circle (default)
'*' Asterisk
'.' Point
'x' Cross
's' or 'square' Square
'd' or 'diamond' Diamond
'v' Downward-pointing triangle
'^' Upward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' or 'pentagram' Five-pointed star (pentagram)
'h' or 'hexagram' Six-pointed star (hexagram)
'none' No marker symbol

MarkerSize — Size of marker
6 (default) | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling platforms
10 (default) | positive integer

2 Classes

2-356

Font size for labeling detections, specified as the comma-separated pair consisting of 'FontSize'
and a positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

See Also
clearData | clearPlotterData | plotDetection | theaterPlot

Introduced in R2018b

 detectionPlotter

2-357

findPlotter
Return array of plotters associated with theater plot

Syntax
p = findPlotter(tp)
p = findPlotter(tp,Name,Value)

Description
p = findPlotter(tp) returns the array of plotters associated with the theater plot, tp.

Note In general, it is faster to use the plotters directly from the plotter creation methods of
theaterPlot. Use findPlotter when it is otherwise inconvenient to use the plotter handles
directly.

p = findPlotter(tp,Name,Value) specifies one or more Name,Value pair arguments required
to match for the theater plot.

Examples

Find Plotter in Theater Plot

Create a theater plot and generate detection and platform plotters. Set the value of the Tag property
of the detection plotter to 'radPlot'.

tp = theaterPlot('XLim',[0, 90],'YLim',[-35, 35]);
detectionPlotter(tp,'DisplayName','Radar Detections','Tag','radPlot');
platformPlotter(tp, 'DisplayName', 'Platforms');

Use findPlotter to locate the detection plotter based on its Tag property.

radarPlotter = findPlotter(tp,'Tag','radPlot')

radarPlotter =
 DetectionPlotter with properties:

 HistoryDepth: 0
 Marker: 'o'
 MarkerSize: 6
 MarkerEdgeColor: [0 0 0]
 MarkerFaceColor: 'none'
 FontSize: 10
 LabelOffset: [0 0 0]
 VelocityScaling: 1
 Tag: 'radPlot'
 DisplayName: 'Radar Detections'

2 Classes

2-358

Use the detection plotter to display the located objects.

plotDetection(radarPlotter, [30, 5, 0; 30, -20, 0; 30, 15, 0]);

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Tag','thisPlotter'

DisplayName — Display name
character vector | string scalar

Display name of the plotter to find, specified as the comma-separated pair consisting of
'DisplayName' and a character vector or string scalar. DisplayName is the plotter name that
appears in the legend. To match missing legend entries, specify DisplayName as ''.

 findPlotter

2-359

Tag — Tag of plotter
character vector | string scalar

Tag of plotter to find, specified as the comma-separated pair consisting of 'Tag'a character vector or
string scalar. By default, plotters have a Tag property with a default value of 'PlotterN', where N
is an integer that corresponds to the Nth plotter associated with the theater plot tp.

See Also
clearData | clearPlotterData | theaterPlot

Introduced in R2018b

2 Classes

2-360

orientationPlotter
Create orientation plotter

Syntax
oPlotter = orientationPlotter(tp)
oPlotter = orientationPlotter(tp,Name,Value)

Description
oPlotter = orientationPlotter(tp) creates an orientation plotter for use with the theater plot
tp.

oPlotter = orientationPlotter(tp,Name,Value) creates an orientation plotter with
additional options specified by one or more Name,Value pair arguments.

Examples

Show Orientation of Oscillating Device

This example shows how to animate the orientation of an oscillating device.

Load rpy_9axis.mat. The data in rpy_9axis.mat is recorded accelerometer, gyroscope, and
magnetometer sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis),
then roll (around x-axis). The device's x-axis was pointing southward when recorded.

ld = load('rpy_9axis.mat')

ld = struct with fields:
 Fs: 200
 sensorData: [1x1 struct]

Set the sampling frequency. Extract the accelerometer and gyroscope data. Set the decimation factor
to 2. Use fuse to create an indirect Kalman sensor fusion filter from the data.

accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
Fs = ld.Fs;
decim = 2;
fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Obtain the pose information of the fused data.

pose = fuse(accel,gyro);

Create a theater plot. Add to the theater plot an orientation plotter with 'DisplayName' set to
'Fused Data' and 'LocalAxesLength' set to 2.

 orientationPlotter

2-361

tp = theaterPlot('XLimit',[-2 2],'YLimit',[-2 2],'ZLimit',[-2 2]);
op = orientationPlotter(tp,'DisplayName','Fused Data',...
 'LocalAxesLength',2);

Loop through the pose information to animate the changing orientation.

for i=1:numel(pose)
 plotOrientation(op, pose(i))
 drawnow
end

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'HistoryDepth',6

2 Classes

2-362

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

HistoryDepth — Number of previous track updates to display
0 (default) | nonnegative integer less than or equal to 100

Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 100. If set to 0, then no previous
updates are rendered.

Marker — Marker symbol
'o' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Value Description
'+' Plus sign
'o' Circle (default)
'*' Asterisk
'.' Point
'x' Cross
's' or 'square' Square
'd' or 'diamond' Diamond
'v' Downward-pointing triangle
'^' Upward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' or 'pentagram' Five-pointed star (pentagram)
'h' or 'hexagram' Six-pointed star (hexagram)
'none' No marker symbol

MarkerSize — Size of marker
10 (default) | positive integer

Size of marker, specified in points as the comma-separated pair consisting of 'MarkerSize' and a
positive integer.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, string scalar, an RGB triplet, or a hexadecimal color code. The default color is
'black'.

 orientationPlotter

2-363

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling tracks
10 (default) | positive integer

Font size for labeling tracks, specified as the comma-separated pair consisting of 'FontSize' and a
positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

LocalAxesLength — Length of line
1 (default) | positive scalar

Length of line used to denote each of the local x-, y-, and z-axes of the given orientation, specified as
the comma-separated pair consisting of 'LocalAxesLength' and a positive scalar.
'LocalAxesLength' is in meters.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

See Also
clearData | clearPlotterData | plotOrientation | theaterPlot

Introduced in R2018b

2 Classes

2-364

platformPlotter
Create platform plotter

Syntax
pPlotter = platformPlotter(tp)
pPlotter = platformPlotter(tp,Name,Value)

Description
pPlotter = platformPlotter(tp) creates a platform plotter for use with the theater plot, tp.

pPlotter = platformPlotter(tp,Name,Value) creates a platform plotter with additional
options specified by one or more Name,Value pair arguments.

Examples

Create and Update Theater Plot Platforms

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a platform plotter with the name 'Platforms'.

plotter = platformPlotter(tp,'DisplayName','Platforms');

Update the theater plot with three platforms labeled, 'R1', 'R2', and 'R3'. Position the three
platforms, in units of meters, at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 , with corresponding
velocities (in m/s) of −10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotPlatform(plotter, positions, velocities, labels);

 platformPlotter

2-365

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

Marker — Marker symbol
'^' (default) | character vector | string scalar

2 Classes

2-366

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
values.

Value Description
'+' Plus sign
'o' Circle
'*' Asterisk
'.' Point
'x' Cross
's' or 'square' Square
'd' or 'diamond' Diamond
'v' Downward-pointing triangle
'^' Upward-pointing triangle (default)
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' or 'pentagram' Five-pointed star (pentagram)
'h' or 'hexagram' Six-pointed star (hexagram)
'none' No marker symbol

MarkerSize — Size of marker
6 | positive integer

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling platforms
10 (default) | positive integer

Font size for labeling platforms, specified in font points size as the comma-separated pair consisting
of 'FontSize' and a positive integer.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

 platformPlotter

2-367

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

See Also
clearData | clearPlotterData | plotPatform | theaterPlot

Introduced in R2018b

2 Classes

2-368

plotDetection
Plot set of detections in theater detection plotter

Syntax
plotDetection(detPlotter,positions)
plotDetection(detPlotter,positions,velocities)
plotDetection(detPlotter,positions, ___ ,labels)
plotDetection(detPlotter,positions, ___ ,covariances)

Description
plotDetection(detPlotter,positions) specifies positions of M detected objects whose
positions are plotted by the detection plotter detPlotter. Specify the positions as an M-by-3 matrix,
where each column of the matrix corresponds to the x-, y-, and z-coordinates of the detected object
locations.

plotDetection(detPlotter,positions,velocities) also specifies the corresponding
velocities of the detections. Velocities are plotted as line vectors emanating from the center positions
of the detections. If specified, velocities must have the same dimensions as positions.

plotDetection(detPlotter,positions, ___ ,labels) also specifies a cell vector of length M
whose elements contain the text labels corresponding to the M detections specified in the positions
matrix. If omitted, no labels are plotted.

plotDetection(detPlotter,positions, ___ ,covariances) also specifies the covariances of
the M detection uncertainties, where the covariances are a 3-by-3-by-M matrix of covariances that
are centered at the positions of each detection. The uncertainties are plotted as an ellipsoid

Examples

Create and Update Detections for Theater Plot

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a detection plotter with the name Radar Detections.

radarPlotter = detectionPlotter(tp,'DisplayName','Radar Detections');

Update the detection plotter with three detections labeled 'R1', 'R2', and 'R3' positioned in units
of meters at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 with corresponding velocities (in m/s) of
−10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];
labels = {'R1','R2','R3'};
plotDetection(radarPlotter, positions, velocities, labels)

 plotDetection

2-369

Input Arguments
detPlotter — Detection plotter
detectionPlotter object

Detection plotter, specified as a detectionPlotter object.

positions — Detection positions
real-valued matrix

Detection positions, specified as an M-by-3 real-valued matrix, where M is the number of detections.
Each column of the matrix corresponds to the x-, y-, and z-coordinates of the detection positions in
meters.

velocities — Detection velocities
real-valued matrix

Detection velocities, specified as an M-by-3 real-valued matrix, where M is the number of detections.
Each column of the matrix corresponds to the x-, y-, and z-velocities of the detections. If specified,
velocities must have the same dimensions as positions.

labels — Detection labels
cell array

2 Classes

2-370

Detection labels, specified as a M-by-1 cell array of character vectors, where M is the number of
detections. The input argument labels contains the text labels corresponding to the M detections
specified in positions. If labels is omitted, no labels are plotted.

covariances — Detection uncertainties
real-valued array

Detection uncertainties of M tracked objects, specified as a 3-by-3-by-M real-valued array of
covariances. The covariances are centered at the positions of each detection and are plotted as an
ellipsoid.

See Also
clearData | clearPlotterData | detectionPlotter | theaterPlot

Introduced in R2018b

 plotDetection

2-371

plotOrientation
Plot set of orientations in orientation plotter

Syntax
plotOrientation(oPlotter,orientations)
plotOrientation(oPlotter,roll,pitch,yaw)
plotOrientation(oPlotter, ___ ,positions)
plotOrientation(oPlotter, ___ ,positions,labels)

Description
plotOrientation(oPlotter,orientations) specifies the orientations of M objects to show for
the orientation plotter, oPlotter. The orientations argument can be either an M-by-1 array of
quaternions, or a 3-by-3-by-M array of rotation matrices.

plotOrientation(oPlotter,roll,pitch,yaw) specifies the orientations of M objects to show
for the orientation plotter, oPlotter. The arguments roll, pitch, and yaw are M-by-1 vectors
measured in degrees.

plotOrientation(oPlotter, ___ ,positions) also specifies the positions of the objects as an
M-by-3 matrix. Each column of positions corresponds to the x-, y-, and z-coordinates of the object
locations, respectively.

plotOrientation(oPlotter, ___ ,positions,labels) also specifies the labels as an M-by-1
cell array of character vectors that correspond to the M orientations.

Examples

Show Orientation of Oscillating Device

This example shows how to animate the orientation of an oscillating device.

Load rpy_9axis.mat. The data in rpy_9axis.mat is recorded accelerometer, gyroscope, and
magnetometer sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis),
then roll (around x-axis). The device's x-axis was pointing southward when recorded.

ld = load('rpy_9axis.mat')

ld = struct with fields:
 Fs: 200
 sensorData: [1x1 struct]

Set the sampling frequency. Extract the accelerometer and gyroscope data. Set the decimation factor
to 2. Use fuse to create an indirect Kalman sensor fusion filter from the data.

accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
Fs = ld.Fs;

2 Classes

2-372

decim = 2;
fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Obtain the pose information of the fused data.

pose = fuse(accel,gyro);

Create a theater plot. Add to the theater plot an orientation plotter with 'DisplayName' set to
'Fused Data' and 'LocalAxesLength' set to 2.

tp = theaterPlot('XLimit',[-2 2],'YLimit',[-2 2],'ZLimit',[-2 2]);
op = orientationPlotter(tp,'DisplayName','Fused Data',...
 'LocalAxesLength',2);

Loop through the pose information to animate the changing orientation.

for i=1:numel(pose)
 plotOrientation(op, pose(i))
 drawnow
end

Input Arguments
oPlotter — Orientation plotter
orientationPlotter object

Orientation plotter, specified as an orientationPlotter object.

 plotOrientation

2-373

orientations — Orientations
quaternion array | real-valued array

Orientations of M objects, specified as either an M-by-1 array of quaternions, or a 3-by-3-by-M array
of rotation matrices.

roll, pitch, yaw — Roll, pitch, yaw
real-valued vectors

Roll, pitch, and yaw angles defining the orientations of M objects, specified as M-by-1 vectors. Angles
are measured in degrees.

positions — Object positions
[0 0 0] (default) | real-valued matrix

Object positions, specified as an M-by-3 real-valued matrix, where M is the number of objects. Each
column of the matrix corresponds to the x-, y-, and z-coordinates of the objects locations in meters.
The default value of positions is at the origin.

labels — Object labels
cell array

Object labels, specified as a M-by-1 cell array of character vectors, where M is the number of objects.
labels contains the text labels corresponding to the M objects specified in positions. If labels is
omitted, no labels are plotted.

See Also
clearData | clearPlotterData | orientationPlotter | theaterPlot

Introduced in R2018b

2 Classes

2-374

plotPlatform
Plot set of platforms in platform plotter

Syntax
plotPlatform(platPlotter,positions)
plotPlatform(platPlotter,positions,velocities)
plotPlatform(platPlotter,positions,labels)
plotPlatform(platPlotter,positions,velocities,labels)
plotPlatform(platPlotter,positions, ___ ,dimensions,orientations)

Description
plotPlatform(platPlotter,positions) specifies positions of M platforms whose positions are
plotted by platPlotter. Specify the positions as an M-by-3 matrix, where each column of the matrix
corresponds to the x-, y-, and z-coordinates of the platform locations.

plotPlatform(platPlotter,positions,velocities) also specifies the corresponding
velocities of the platforms. Velocities are plotted as line vectors emanating from the positions of the
platforms. If specified, velocities must have the same dimensions as positions.

plotPlatform(platPlotter,positions,labels) also specifies a cell vector of length M whose
elements contain the text labels corresponding to the M platforms specified in the positions matrix. If
omitted, no labels are plotted.

plotPlatform(platPlotter,positions,velocities,labels) specifies velocities and text
labels corresponding to the M platforms specified in the positions matrix.

plotPlatform(platPlotter,positions, ___ ,dimensions,orientations) specifies the
dimension and orientation of each plotted platform.

Examples

Create and Update Theater Plot Platforms

Create a theater plot.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35],'ZLim',[1,10]);

Create a platform plotter with the name 'Platforms'.

plotter = platformPlotter(tp,'DisplayName','Platforms');

Update the theater plot with three platforms labeled, 'R1', 'R2', and 'R3'. Position the three
platforms, in units of meters, at 30, 5, 4 , 30, − 10, 2 , and 30, 15, 1 , with corresponding
velocities (in m/s) of −10, 0, 2 , −10, 3, 1 , and −10, − 4, 1 , respectively.

positions = [30, 5, 4; 30, -10, 2; 30, 15, 1];
velocities = [-10, 0, 2; -10, 3, 1; -10, -4, 1];

 plotPlatform

2-375

labels = {'R1','R2','R3'};
plotPlatform(plotter, positions, velocities, labels);

Input Arguments
platPlotter — Platform plotter
platformPlotter object

Platform plotter, specified as a platformPlotter object.

positions — Platform positions
real-valued matrix

Platform positions, specified as an M-by-3 real-valued matrix, where M is the number of platforms.
Each column of the matrix corresponds to the x-, y-, and z-coordinates of the platform locations in
meters.

velocities — Platform velocities
M-by-3 real-valued matrix

Platform velocities, specified as an M-by-3 real-valued matrix, where M is the number of platforms.
Each column of the matrix corresponds to the x, y, and z velocities of the platforms. If specified,
velocities must have the same dimensions as positions.

2 Classes

2-376

labels — Platform labels
cell array

Platform labels, specified as an M-by-1 cell array of character vectors, where M is the number of
platforms. labels contains the text labels corresponding to the M platforms specified in positions.
If labels is omitted, no labels are plotted.

dimensions — Platform dimensions
M-by-1 array of dimension structure

Platform dimensions, specified as an M-by-1 array of dimension structures, where M is the number of
platforms. The fields of each dimension structure are:

Fields of Dimensions

Fields Description
Length Dimension of a cuboid along the x direction
Width Dimension of a cuboid along the y direction
Height Dimension of a cuboid along the z direction
OriginOffset Position of the platform coordinate frame origin

with respect to the cuboid center, specified as a
vector of three elements

orientations — Platform orientations
3-by-3-by-M array of rotation matrix | M-element array of quaternion object

Platform orientations, specified as a 3-by-3-by-M array of rotation matrices, or an M-element array of
quaternion objects.

See Also
platformPlotter | theaterPlot

Introduced in R2018b

 plotPlatform

2-377

plotTrack
Plot set of tracks in theater track plotter

Syntax
plotTrack(tPlotter,positions)
plotTrack(tPlotter,positions,velocities)
plotTrack(___ ,covariances)
plotTrack(tPlotter,positions, ___ ,labels)
plotTrack(tPlotter,positions, ___ ,labels,trackIDs)
plotTrack(tPlotter,positions, ___ ,dimensions,orientations)

Description
plotTrack(tPlotter,positions) specifies positions of M tracked objects whose positions are
plotted by the track plotter tPlotter. Specify the positions as an M-by-3 matrix, where each column
of positions corresponds to the x-, y-, and z-coordinates of the object locations.

plotTrack(tPlotter,positions,velocities) also specifies the corresponding velocities of the
objects. Velocities are plotted as line vectors emanating from the positions of the detections. If
specified, velocities must have the same dimensions as positions. If unspecified, no velocity
information is plotted.

plotTrack(___ ,covariances) also specifies the covariances of the M track uncertainties. The
input argument covariances is a 3-by-3-by-M array of covariances that are centered at the track
positions. The uncertainties are plotted as an ellipsoid. You can use this syntax with any of the
previous syntaxes.

plotTrack(tPlotter,positions, ___ ,labels) also specifies the labels and positions of the M
objects whose positions are estimated by a tracker. The input argument labels is an M-by-1 cell
array of character vectors that correspond to the M detections specified in positions. If omitted, no
labels are plotted.

plotTrack(tPlotter,positions, ___ ,labels,trackIDs) also specifies the unique track
identifiers for each track when the 'ConnectHistory' on page 2-0 property of tPlotter is set
to 'on'. The input argument trackIDs can be an M-by-1 array of unique integer values, an M-by-1
array of strings, or an M-by-1 cell array of unique character vectors.

If trackIDs is omitted when 'ConnectHistory' is 'on', then the track identifiers are derived
from the labels input instead. The trackIDs input is ignored when 'ConnectHistory' is 'off'.

plotTrack(tPlotter,positions, ___ ,dimensions,orientations) specifies the dimension
and orientation of each tracked object in the plot.

Examples

2 Classes

2-378

Plot Tracks in Theater Plot

Create a theater plot. Create a track plotter with DisplayName set to 'Tracks' and with
HistoryDepth set to 5.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks','HistoryDepth',5);

Update the track plotter with three tracks labeled 'T1', 'T2', and 'T3' with start positions in units
of meters all starting at (30, 5, 1) with corresponding velocities (in m/s) of (3, 0, 1), (3, 2, 2) and (3,
-3, 5), respectively. Update the tracks with the velocities for ten iterations.

positions = [30, 5, 1; 30, 5, 1; 30, 5, 1];
velocities = [3, 0, 1; 3, 2, 2; 3, -3, 5];
labels = {'T1','T2','T3'};
for i=1:10
 plotTrack(tPlotter, positions, velocities, labels)
 positions = positions + velocities;
end

 plotTrack

2-379

This animation loops through all the generated plots.

2 Classes

2-380

Plot Track Uncertainties

Create a theater plot. Create a track plotter with DisplayName set to 'Uncertain Track'.

tp = theaterPlot('Xlim',[0 5],'Ylim',[0 5]);
tPlotter = trackPlotter(tp,'DisplayName','Uncertain Track');

Update the track plotter with a track at a position in meters (2,2,1) and velocity (in meters/second) of
(1,1,3). Also create a random 3-by-3 covariance matrix representing track uncertainties. For purposes
of reproducibility, set the random seed to the default value.

 positions = [2, 2, 1];
 velocities = [1, 1, 3];
 rng default
 covariences = randn(3,3);

Plot the track with the covariances plotted as an ellipsoid.

plotTrack(tPlotter,positions,velocities,covariences)

 plotTrack

2-381

Input Arguments
tPlotter — Track plotter
trackPlotter object

Track plotter, specified as a trackPlotter object.

positions — Tracked object positions
real-valued matrix

Tracked object positions, specified as an M-by-3 real-valued matrix, where M is the number of
objects. Each column of positions corresponds to the x-, y-, and z-coordinates of the object
locations in meters.

velocities — Tracked object velocities
real-valued matrix

Tracked object velocities, specified as an M-by-3 real-valued matrix, where M is the number of
objects. Each column of velocities corresponds to the x, y, and z velocities of the objects. If
specified, velocities must have the same dimensions as positions.

covariances — Track uncertainties
real-valued array

2 Classes

2-382

Track uncertainties of M tracked objects, specified as a 3-by-3-by-M real-valued array of covariances.
The covariances are centered at the track positions, and are plotted as an ellipsoid.

labels — Tracked object labels
cell array

Tracked object labels, specified as a M-by-1 cell array of character vectors, where M is the number of
objects. The argument labels contains the text labels corresponding to the M objects specified in
positions. If labels is omitted, no labels are plotted.

trackIDs — Unique track identifiers
integer vector | string array | cell array

Unique track identifiers for the M tracked objects, specified as an M-by-1 integer vector, an M-by-1
array of strings, or an M-by-1 cell array of character vectors. The elements of trackIDs must be
unique.

The trackIDs input is ignored when the property 'ConnectHistory' of tPlotter is 'off'. If
trackIDs is omitted when 'ConnectHistory' is 'on', then the track identifiers are derived from
the labels input instead.

dimensions — Platform dimensions
M-by-1 array of dimension structure

Platform dimensions, specified as an M-by-1 array of dimension structures, where M is the number of
platforms. The fields of each dimension structure are:

Fields of Dimensions

Fields Description
Length Dimension of a cuboid along the x direction
Width Dimension of a cuboid along the y direction
Height Dimension of a cuboid along the z direction
OriginOffset Position of the platform coordinate frame origin

with respect to the cuboid center, specified as a
vector of three elements

orientations — Platform orientations
3-by-3-by-M array of rotation matrix | M-element array of quaternion object

Platform orientations, specified as a 3-by-3-by-M array of rotation matrices, or an M-element array of
quaternion objects.

 plotTrack

2-383

See Also
clearData | clearPlotterData | theaterPlot | trackPlotter

Introduced in R2018b

2 Classes

2-384

plotTrajectory
Plot set of trajectories in trajectory plotter

Syntax
plotTrajectory(trajPlotter,trajCoordList)

Description
plotTrajectory(trajPlotter,trajCoordList) specifies the trajectories to show in the
trajectory plotter, trajPlotter. The input argument trajCoordList is a cell array of M-by-3
matrices, where M is the number of points in the trajectory. Each matrix in trajCoordList can have
a different number of rows. The first, second, and third columns of each matrix correspond to the x-,
y-, and z-coordinates of a curve through M points that represent the corresponding trajectory.

Examples

Moving Platform on a Trajectory

This example shows how to create an animation of a platform moving on a trajectory.

First, create a trackingScenario and add waypoints for a trajectory.

ts = trackingScenario;
height = 100;
d = 1;
wayPoints = [...
 -30 -25 height;
 -30 25-d height;
 -30+d 25 height;
 -10-d 25 height;
 -10 25-d height;
 -10 -25+d height;
 -10+d -25 height;
 10-d -25 height;
 10 -25+d height;
 10 25-d height;
 10+d 25 height;
 30-d 25 height;
 30 25-d height;
 30 -25+d height;
 30 -25 height];

Specify a time for each waypoint.

elapsedTime = linspace(0,10,size(wayPoints,1));

Next, create a platform in the tracking scenario and add trajectory information using the
trajectory method.

 plotTrajectory

2-385

target = platform(ts);
traj = waypointTrajectory('Waypoints',wayPoints,'TimeOfArrival',elapsedTime);
target.Trajectory = traj;

Record the tracking scenario to retrieve the platform's trajectory.

r = record(ts);
pposes = [r(:).Poses];
pposition = vertcat(pposes.Position);

Create a theater plot to display the recorded trajectory.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40]);
trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{pposition})

Animate using the platformPlotter.

restart(ts);
trajPlotter = platformPlotter(tp,'DisplayName','Platform');

while advance(ts)
 p = pose(target,'true');
 plotPlatform(trajPlotter, p.Position);
 pause(0.1)

end

2 Classes

2-386

This animation loops through all the generated plots.

 plotTrajectory

2-387

Input Arguments
trajPlotter — Trajectory plotter
trajectoryPlotter object

Trajectory plotter, specified as a trajectoryPlotter object.

trajCoordList — Coordinates of trajectories
cell array

Coordinates of trajectories to show, specified as a cell array of M-by-3 matrices, where M is the
number of points in the trajectory. Each matrix in trajCoordList can have a different number of
rows. The first, second, and third columns of each matrix correspond to the x-, y-, and z-coordinates
of a curve through M points that represent the corresponding trajectory.
Example: coordList = {[1 2 3; 4 5 6; 7,8,9];[4 2 1; 4 3 1];[4 4 4; 3 1 2; 9 9
9; 1 0 2]} specifies three different trajectories.

See Also
clearData | clearPlotterData | theaterPlot | trajectoryPlotter

Introduced in R2018b

2 Classes

2-388

trackPlotter
Create track plotter

Syntax
tPlotter = trackPlotter(tp)
tPlotter = trackPlotter(tp,Name,Value)

Description
tPlotter = trackPlotter(tp) creates a track plotter for use with the theater plot tp.

tPlotter = trackPlotter(tp,Name,Value) creates a track plotter with additional options
specified by one or more Name,Value pair arguments.

Examples

Plot Tracks in Theater Plot

Create a theater plot. Create a track plotter with DisplayName set to 'Tracks' and with
HistoryDepth set to 5.

tp = theaterPlot('XLim',[0,90],'YLim',[-35,35]);
tPlotter = trackPlotter(tp,'DisplayName','Tracks','HistoryDepth',5);

 trackPlotter

2-389

Update the track plotter with three tracks labeled 'T1', 'T2', and 'T3' with start positions in units
of meters all starting at (30, 5, 1) with corresponding velocities (in m/s) of (3, 0, 1), (3, 2, 2) and (3,
-3, 5), respectively. Update the tracks with the velocities for ten iterations.

positions = [30, 5, 1; 30, 5, 1; 30, 5, 1];
velocities = [3, 0, 1; 3, 2, 2; 3, -3, 5];
labels = {'T1','T2','T3'};
for i=1:10
 plotTrack(tPlotter, positions, velocities, labels)
 positions = positions + velocities;
end

2 Classes

2-390

This animation loops through all the generated plots.

 trackPlotter

2-391

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MarkerSize',10

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

HistoryDepth — Number of previous track updates to display
0 (default) | nonnegative integer less than or equal to 10,000

2 Classes

2-392

Number of previous track updates to display, specified as the comma-separated pair consisting of
'HistoryDepth' and a nonnegative integer less than or equal to 10,000. If set to 0, then no
previous updates are rendered.

ConnectHistory — Connect tracks flag
'off' (default) | 'on'

Connect tracks flag, specified as either 'on' or 'off'. When set to 'on', tracks with the same label
or track identifier between consecutive updates are connected with a line. This property can only be
specified when creating the trackPlotter. The default is 'off'.

To use the trackIDs on page 2-0 input argument of plotTrack, 'ConnectHistory' must be
'on'. If trackIDs on page 2-0 is omitted when 'ConnectHistory' is 'on', then the track
identifiers are derived from the labels input instead.

ColorizeHistory — Colorize track history
'off' (default) | 'on'

Colorize track history, specified as either 'on' or 'off'. When set to 'on', tracks with the same
label or track identifier between consecutive updates are connected with a line of a different color.
This property can only be specified when creating the trackPlotter.The default is 'off'.

ColorizedHistory is applicable only when ConnectHistory is 'on'.

Marker — Marker symbol
's' (default) | character vector | string scalar

Marker symbol, specified as the comma-separated pair consisting of 'Marker' and one of these
symbols.

Value Description
'+' Plus sign
'o' Circle
'*' Asterisk
'.' Point
'x' Cross
's' or 'square' Square (default)
'd' or 'diamond' Diamond
'v' Downward-pointing triangle
'^' Upward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'p' or 'pentagram' Five-pointed star (pentagram)
'h' or 'hexagram' Six-pointed star (hexagram)
'none' No marker symbol

MarkerSize — Size of marker
10 (default) | positive integer

 trackPlotter

2-393

Size of marker, specified as the comma-separated pair consisting of 'MarkerSize' and a positive
integer in points.

MarkerEdgeColor — Marker outline color
'black' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerEdgeColor' and
a character vector, a string scalar, an RGB triplet, or a hexadecimal color code.

MarkerFaceColor — Marker fill color
'none' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

Marker outline color, specified as the comma-separated pair consisting of 'MarkerFaceColor' and
a character vector, a string scalar, an RGB triplet, a hexadecimal color code, or 'none'. The default
is 'none'.

FontSize — Font size for labeling tracks
10 (default) | positive integer

Font size for labeling tracks, specified as the comma-separated pair consisting of 'FontSize' and a
positive integer that represents font point size.

LabelOffset — Gap between label and positional point
[0 0 0] (default) | three-element row vector

Gap between label and positional point it annotates, specified as the comma-separated pair consisting
of 'LabelOffset' and a three-element row vector. Specify the [x y z] offset in meters.

VelocityScaling — Scale factor for magnitude length of velocity vectors
1 (default) | positive scalar

Scale factor for magnitude length of velocity vectors, specified as the comma-separated pair
consisting of 'VelocityScaling' and a positive scalar. The plot renders the magnitude vector
value as VK, where V is the magnitude of the velocity in meters per second, and K is the value of
VelocityScaling.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

See Also
clearData | clearPlotterData | plotTrack | theaterPlot

Introduced in R2018b

2 Classes

2-394

trajectoryPlotter
Create trajectory plotter

Syntax
trajPlotter = trajectoryPlotter(tp)
trajPlotter = trajectoryPlotter(tp,Name,Value)

Description
trajPlotter = trajectoryPlotter(tp) creates a trajectory plotter for use with the theater
plot tp.

trajPlotter = trajectoryPlotter(tp,Name,Value) creates a trajectory plotter with
additional options specified by one or more Name,Value pair arguments.

Examples

Moving Platform on a Trajectory

This example shows how to create an animation of a platform moving on a trajectory.

First, create a trackingScenario and add waypoints for a trajectory.

ts = trackingScenario;
height = 100;
d = 1;
wayPoints = [...
 -30 -25 height;
 -30 25-d height;
 -30+d 25 height;
 -10-d 25 height;
 -10 25-d height;
 -10 -25+d height;
 -10+d -25 height;
 10-d -25 height;
 10 -25+d height;
 10 25-d height;
 10+d 25 height;
 30-d 25 height;
 30 25-d height;
 30 -25+d height;
 30 -25 height];

Specify a time for each waypoint.

elapsedTime = linspace(0,10,size(wayPoints,1));

Next, create a platform in the tracking scenario and add trajectory information using the
trajectory method.

 trajectoryPlotter

2-395

target = platform(ts);
traj = waypointTrajectory('Waypoints',wayPoints,'TimeOfArrival',elapsedTime);
target.Trajectory = traj;

Record the tracking scenario to retrieve the platform's trajectory.

r = record(ts);
pposes = [r(:).Poses];
pposition = vertcat(pposes.Position);

Create a theater plot to display the recorded trajectory.

tp = theaterPlot('XLim',[-40 40],'YLim',[-40 40]);
trajPlotter = trajectoryPlotter(tp,'DisplayName','Trajectory');
plotTrajectory(trajPlotter,{pposition})

Animate using the platformPlotter.

restart(ts);
trajPlotter = platformPlotter(tp,'DisplayName','Platform');

while advance(ts)
 p = pose(target,'true');
 plotPlatform(trajPlotter, p.Position);
 pause(0.1)

end

2 Classes

2-396

This animation loops through all the generated plots.

 trajectoryPlotter

2-397

Input Arguments
tp — Theater plot
theaterPlot object

Theater plot, specified as a theaterPlot object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'LineStyle','--'

DisplayName — Plot name to display in legend
character vector | string scalar

Plot name to display in legend, specified as the comma-separated pair consisting of 'DisplayName'
and a character vector or string scalar. If no name is specified, no entry is shown.
Example: 'DisplayName','Radar Detections'

Color — Trajectory color
'gray' (default) | character vector | string scalar | RGB triplet | hexadecimal color code

2 Classes

2-398

Trajectory color, specified as the comma-separated pair consisting of 'Color' and a character
vector, a string scalar, an RGB triplet, or a hexadecimal color code.

LineStyle — Line style
':' (default) | '-' | '--' | '-.'

Line style used to plot the trajectory, specified as one of these values.

Value Description
':' Dotted line (default)
'-' Solid line
'--' Dashed line
'-.' Dash-dotted line

LineWidth — Line width
0.5 (default) | positive scalar

Line width of the trajectory, specified in points size as the comma-separated pair consisting of
'LineWidth' and a positive scalar.

Tag — Tag to associate with the plotter
'PlotterN' (default) | character vector | string scalar

Tag to associate with the plotter, specified as the comma-separated pair consisting of 'Tag' and a
character vector or string scalar. The default value is 'PlotterN', where N is an integer that
corresponds to the Nth plotter associated with the theaterPlot.

Tags provide a way to identify plotter objects, for example when searching using findPlotter.

See Also
clearData | clearPlotterData | plotTrajectory | theaterPlot

Introduced in R2018b

 trajectoryPlotter

2-399

trackingABF
Alpha-beta filter for object tracking

Description
The trackingABF object represents an alpha-beta filter designed for object tracking for an object
that follows a linear motion model and has a linear measurement model. Linear motion is defined by
constant velocity or constant acceleration. Use the filter to predict the future location of an object, to
reduce noise for a detected location, or to help associate multiple objects with their tracks.

Creation

Syntax
abf = trackingABF
abf = trackingABF(Name,Value)

Description

abf = trackingABF returns an alpha-beta filter for a discrete time, 2-D constant velocity system.
The motion model is named '2D Constant Velocity' with the state defined as [x; vx; y; vy].

abf = trackingABF(Name,Value) specifies the properties of the filter using one or more
Name,Value pair arguments. Any unspecified properties take default values.

Properties
MotionModel — Model of target motion
'2D Constant Velocity' (default) | '1D Constant Velocity' | '3D Constant Velocity' |
'1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Model of target motion, specified as a character vector or string. Specifying 1D, 2D, or 3D specifies
the dimension of the target's motion. Specifying Constant Velocity assumes that the target
motion is a constant velocity at each simulation step. Specifying Constant Acceleration assumes
that the target motion is a constant acceleration at each simulation step.
Data Types: char | string

State — Filter state
real-valued M-element vector | scalar

Filter state, specified as a real-valued M-element vector. A scalar input is extended to an M-element
vector. The state vector is the concatenated states from each dimension. For example, if
MotionModel is set to '3D Constant Acceleration', the state vector is in the form:[x; x';
x''; y; y'; y''; z; z'; z''] where ' and '' indicate first and second order derivatives,
respectively.

2 Classes

2-400

Example: [200;0.2;150;0.1;0;0.25]
Data Types: double

StateCovariance — State estimation error covariance
M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix, where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state.
Example: eye(6)

ProcessNoise — Process noise covariance
D-by-D matrix | scalar

Process noise covariance, specified as a scalar or a D-by-D matrix, where D is the dimensionality of
motion. For example, if MotionModel is '2D Constant Velocity', then D = 2. A scalar input is
extended to a D-by-D matrix.
Example: [20 0.1; 0.1 1]

MeasurementNoise — Measurement noise covariance
D-by-D matrix | scalar

Measurement noise covariance, specified as a scalar or a D-by-D matrix, where D is the
dimensionality of motion. For example, if MotionModel is '2D Constant Velocity', then D = 2.
A scalar input is extended to a M-by-M matrix.
Example: [20 0.1; 0.1 1]

Coefficients — Alpha-beta filter coefficients
row vector | scalar

Alpha-beta filter coefficients, specified as a scalar or row vector. A scalar input is extended to a row
vector. If you specify constant velocity in the MotionModel property, the coefficients are [alpha
beta]. If you specify constant acceleration in the MotionModel property, the coefficients are
[alpha beta gamma].
Example: [20 0.1]

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter

Examples

Run trackingABF Filter

This example shows how to create and run a trackingABF filter. Call the predict and correct
functions to track an object and correct the state estimation based on measurements.

 trackingABF

2-401

Create the filter. Specify the initial state.

state = [1;2;3;4];
abf = trackingABF('State',state);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 sec time step.

[xPred,pPred] = predict(abf, 0.5);

Call correct with a given measurement.

meas = [1;1];
[xCorr,pCorr] = correct(abf, meas);

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(abf); % Predict over 1 second
[xPred,pPred] = predict(abf,2); % Predict over 2 seconds

Modify the filter coefficients and correct again with a new measurement.

abf.Coefficients = [0.4 0.2];
[xCorr,pCorr] = correct(abf,[8;14]);

References
[1] Blackman, Samuel S. "Multiple-target tracking with radar applications." Dedham, MA, Artech

House, Inc., 1986, 463 p. (1986).

[2] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
trackerGNN | trackerTOMHT | trackingABF | trackingCKF | trackingEKF | trackingGSF |
trackingIMM | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

Introduced in R2018b

2 Classes

2-402

trackingCKF
Cubature Kalman filter for object tracking

Description
The trackingCKF object represents a cubature Kalman filter designed for tracking objects that
follow a nonlinear motion model or are measured by a nonlinear measurement model. Use the filter to
predict the future location of an object, to reduce noise in a measured location, or to help associate
multiple object detections with their tracks.

The cubature Kalman filter estimates the uncertainty of the state and the propagation of that
uncertainty through the nonlinear state and measurement equations. There are a fixed number of
cubature points chosen based on the spherical-radial transformation to guarantee an exact
approximation of a Gaussian distribution up to the third moment. As a result, the corresponding filter
is the same as an unscented Kalman filter, trackingUKF, with Alpha = 1, Beta = 0, and Kappa = 0.

Creation

Syntax
ckf = trackingCKF
ckf = trackingCKF(transitionFcn,measuremntFcn,state)
ckf = trackingCKF(___ ,Name,Value)

Description

ckf = trackingCKF returns a cubature Kalman filter object with default state transition function,
measurement function, state, and additive noise model.

ckf = trackingCKF(transitionFcn,measuremntFcn,state) specifies the
StateTransitionFcn, MeasurementFcn, and State properties directly.

ckf = trackingCKF(___ ,Name,Value) specifies the properties of the Kalman filter using one or
more Name,Value pair arguments. Any unspecified properties take default values.

Properties
State — Kalman filter state
real-valued M-element vector

Kalman filter state, specified as a real-valued M-element vector.
Example: [200;0.2;150;0.1;0;0.25]
Data Types: double

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

 trackingCKF

2-403

State error covariance, specified as a positive-definite real-valued M-by-M matrix, where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state.
Example: eye(6)

StateTransitionFcn — State transition function
function handle

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k – 1. The function can take additional input
parameters, such as control inputs or time step size. The function can also include noise values.

The valid syntaxes for the state transition function depend on whether the filter has additive process
noise. The table shows the valid syntaxes based on the value of the HasAdditiveProcessNoise
property.

Valid Syntaxes (HasAdditiveProcessNoise
= true)

Valid Syntaxes (HasAdditiveProcessNoise
= false)

x(k) = statetransitionfcn(x(k-1))
x(k) = statetransitionfcn(x(k-1),parameters)

• x(k) is the state at time k.
• parameters stands for all additional

arguments required by the state transition
function.

x(k) = statetransitionfcn(x(k-1),w(k-1))
x(k) = statetransitionfcn(x(k-1),w(k-1),dt)
x(k) = statetransitionfcn(__,parameters)

• x(k) is the state at time k.
• w(k) is a value for the process noise at time

k.
• dt is the time step of the trackingCKF filter,

filter, specified in the most recent call to
the predict function. The dt argument
applies when you use the filter within a
tracker and call the predict function with
the filter to predict the state of the tracker at
the next time step. For the nonadditive
process noise case, the tracker assumes that
you explicitly specify the time step by using
this syntax: predict(filter,dt).

• parameters stands for all additional
arguments required by the state transition
function.

Example: @constacc
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a scalar or a
positive-definite real-valued M-by-M matrix. M is the dimension of the state vector. When specified
as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

2 Classes

2-404

Specify ProcessNoise before any call to the predict function. In later calls to predict, you
can optionally specify the process noise as a scalar. In this case, the process noise matrix is a
multiple of the Q-by-Q identity matrix.

Example: [1.0 0.05 0; 0.05 1.0 2.0; 0 2.0 1.0]

Dependencies

This parameter depends on the HasAdditiveNoise property.

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
function handle

Measurement model function, specified as a function handle. This function can be a nonlinear
function that models measurements from the predicted state. Input to the function is the M-element
state vector. The output is the N-element measurement vector. The function can take additional input
arguments, such as sensor position and orientation.

• If HasAdditiveMeasurementNoise is true, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k))

z(k) = measurementfcn(x(k),parameters)

where x(k) is the state at time k, and z(k) is the predicted measurement at time k. The
parameters term stands for all additional arguments required by the measurement function.

• If HasAdditiveMeasurementNoise is false, specify the function using one of these syntaxes:

z(k) = measurementfcn(x(k),v(k))

z(k) = measurementfcn(x(k),v(k),parameters)

where x(k) is the state at time k, and v(k) is the measurement noise at time k. The parameters
argument stands for all additional arguments required by the measurement function.

Example: @cameas
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance:.

• When HasAdditiveMeasurementNoise is true, specify the measurement noise covariance as a
scalar or an N-by-N matrix. N is the size of the measurement vector. When specified as a scalar,
the matrix is a multiple of the N-by-N identity matrix.

• When HasAdditiveMeasurementNoise is false, specify the measurement noise covariance as
an R-by-R matrix. R is the size of the measurement noise vector.

 trackingCKF

2-405

Specify MeasurementNoise before any call to the correct function. After the first call to
correct, you can optionally specify the measurement noise as a scalar. In this case, the
measurement noise matrix is a multiple of the R-by-R identity matrix.

Example: 0.2

HasAdditiveMeasurmentNoise — Model additive measurement noise
true (default) | false

Option to enable additive measurement noise, specified as true or false. When this property is
true, noise is added to the measurement. Otherwise, noise is incorporated into the measurement
function.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter

Examples

Run trackingCKF Filter

This example shows how to create and run a trackingCKF filter. Call the predict and correct
functions to track an object and correct the state estimation based on measurements.

Create the filter. Specify the constant velocity motion model, the measurement model, and the initial
state.

state = [0;0;0;0;0;0];
ckf = trackingCKF(@constvel,@cvmeas,state);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 second time step.

[xPred,pPred] = predict(ckf,0.5);

Call correct with a given measurement.

meas = [1;1;0];
[xCorr,pCorr] = correct(ckf,meas);

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(ckf); % Predict over 1 second
[xPred,pPred] = predict(ckf,2); % Predict over 2 seconds

References
[1] Arasaratnam, Ienkaran, and Simon Haykin. "Cubature kalman filters." IEEE Transactions on

automatic control 54, no. 6 (2009): 1254-1269.

2 Classes

2-406

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
clone | constvel | correct | cvmeas | distance | likelihood | predict | residual

Objects
trackingCKF | trackingEKF | trackingGSF | trackingIMM | trackingKF | trackingMSCEKF |
trackingPF | trackingUKF

Introduced in R2018b

 trackingCKF

2-407

trackingGSF
Gaussian-sum filter for object tracking

Description
The trackingGSF object represents a Gaussian-sum filter designed for object tracking. You can
define the state probability density function by a set of finite Gaussian-sum components. Use this
filter for tracking objects that require a multi-model description due to incomplete observability of
state through measurements. For example, this filter can be used as a range-parameterized extended
Kalman filter when the detection contains only angle measurements.

Creation

Syntax
gsf = trackingGSF
gsf = trackingGSF(trackingFilters)
gsf = trackingGSF(trackingFilters,modelProbabilities)
gsf = trackingGSF(___ ,'MeasurementNoise',measNoise)

Description

gsf = trackingGSF returns a Gaussian-sum filter with two constant velocity extended Kalman
filters (trackingEKF) with equal initial weight.

gsf = trackingGSF(trackingFilters) specifies the Gaussian components of the filter in
trackingFilters. The initial weights of the filters are assumed to be equal.

gsf = trackingGSF(trackingFilters,modelProbabilities) specifies the initial weight of
the Gaussian components in modelProbabilities and sets the ModelProbabilities property.

gsf = trackingGSF(___ ,'MeasurementNoise',measNoise) specifies the measurement noise
of the filter. The MeasurementNoise property is set for each Gaussian component.

Properties
State — Weighted estimate of filter state
real-valued M-element vector

This property is read-only.

Weighted estimate of filter state, specified as a real-valued M-element vector. This state is estimated
based on the weighted combination of filters in TrackingFilters. Use ModelProbabilities to
change the weights.
Example: [200;0.2]
Data Types: single | double

2 Classes

2-408

StateCovariance — State estimation error covariance
positive-definite real-valued M-by-M matrix

This property is read-only.

State error covariance, specified as a positive-definite real-valued M-by-M matrix, where M is the size
of the filter state. The covariance matrix represents the uncertainty in the filter state. This state
covariance is estimated based on the weighted combination of filters in TrackingFilters. Use
ModelProbabilities to change the weights.
Example: [20 0.1; 0.1 1]
Data Types: single | double

TrackingFilters — List of filters
{trackingEKF,trackingEKF} (default) | cell array of tracking filters

List of filters, specified as a cell array of tracking filters. Specify these filters when creating the
object. By default, the filters have equal probability. Specify modelProbabilities if the filters have
different probabilities.

Note The state of each filter must be the same size and have the same physical meaning.

Data Types: cell

ModelProbabilities — Weight of each filter
[0.5 0.5] (default) | vector of probabilities between 0 and 1

Weight of each filter, specified as a vector of probabilities from 0 to 1. By default, the weight of each
component of the filter is equal.
Data Types: single | double

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.
The matrix is a square with side lengths equal to the number of measurements. A scalar input is
extended to a square diagonal matrix.

Specify MeasurementNoise before any call to the correct function. After the first call to correct,
you can optionally specify the measurement noise as a scalar. In this case, the measurement noise
matrix is a multiple of the R-by-R identity matrix, where R is the number of measurements.
Example: 0.2
Data Types: single | double

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter

 trackingGSF

2-409

clone Create duplicate tracking filter

Examples

Run trackingGSF Filter

This example shows how to create and run a trackingGSF filter. Specify three extended Kalman
filters (EKFs) as the components of the Gaussian-sum filter. Call the predict and correct functions
to track an object and correct the state estimate based on measurements.

Create three EKFs each with a state distributed around [0;0;0;0;0;0] and running on position
measurements. Specify them as the input to the trackingGSF filter.

filters = cell(3,1);
filter{1} = trackingEKF(@constvel,@cvmeas,rand(6,1),'MeasurementNoise',eye(3));
filter{2} = trackingEKF(@constvel,@cvmeas,rand(6,1),'MeasurementNoise',eye(3));
filter{3} = trackingEKF(@constvel,@cvmeas,rand(6,1),'MeasurementNoise',eye(3));
gsf = trackingGSF(filter);

Call predict to get the predicted state and covariance of the filter. Use a 0.1 sec time step.

[x_pred, P_pred] = predict(gsf,0.1);

Call correct with a given measurement.

meas = [0.5;0.2;0.3];
[xCorr,pCorr] = correct(gsf,meas);

Compute the distance between the filter and a different measurement.

d = distance(gsf,[0;0;0]);

References
[1] Alspach, Daniel, and Harold Sorenson. "Nonlinear Bayesian estimation using Gaussian sum

approximations." IEEE Transactions on Automatic Control. Vol. 17, No. 4, 1972, pp. 439–448.

[2] Ristic, B., Arulampalam, S. and McCarthy, J., 2002. Target motion analysis using range-only
measurements: algorithms, performance and application to ISAR data. Signal Processing,
82(2), pp.273-296.

[3] Peach, N. "Bearings-only tracking using a set of range-parameterised extended Kalman filters."
IEE Proceedings-Control Theory and Applications 142, no. 1 (1995): 73-80.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackingCKF | trackingEKF | trackingMSCEKF | trackingPF | trackingUKF

2 Classes

2-410

Introduced in R2018b

 trackingGSF

2-411

trackingIMM
Interacting multiple model (IMM) filter for object tracking

Description
The trackingIMM object represents an interacting multiple model (IMM) filter designed for tracking
objects that are highly maneuverable. Use the filter to predict the future location of an object, to
reduce noise in the detected location, or help associate multiple object detections with their tracks.

The IMM filter deals with the multiple motion models in the Bayesian framework. This method
resolves the target motion uncertainty by using multiple models at a time for a maneuvering target.
The IMM algorithm processes all the models simultaneously and switches between models according
to their updated weights.

Creation
Syntax
imm = trackingIMM
imm = trackingIMM(trackingFilters)
imm = trackingIMM(trackingFilters,modelConversionFcn)
imm = trackingIMM(trackingFilters,modelConversionFcn,transitionProbabilities)
imm = trackingIMM(___ ,Name,Value)

Description

imm = trackingIMM returns an IMM filter object with default tracking filters
{trackingEKF,trackingEKF,trackingEKF} with the motion models set as constant velocity,
constant acceleration, and constant turn, respectively. The filter uses the default conversion function,
@switchimm.

imm = trackingIMM(trackingFilters) specifies the TrackingFilters property and sets all other
properties to default values.

imm = trackingIMM(trackingFilters,modelConversionFcn) also specifies the
ModelConversionFcn property.

imm = trackingIMM(trackingFilters,modelConversionFcn,transitionProbabilities)
also specifies the TransitionProbabilities property.

imm = trackingIMM(___ ,Name,Value) specifies the properties of the filter using one or more
Name,Value pair arguments. Any unspecified properties take default values. Specify any other input
arguments from previous syntaxes first.

Properties
State — Filter state
[0;0;0;0;0;0] (default) | real-valued M-element vector

2 Classes

2-412

Filter state, specified as a real-valued M-element vector. Specify the initial state when creating the
object using name-value pairs.
Data Types: single | double

StateCovariance — State estimation error covariance
diag([1 100 1 100 1 100]) (default) | M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix, where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state. Specify the initial state covariance when creating the object using name-value pairs.
Example: eye(6)
Data Types: single | double

TrackingFilters — List of filters
{trackingEKF,trackingEKF,trackingEKF} (default) | cell array of tracking filters

List of filters, specified as a cell array of tracking filters. By default, the filters have equal probability.
Specify ModelProbabilities if the filters have different probabilities.
Data Types: cell

ModelConversionFcn — Function to convert state or state covariance
@switchimm (default) | function handle

Function to convert the state or state covariance, specified as a function handle. The function
converts the state or state covariance from one model type to another. The function signature is:

function x2 = modelConversionFcn(modelType1,x1,modelType2)

The modelType1 and modelType2 inputs are the names of the two model names. x1 specifies the
State or StateCovariance of the first model. x2 outputs the State or StateCovariance
Data Types: function_handle

TransitionProbabilities — Probability of filter model transitions
0.9 (default) | positive real scalar | L-element vector | L-by-L matrix

Probability of filter model transitions, specified as a positive real scalar, L-element vector, or L-by-L
matrix, where L is the number of filters:

• When specified as a scalar, the probability is uniform for staying on each filter. The remaining
probability (1-p) is distributed evenly across the other motion models.

• When specified as a vector, each element defines the probability of staying on each filter. The
remaining probability (1-p) is distributed evenly across the other motion models evenly.

• When specified as a matrix, the (j,k) element defines the probability of transitioning from the jth
filter to the kth filter. All elements must lie on the interval [0,1], and each row and column must
sum to 1.

The transition probability defined for each model corresponds to the probability that the filter
switches from this model to another model in one second.
Example: 0.75
Data Types: single | double

 trackingIMM

2-413

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.
When specified as a scalar, the matrix is a multiple of the N-by-N identity matrix. N is the size of the
measurement vector.

Specify MeasurementNoise before any call to the correct function.
Example: 0.2

ModelProbabilities — Weight of each filter
1/L*ones(L) (default) | vector of probabilities between 0 and 1

Weight of each filter, specified as a vector of probabilities from 0 to 1. By default, the weight of each
component of the filter is equal. L is the number of filters. The IMM filter updates the weight of each
filter in the prediction step.
Data Types: single | double

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Run trackingIMM Filter

This example shows how to create and run an interacting multiple model (IMM) filter using a
trackingIMM object. Call the predict and correct functions to track an object and correct the
state estimate based on measurements.

Create the filter. Use name-value pairs to specify additional properties of the object.

detection = objectDetection(0, [1;1;0], 'MeasurementNoise', [1 0.2 0; 0.2 2 0; 0 0 1]);
filter = {initctekf(detection);initcvekf(detection)};
modelConv = @switchimm;
transProb = [0.9,0.9];
imm = trackingIMM('State',[1;1;3;1;5;1;1],'StateCovariance',eye(7),...
 'TransitionProbabilities',transProb,'TrackingFilters',filter,...
 'ModelConversionFcn',modelConv);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 sec time step.

[xPred,pPred] = predict(imm,0.5);

Call correct with a given measurement.

meas = [1;1;0];
[xCorr,pCorr] = correct(imm,meas);

2 Classes

2-414

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(imm); % Predict over 1 second
[xPred,pPred] = predict(imm,2); % Predict over 2 seconds

References
[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. Tracking and data fusion. Storrs, CT, USA::

YBS publishing, 2011.

[2] Blackman, Samuel, and Robert Popoli. "Design and analysis of modern tracking systems."
Norwood, MA: Artech House, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
constacc | constturn | constvel | trackingCKF | trackingEKF | trackingGSF | trackingKF |
trackingUKF

Introduced in R2018b

 trackingIMM

2-415

trackingMSCEKF
Extended Kalman filter for object tracking in modified spherical coordinates (MSC)

Description
The trackingMSCEKF object represents an extended Kalman filter (EKF) for object tracking in
modified spherical coordinates (MSC) using angle-only measurements from a single observer. Use the
filter to predict the future location of an object in the MSC frame or associate multiple object
detections with their tracks. You can specify the observer maneuver or acceleration required by the
state-transition functions (@constantvelmsc and @constantvelmscjac) by using the
ObserverInput property.

The following properties are fixed for the trackingMSCEKF object:

• StateTransitionFcn - @constvelmsc
• StateTransitionJacobianFcn - @constvelmscjac
• MeasurementFcn - @cvmeasmsc
• MeasurementJacobianFcn - @cvmeasmscjac
• HasAdditiveProcessNoise - false
• HasAdditiveMeasurementNoise - true

Creation

Syntax
mscekf = trackingMSCEKF
mscekf = trackingMSCEKF(Name,Value)

Description

mscekf = trackingMSCEKF returns an extended Kalman filter to use the MSC state-transition and
measurement functions with object trackers. The default State implies a static target at 1 meter
from the observer at zero azimuth and elevation.

mscekf = trackingMSCEKF(Name,Value) specifies the properties of the filter using one or more
Name,Value pair arguments. Any unspecified properties take default values.

Properties
State — Filter state
[0;0;0;0;1;0] (default) | real-valued M-element vector

Filter state, specified as a real-valued M-element vector. M is either 4 for 2-D tracking or 6 for 3-D
tracking.

2 Classes

2-416

Example: [az;azRate;1/r;rDot/r] for 2-D tracking and [az;omega;el;elRate;1/r;rDot/r]
for 3-D tracking
Data Types: double

StateCovariance — State estimation error covariance
1 (default) | M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state. M is either 4 for 2-D tracking or 6 for 3-D tracking.
Example: eye(6)

StateTransitionFcn — State transition function
@constvelmsc (default)

This property is read-only.

State transition function, specified as a function handle. This function calculates the state vector at
time step k from the state vector at time step k–1. For the trackingMSCEKF object, the transition
function is fixed to @constvelmsc.
Data Types: function_handle

StateTransitionJacobianFcn — State transition function Jacobian
@constvelmscjac (default)

This property is read-only.

The Jacobian of the state transition function, specified as a function handle. This function has the
same input arguments as the state transition function. For the trackingMSCEKF object, the
transition function Jacobian is fixed to @constvelmsc.
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance, specified as a Q-by-Q matrix. Q is either 2 or 3. The process noise
represents uncertainty in the acceleration of the target.

Specify ProcessNoise before any call to the predict function. In later calls to predict, you can
optionally specify the process noise as a scalar. In this case, the process noise matrix is a multiple of
the Q-by-Q identity matrix.
Example: [1.0 0.05; 0.05 2]

ObserverInput — Acceleration or maneuver of observer
[0;0;0] (default) | M/2-element vector | M-element vector

Acceleration or maneuver of the observer, specified as a three-element vector. To specify an
acceleration, use an M/2 vector, where M is either 4 for 2-D tracking or 6 for 3-D tracking. To specify
a maneuver, give an M-element vector.
Example: [1;2;3]

 trackingMSCEKF

2-417

HasAdditiveProcessNoise — Model additive process noise
false (default)

This property is read-only.

Model additive process noise, specified as false. For the trackingMSCEKF object, this property is
fixed to false.

MeasurementFcn — Measurement model function
@cvmeasmsc (default)

This property is read-only.

Measurement model function, specified as a function handle, @cvmeasmsc. Input to the function is
the M-element state vector. The output is the N-element measurement vector. For the
trackingMSCEKF object, the measurement model function is fixed to @cvmeasmsc.
Data Types: function_handle

MeasurementJacobianFcn — Jacobian of measurement function
@cvmeasmscjac

This property is read-only.

Jacobian of the measurement function, specified as a function handle. The function has the same
input arguments as the measurement function. For the trackingMSCEKF object, the Jacobian of the
measurement function is fixed to @cvmeasmscjac.
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.
When specified as a scalar, the matrix is a multiple of the N-by-N identity matrix. N is the size of the
measurement vector.

Specify MeasurementNoise before any call to the correct function.
Example: 0.2

HasAdditiveMeasurementNoise — Model additive measurement noise
true (default)

This property is read-only.

Model additive process noise, specified as true. For the trackingMSCEKF object, this property is
fixed to true.

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter

2 Classes

2-418

clone Create duplicate tracking filter
residual Measurement residual and residual noise from tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Create MSC-EKF Tracking Object for 3-D Motion Model

This example shows how to make an extended Kalman filter (EKF) for object tracking in modified
spherical coordinates (MSC). Create the filter, predict the state, and correct the state estimate using
measurement observations.

Create the filter for a 3-D motion model. Specify the state estimates for the MSC frame.

az = 0.1;
azRate = 0;
r = 1000;
rDot = 10;
el = 0.3;
elRate = 0;
omega = azRate*cos(el);

mscekf = trackingMSCEKF('State',[az;omega;el;elRate;1/r;rDot/r]);

Predict the filter state using a constant observer acceleration.

mscekf.ObserverInput = [1;2;3];
predict(mscekf); % Default time 1 second.
predict(mscekf,0.1); % Predict using dt = 0.1 second.

Correct the filter state using an angle-only measurement.

meas = [5;18]; %degrees
correct(mscekf,meas);

References
[1] Aidala, V. and Hammel, S., 1983. Utilization of modified polar coordinates for bearings-only

tracking. IEEE Transactions on Automatic Control, 28(3), pp.283-294.

See Also
trackingCKF | trackingEKF | trackingGSF | trackingIMM | trackingPF

Introduced in R2018b

 trackingMSCEKF

2-419

trackingPF
Particle filter for object tracking

Description
The trackingPF object represents an object tracker that follows a nonlinear motion model or that is
measured by a nonlinear measurement model. The filter uses a set of discrete particles to
approximate the posterior distribution of the state. The particle filter can be applied to arbitrary
nonlinear system models. The process and measurement noise can follow an arbitrary non-Gaussian
distribution.

The particles are generated using various resampling methods defined by ResamplingMethod.

Creation

Syntax
pf = trackingPF
pf = trackingPF(transitionFcn,measuremntFcn,state)
pf = trackingPF(___ ,Name,Value)

Description

pf = trackingPF returns a trackingPF object with state transition function, @constvel,
measurement function, @cvmeas, and a distribution of particles around the state, [0;0;0;0], with
unit covariance in each dimension. The filter assumes an additive Gaussian process noise model and
Gaussian likelihood calculations.

pf = trackingPF(transitionFcn,measuremntFcn,state) specifies the
StateTransitionFcn, MeasurementFcn, and State properties directly. The filter assumes a unit
covariance around the state.

pf = trackingPF(___ ,Name,Value) specifies the properties of the particle filter using one or
more Name,Value pair arguments. Any unspecified properties take default values.

Properties
State — Current filter state
real-valued M-element vector

This property is read-only.

Current filter state, specified as a real-valued M-element vector. The current state is calculated from
Particles and Weight using the specified StateEstimationMethod. M is the
NumStateVariables. StateOrientation determines if the state is given as a row or column
vector.
Example: [0.1;0.05;0.04;-0.01]

2 Classes

2-420

Data Types: double

StateCovariance — State estimation error covariance
M-by-M matrix

This property is read-only.

State error covariance, specified as an M-by-M matrix, where M is the size of the filter state. The
current state covariance is calculated from Particles and Weight using the specified
StateEstimationMethod. M is the NumStateVariables. The covariance matrix represents the
uncertainty in the filter state.

IsStateVariableCircular — Indicates if state variables have circular distribution
[0 0 0 0] (default) | M-element vector of zeros and ones

This property is read-only.

Indicates if state variables have circular distribution, specified as an M-element vector of zeros and
ones. Values of 1 indicate it does have a circular distribution. The probability density function of a
circular variable takes on angular values in the range [-pi,pi].

StateOrientation — Orientation of state vector
'column' (default) | 'row'

Orientation of state vector, specified as 'column' or 'row'.

Note If you set the orientation to 'row', the default StateTransitionFcn and MeasurementFcn
are not supported. All state transition functions and measurement functions provided (constvel and
cvmeas, for example) assume a 'column' orientation.

StateTransitionFcn — State transition function
@constvel (default) | function handle

State transition function, specified as a function handle. The state transition function evolves the
system state from each particle. The callback function accepts at least one input argument,
prevParticles, that represents the system at the previous time step. If StateOrientation is
'row', the particles are input as a NumParticles-by-NumStateVariables array. If
StateOrientation is 'column', the particles are input as a NumStateVariables-by-
NumParticles array.

Additional input arguments can be provided with varargin, which are passed to the predict
function. The function signature is:

function predictParticles = stateTransitionFcn(prevParticles,varargin)

When the HasAdditiveProcessNoise property of the filter is false, the state transition function
can accept an additional input argument, dt. For example:

function predictParticles = stateTransitionFcn(prevParticles,dt,varargin)

dt is the time step of the trackingPF filter, filter, that was specified in the most recent call to the
predict function. The dt argument applies when you use the filter within a tracker and call the
predict function with the filter to predict the state of the tracker at the next time step. For the

 trackingPF

2-421

nonadditive process noise case, the tracker assumes that you explicitly specify the time step by using
this syntax: predict(filter,dt)

Dependencies

This parameter depends on the StateOrientation property.
Data Types: function_handle

ProcessNoiseSamplingFcn — Function to generate noise sample for each particle
@gaussianSampler (default) | function handle

Function to generate noise sample for each particle, specified as a function handle. The function
signature is:

function noiseSample = processNoiseSamplingFcn(pf)

• When HasAdditiveProcessNoise is false, this function outputs a noise sample as a W-by-N
matrix, where W is the number of process noise terms, and N is the number of particles.

• When HasAdditiveProcessNoise is true, this function outputs a noise sample as an M-by-N
matrix, where M is the number of state variables, and N is the number of particles.

To generate a sample from a non-Gaussian distribution, use this property with a custom function
handle.

Dependencies

This parameter depends on the HasAdditiveProcessNoise property.
Data Types: function_handle

ProcessNoise — Process noise covariance
1 (default) | positive real-valued scalar | positive-definite real-valued matrix

Process noise covariance:

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a scalar or a
positive definite real-valued M-by-M matrix. M is the dimension of the state vector. When specified
as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a Q-by-Q
matrix. Q is the size of the process noise vector.

Specify ProcessNoise before any call to the predict function. In later calls to predict, you
can optionally specify the process noise as a scalar. In this case, the process noise matrix is a
multiple of the Q-by-Q identity matrix.

If ProcessNoiseSamplingFcn is specified as @gaussianSample, this property defines the
Gaussian noise covariance of the process.
Example: [1.0 0.05; 0.05 2]

Dependencies

This parameter depends on the HasAdditiveProcessNoise property.

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

2 Classes

2-422

Option to model processes noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

MeasurementFcn — Measurement model function
@cvmeas (default) | function handle

Measurement model function, specified as a function handle. This function calculates the
measurements given the current particles' state. Additional input arguments can be provided with
varargin. The function signature is:

function predictedParticles = measurementFcn(particles,varargin)

Data Types: function_handle

MeasurementLikelihoodFcn — Callback function calculating the likelihood of sensor
measurements
@gaussianLikelihood (default) | function handle

Callback function calculating the likelihood of sensor measurements, specified as a function handle.
Once a sensor measurement is available, this callback function calculates the likelihood that the
measurement is consistent with the state hypothesis of each particle.

The callback function accepts at least three input arguments, pf, predictedParticles, and
measurement. There are two function signatures:

function likelihood = measurementLikelihoodFcn(pf,predictedParticles,measurement,varargin)

function [likelihood,distance] = measurementLikelihoodFcn(pf,predictedParticles,measurement,varargin)

pf is the particle filter object.

predictedParticles represents the set of particles returned from MeasurementFcn. If
StateOrientation is 'row', the particles are input as a NumParticles-by-NumStateVariables
array. If StateOrientation is 'column', the particles are input as a NumStateVariables-by-
NumParticles array.

measurement is the state measurement at the current time step.

varargin allows you to specify additional inputs to the correct function.

The callback output, likelihood, is a vector of length NumParticles, which is the likelihood of the
given measurement for each particle state hypothesis.

The optional output, distance, allows you to specify the distance calculations returned by the
distance function.
Data Types: function_handle

MeasurementNoise — Measurement noise covariance
1 (default) | positive scalar | positive-definite real-valued matrix

Measurement noise covariance, specified as a positive scalar or positive-definite real-valued matrix.
When specified as a scalar, the matrix is a multiple of the N-by-N identity matrix. N is the size of the
measurement vector.

 trackingPF

2-423

If MeasurementLikelihoodFcn is specified as @gaussianLikelihood, this property is used to
specify the Gaussian noise covariance of the measurement.
Example: 0.2

Particles — State hypothesis of each particle
matrix

State hypothesis of each particle, specified as a matrix. If StateOrientation is 'row' the particles
are a NumParticles-by-NumStateVariables array. If StateOrientation is 'column', the
particles are a NumStateVariables-by-NumParticles array.

Each row or column corresponds to the state hypothesis of a single particle.
Data Types: double

Weights — Particle weights
ones(1,NumParticles) (default) | vector

Particle weights, specified as a vector. The vector is either a row or column vector based on
StateOrientation. Each row or column is the weight associated with the same row or column in
Particles.
Data Types: double

NumStateVariables — Number of state variables
4 (default) | integer

Number of state variables, specified as an integer. The State is comprised of this number of state
variables.

NumParticles — Number of particles used
1000 (default) | integer

Number of particles used by the filter, specified as an integer. Each particle represents a state
hypothesis.

ResamplingPolicy — Policy settings for triggering resampling
trackingResamplingPolicy object

Policy settings for triggering resampling, specified as a trackingResamplingPolicy object. The
resampling can be triggered either at fixed intervals or dynamically based on the number of effective
particles.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'systemic' | 'stratified' | 'residual'

Method used for particle resampling, specified as 'multinomial', 'systemic', 'stratified', or
'residual'.

StateEstimationMethod — Method used for state estimation
'mean' (default) | 'maxweight'

Method used for state estimation, specified as 'mean' or 'maxweight'.

2 Classes

2-424

Object Functions
predict Predict state and state estimation error covariance of tracking filter
correct Correct state and state estimation error covariance using tracking filter
correctjpda Correct state and state estimation error covariance using tracking filter and JPDA
distance Distances between current and predicted measurements of tracking filter
likelihood Likelihood of measurement from tracking filter
clone Create duplicate tracking filter
initialize Initialize state and covariance of tracking filter

Examples

Run trackingPF Filter

This example shows how to create and run a trackingPF filter. Call the predict and correct
functions to track an object and correct the state estimate based on measurements.

Create the filter. Specify the initial state and state covariance. Specify the number of particles and
that there is additive process noise.

state = [0;0;0;0];
stateCov = 10*eye(4);
pf = trackingPF(@constvel,@cvmeas,state,'StateCovariance',stateCov,...
 'NumParticles',2500,'HasAdditiveProcessNoise',true);

Call predict to get the predicted state and covariance of the filter. Use a 0.5 sec time step.

[xPred,pPred] = predict(pf,0.5);

You can also modify the particles in the filter to carry a multi-model state hypothesis. Modify the
Particle property with particles around multiple states after initialization.

state1 = [0;0;0;0];
stateCov1 = 10*eye(4);
state2 = [100;0;100;0];
stateCov2 = 10*eye(4);

pf.Particles(:,1:1000) = (state1 + chol(stateCov1)*randn(4,1000));
pf.Particles(:,1001:2000) = (state2 + chol(stateCov2)*randn(4,1000));

Call correct with a given measurement.

meas = [1;1;0];
[xCorr,pCorr] = correct(pf,meas);

Continue to predict the filter state. Specify the desired time step in seconds if necessary.

[xPred,pPred] = predict(pf); % Predict over 1 second
[xPred,pPred] = predict(pf,2); % Predict over 2 seconds

References
[1] Arulampalam, M.S., S. Maskell, N. Gordon, and T. Clapp. "A Tutorial on Particle Filters for Online

Nonlinear/Non-Gaussian Bayesian Tracking." IEEE Transactions on Signal Processing. Vol.
50, No. 2, Feb 2002, pp. 174-188.

 trackingPF

2-425

[2] Chen, Z. "Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond." Statistics. Vol.
182, No. 1, 2003, pp. 1-69.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
constvel | cvmeas | trackingCKF | trackingEKF | trackingKF | trackingUKF

Introduced in R2018b

2 Classes

2-426

trackScoreLogic
Confirm and delete tracks based on track score

Description
The trackScoreLogic object determines if a track should be confirmed or deleted based on the
track score (also known as the log likelihood of a track). A track should be confirmed if the current
track score is greater than or equal to the confirmation threshold. A track should be deleted if the
current track score has decreased relative to the maximum track score by the deletion threshold.

The confirmation and deletion decisions contribute to the track management by a trackerGNN or
trackerTOMHT.

Creation
Syntax
logic = trackScoreLogic
logic = trackScoreLogic(Name,Value,...)

Description

logic = trackScoreLogic creates a trackScoreLogic object with default confirmation and
deletion thresholds.

logic = trackScoreLogic(Name,Value,...) specifies the ConfirmationThreshold and
DeletionThreshold properties of the track score logic object using one or more Name,Value pair
arguments. Any unspecified properties take default values.

Properties
ConfirmationThreshold — Confirmation threshold
20 (default) | positive scalar

Confirmation threshold, specified as a positive scalar. If the logic score is above this threshold, then
the track is confirmed.
Data Types: single | double

DeletionThreshold — Deletion threshold
-5 (default) | negative scalar

Deletion threshold, specified as a negative scalar. If the value of Score - MaxScore is more
negative than the deletion threshold, then the track is deleted.
Data Types: single | double

Score — Current track logic score
numeric scalar

 trackScoreLogic

2-427

This property is read-only.

Current track logic score, specified as a numeric scalar.

MaxScore — Maximum track logic score
numeric scalar

This property is read-only.

Maximum track logic score, specified as a numeric scalar.

Object Functions
init Initialize track logic with first hit
hit Update track logic with subsequent hit
miss Update track logic with miss
sync Synchronize scores of trackScoreLogic objects
mergeScores Update track score by track merging
checkConfirmation Check if track should be confirmed
checkDeletion Check if track should be deleted
output Get current state of track logic
reset Reset state of track logic
clone Create copy of track logic

Examples

Create and Update Score-Based Logic

Create a score-based logic. Specify the confirmation threshold as 20 and the deletion threshold as -5.

scoreLogic = trackScoreLogic('ConfirmationThreshold',20,'DeletionThreshold',-5)

scoreLogic =
 trackScoreLogic with properties:

 ConfirmationThreshold: 20
 DeletionThreshold: -5
 Score: 0
 MaxScore: 0

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta). Initialize the logic using
these parameters. The first update to the logic is a hit.

pd = 0.9; % Probability of detection
pfa = 1e-6; % Probability of false alarm
volume = 1; % Volume of a sensor detection bin
beta = 0.1; % New target rate in a unit volume

init(scoreLogic,volume,beta,pd,pfa);

disp(['Score and MaxScore: ', num2str(output(scoreLogic))])

Score and MaxScore: 11.4076 11.4076

2 Classes

2-428

Update the logic four more times, where only the odd updates register a hit. The score increases with
each hit and decreases with each miss. The confirmation flag is true whenever the current score is
larger than 20.

for i = 2:5

 isOdd = logical(mod(i,2));
 if isOdd
 likelihood = 0.05 + 0.05*rand(1);
 hit(scoreLogic,volume,likelihood)
 else
 miss(scoreLogic)
 end

 confFlag = checkConfirmation(scoreLogic);
 delFlag = checkDeletion(scoreLogic);
 disp(['Score and MaxScore: ', num2str(output(scoreLogic)), ...
 '. Confirmation Flag: ',num2str(confFlag), ...
 '. Deletion Flag: ',num2str(delFlag)'])
end

Score and MaxScore: 9.10498 11.4076. Confirmation Flag: 0. Deletion Flag: 0
Score and MaxScore: 20.4153 20.4153. Confirmation Flag: 1. Deletion Flag: 0
Score and MaxScore: 18.1127 20.4153. Confirmation Flag: 0. Deletion Flag: 0
Score and MaxScore: 29.4721 29.4721. Confirmation Flag: 1. Deletion Flag: 0

Update the logic with a miss three times. The deletion flag is true by the end of the third miss,
because the difference between the current score and maximum score is greater than five.

for i = 1:3
 miss(scoreLogic)

 confFlag = checkConfirmation(scoreLogic);
 delFlag = checkDeletion(scoreLogic);
 disp(['Score and MaxScore: ', num2str(output(scoreLogic)), ...
 '. Confirmation Flag: ',num2str(confFlag), ...
 '. Deletion Flag: ',num2str(delFlag)])
end

Score and MaxScore: 27.1695 29.4721. Confirmation Flag: 1. Deletion Flag: 0
Score and MaxScore: 24.8669 29.4721. Confirmation Flag: 1. Deletion Flag: 0
Score and MaxScore: 22.5643 29.4721. Confirmation Flag: 1. Deletion Flag: 1

Tips
• If you specify either ConfirmationThreshold or DeletionThreshold in single precision, then

the trackScoreLogic object converts the other property to single precision and performs
computations in single precision.

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Boston, MA:

Artech House, 1999.

 trackScoreLogic

2-429

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackerGNN

Topics
“Introduction to Track Logic”

Introduced in R2018b

2 Classes

2-430

mergeScores
Update track score by track merging

Syntax
mergeScores(scoreLogic1,scoreLogic2)

Description
mergeScores(scoreLogic1,scoreLogic2) updates the score of scoreLogic1 by merging the
score with the score of scoreLogic2. Score merging increases the score of scoreLogic1 by
log(1+exp(score2-score1)).

Examples

Merge Score Logics

Create a score logic using the default confirmation and deletion thresholds. Initialize the score logic.

scoreLogic1 = trackScoreLogic;
volume = 1.3; % Volume of a sensor detection bin
beta1 = 1e-5; % New target rate in a unit volume
init(scoreLogic1,volume,beta1);
disp(['Score and MaxScore of ScoreLogic1: ', num2str(output(scoreLogic1))])

Score and MaxScore of ScoreLogic1: 2.4596 2.4596

Create a copy of the score logic.

scoreLogic2 = clone(scoreLogic1);

Specify the likelihood that the detection is assigned to the track, the probability of detection (pd) and
the probability of false alarm (pfa). Update the second score logic with a hit.

likelihood = 0.05 + 0.05*rand(1);
pd = 0.8;
pfa = 1e-3;
hit(scoreLogic2,volume,likelihood,pd,pfa)
disp(['Score and MaxScore of ScoreLogic2: ', num2str(output(scoreLogic2))])

Score and MaxScore of ScoreLogic2: 7.0068 7.0068

Merge the score of scoreLogic1 with the score of scoreLogic2. The score of scoreLogic2 is
larger, therefore the merged score of scoreLogic1 increases.

mergeScores(scoreLogic1,scoreLogic2)
disp(['Score and MaxScore of merged ScoreLogic1: ', num2str(output(scoreLogic1))])

Score and MaxScore of merged ScoreLogic1: 7.0173 7.0173

 mergeScores

2-431

Input Arguments
scoreLogic1 — Track score logic to update
trackScoreLogic object

Track score logic to update, specified as a trackScoreLogic object.

scoreLogic2 — Reference track score logic
trackScoreLogic object

Reference track score logic, specified as a trackScoreLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | sync

Introduced in R2018b

2 Classes

2-432

sync
Synchronize scores of trackScoreLogic objects

Syntax
sync(scoreLogic1,scoreLogic2)

Description
sync(scoreLogic1,scoreLogic2) sets the values of 'Score on page 2-0 ' and 'MaxScore
on page 2-0 ' of scoreLogic1 to the values of scoreLogic2.

Examples

Synchronize Track Score Logics

Create a score logic using the default confirmation and deletion thresholds.

scoreLogic1 = trackScoreLogic

scoreLogic1 =
 trackScoreLogic with properties:

 ConfirmationThreshold: 20
 DeletionThreshold: -5
 Score: 0
 MaxScore: 0

Create a second score logic, specifying the confirmation threshold as 30 and the deletion threshold as
-10.

scoreLogic2 = trackScoreLogic('ConfirmationThreshold',30,'DeletionThreshold',-10)

scoreLogic2 =
 trackScoreLogic with properties:

 ConfirmationThreshold: 30
 DeletionThreshold: -10
 Score: 0
 MaxScore: 0

Initialize the two score logics using different target rates in a unit volume.

volume = 1.3; % Volume of a sensor detection bin

beta1 = 0.1; % New target rate in a unit volume
init(scoreLogic1,volume,beta1);
disp(['Score and MaxScore of ScoreLogic1: ', num2str(output(scoreLogic1))])

Score and MaxScore of ScoreLogic1: 11.6699 11.6699

 sync

2-433

beta2 = 0.3; % New target rate in a unit volume
init(scoreLogic2,volume,beta2);
disp(['Score and MaxScore of ScoreLogic2: ', num2str(output(scoreLogic2))])

Score and MaxScore of ScoreLogic2: 12.7685 12.7685

Specify the likelihood that a detection is assigned to the track. Then, update the second score logic
with a hit.

likelihood = 0.05 + 0.05*rand(1);
hit(scoreLogic2,volume,likelihood)

disp(['Score and MaxScore of ScoreLogic2: ', num2str(output(scoreLogic2))])

Score and MaxScore of ScoreLogic2: 24.3413 24.3413

Synchronize scoreLogic1 to have the same 'Score' and 'MaxScore' as scoreLogic2. The sync
function does not modify the confirmation or deletion thresholds. To verify this, display the properties
of both score logic objects.

sync(scoreLogic1,scoreLogic2)
scoreLogic1

scoreLogic1 =
 trackScoreLogic with properties:

 ConfirmationThreshold: 20
 DeletionThreshold: -5
 Score: 24.3413
 MaxScore: 24.3413

scoreLogic2

scoreLogic2 =
 trackScoreLogic with properties:

 ConfirmationThreshold: 30
 DeletionThreshold: -10
 Score: 24.3413
 MaxScore: 24.3413

Input Arguments
scoreLogic1 — Track score logic to synchronize
trackScoreLogic object

Track score logic to synchronize, specified as a trackScoreLogic object.

scoreLogic2 — Reference track score logic
trackScoreLogic object

Reference track score logic, specified as a trackScoreLogic object.

2 Classes

2-434

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clone | mergeScores

Introduced in R2018b

 sync

2-435

trackHistoryLogic
Confirm and delete tracks based on recent track history

Description
The trackHistoryLogic object determines if a track should be confirmed or deleted based on the
track history. A track should be confirmed if there are at least Mc hits in the recent Nc updates. A
track should be deleted if there are at least Md misses in the recent Nd updates.

The confirmation and deletion decisions contribute to the track management by a trackerGNN
object.

Creation
Syntax
logic = trackHistoryLogic
logic = trackHistoryLogic(Name,Value,...)

Description

logic = trackHistoryLogic creates a trackHistoryLogic object with default confirmation
and deletion thresholds.

logic = trackHistoryLogic(Name,Value,...) specifies the properties of the track history
logic object using one or more Name,Value pair arguments. Any unspecified properties take default
values.

Properties
ConfirmationThreshold — Confirmation threshold
[2 3] (default) | positive integer scalar | 2-element vector of positive integers

Confirmation threshold, specified as a positive integer scalar or 2-element vector of positive integers.
If the logic score is above this threshold, the track is confirmed. ConfirmationThreshold has the
form [Mc Nc], where Mc is the number of hits required for confirmation in the recent Nc updates.
When specified as a scalar, then Mc and Nc have the same value.
Example: [3 5]
Data Types: single | double

DeletionThreshold — Deletion threshold
[6 6] (default) | positive integer scalar | 2-element vector of positive integers

Deletion threshold, specified as a positive integer scalar or 2-element vector of positive integers. If
the logic score is above this threshold, the track is deleted. DeletionThreshold has the form [Md
Nd], where Md is the number of misses required for deletion in the recent Nd updates. When
specified as a scalar, then Md and Nd have the same value.

2 Classes

2-436

Example: [5 5]
Data Types: single | double

History — Track history
logical vector

This property is read-only.

Track history, specified as a logical vector of length N, where N is the larger of the second element in
the ConfirmationThreshold and the second element in the DeletionThreshold. The first
element is the most recent update. A true value indicates a hit and a false value indicates a miss.

Object Functions
init Initialize track logic with first hit
hit Update track logic with subsequent hit
miss Update track logic with miss
checkConfirmation Check if track should be confirmed
checkDeletion Check if track should be deleted
output Get current state of track logic
reset Reset state of track logic
clone Create copy of track logic

Examples

Create and Update History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
 'DeletionThreshold',[6 7])

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [3 5]
 DeletionThreshold: [6 7]
 History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1 0 0 0 0 0 0].

Update the logic four more times, where only the odd updates register a hit. The confirmation flag is
true by the end of the fifth update, because three hits (Mc) are counted in the most recent five
updates (Nc).

for i = 2:5
 isOdd = logical(mod(i,2));

 trackHistoryLogic

2-437

 if isOdd
 hit(historyLogic)
 else
 miss(historyLogic)
 end

 history = historyLogic.History;
 confFlag = checkConfirmation(historyLogic);
 delFlag = checkDeletion(historyLogic,true,i);
 disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
 '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0 1 0 0 0 0 0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1 0 1 0 0 0 0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0 1 0 1 0 0 0]. Confirmation Flag: 0. Deletion Flag: 0
History: [1 0 1 0 1 0 0]. Confirmation Flag: 1. Deletion Flag: 0

Update the logic with a miss six times. The deletion flag is true by the end of the fifth update,
because six misses (Md) are counted in the most recent seven updates (Nd).

for i = 1:6
 miss(historyLogic);

 history = historyLogic.History;
 confFlag = checkConfirmation(historyLogic);
 delFlag = checkDeletion(historyLogic);
 disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag), ...
 '. Deletion Flag: ',num2str(delFlag)']);
end

History: [0 1 0 1 0 1 0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0 0 1 0 1 0 1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0 0 0 1 0 1 0]. Confirmation Flag: 0. Deletion Flag: 0
History: [0 0 0 0 1 0 1]. Confirmation Flag: 0. Deletion Flag: 0
History: [0 0 0 0 0 1 0]. Confirmation Flag: 0. Deletion Flag: 1
History: [0 0 0 0 0 0 1]. Confirmation Flag: 0. Deletion Flag: 1

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Boston, MA:

Artech House, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackScoreLogic | trackerGNN

Topics
“Introduction to Track Logic”

2 Classes

2-438

Introduced in R2018b

 trackHistoryLogic

2-439

checkConfirmation
Check if track should be confirmed

Syntax
tf = checkConfimation(historyLogic)
tf = checkConfimation(scoreLogic)

Description
tf = checkConfimation(historyLogic) returns a flag that is true when at least Mc out of Nc
recent updates of the track history logic object historyLogic are true.

tf = checkConfimation(scoreLogic) returns a flag that is true when the track should be
confirmed based on the track score.

Examples

Check Confirmation of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [3 3].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
 'DeletionThreshold',[3 3])

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [2 3]
 DeletionThreshold: [3 3]
 History: [0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

History: [1 0 0]. Confirmation Flag: 0

Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
confFlag = checkConfirmation(historyLogic);
disp(['History: [',num2str(history),']. Confirmation Flag: ',num2str(confFlag)]);

2 Classes

2-440

History: [1 1 0]. Confirmation Flag: 1

Check Confirmation of Score-Based Logic

Create a score-based logic, specifying the confirmation threshold. The logic uses the default deletion
threshold.

scoreLogic = trackScoreLogic('ConfirmationThreshold',8);

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta).

pd = 0.8;
pfa = 1e-3;
volume = 1.3;
beta = 0.1;

Initialize the logic using these parameters. The first update to the logic is a hit.

init(scoreLogic,volume,beta,pd,pfa);
disp(['Score and MaxScore: ', num2str(output(scoreLogic))]);

Score and MaxScore: 4.6444 4.6444

The confirmation flag is false because the score is less than the confirmation threshold.

confirmationFlag = checkConfirmation(scoreLogic)

confirmationFlag = logical
 0

Specify the likelihood that the detection is assigned to the track. Then, update the logic with a hit.
The current score and maximum score increase.

likelihood = 0.05 + 0.05*rand(1);
hit(scoreLogic,volume,likelihood,pd,pfa)
disp(['Score and MaxScore: ', num2str(output(scoreLogic))])

Score and MaxScore: 9.1916 9.1916

The confirmation flag is now true because the score is greater than the confirmation threshold.

confirmationFlag = checkConfirmation(scoreLogic)

confirmationFlag = logical
 1

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

 checkConfirmation

2-441

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

Output Arguments
tf — Track should be confirmed
true | false

Track should be confirmed, returned as true or false.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

2 Classes

2-442

checkDeletion
Check if track should be deleted

Syntax
tf = checkDeletion(historyLogic)
tf = checkDeletion(historyLogic,tentativeTrack,age)
tf = checkDeletion(scoreLogic)

Description
tf = checkDeletion(historyLogic) returns a flag that is true when at least Md out of Nd
recent updates of the track history logic object historyLogic are false.

tf = checkDeletion(historyLogic,tentativeTrack,age) returns a flag that is true when
the track is tentative and there are not enough detections to allow it to confirm. Use the logical flag
tentativeTrack to indicate if the track is tentative and provide age as a numerical scalar.

tf = checkDeletion(scoreLogic) returns a flag that is true when the track should be deleted
based on the track score.

Examples

Check Deletion of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
 'DeletionThreshold',[4 5])

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [2 3]
 DeletionThreshold: [4 5]
 History: [0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic. The confirmation flag is false
because the number of hits is less than two (Mc).

init(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
 0

 checkDeletion

2-443

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1 0 0 0 0]. Deletion Flag: 1

Update the logic with a hit. The confirmation flag is true because two hits (Mc) are counted in the
most recent three updates (Nc).

hit(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
 1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [1 1 0 0 0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
checkConfirmation(historyLogic)

ans = logical
 1

delFlag = checkDeletion(historyLogic);
disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0 1 1 0 0]. Deletion Flag: 0

miss(historyLogic)
history = output(historyLogic);
delFlag = checkDeletion(historyLogic);
checkConfirmation(historyLogic)

ans = logical
 0

disp(['History: [',num2str(history),']. Deletion Flag: ',num2str(delFlag)]);

History: [0 0 1 1 0]. Deletion Flag: 0

Check Deletion of Tentative Track

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [2 3].
Specify deletion threshold values Md and Nd as the vector [4 5].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[2 3], ...
 'DeletionThreshold',5)

historyLogic =
 trackHistoryLogic with properties:

2 Classes

2-444

 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]
 History: [0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic. Then, record two misses.

init(historyLogic)
miss(historyLogic)
miss(historyLogic)
history = output(historyLogic)

history = 1x5 logical array

 0 0 1 0 0

The confirmation flag is false because the number of hits in the most recent 3 updates (Nc) is less
than 2 (Mc).

confirmationFlag = checkConfirmation(historyLogic)

confirmationFlag = logical
 0

Check the deletion flag as if the track were not tentative. The deletion flag is false because the
number of misses in the most recent 5 updates (Nm) is less than 4 (Mc).

deletionFlag = checkDeletion(historyLogic)

deletionFlag = logical
 0

Recheck the deletion flag, treating the track as tentative with an age of 3. The tentative deletion flag
is true because there are not enough detections to allow the track to confirm.

tentativeDeletionFlag = checkDeletion(historyLogic,true,3)

tentativeDeletionFlag = logical
 1

Check Deletion of Score-Based Logic

Create a score-based logic, specifying the deletion threshold. The logic uses the default confirmation
threshold.

scoreLogic = trackScoreLogic('DeletionThreshold',-1);

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta).

pd = 0.8;
pfa = 1e-3;

 checkDeletion

2-445

volume = 1.3;
beta = 0.1;

Initialize the logic using these parameters. The first update to the logic is a hit.

init(scoreLogic,volume,beta,pd,pfa);
disp(['Score and MaxScore: ', num2str(output(scoreLogic))]);

Score and MaxScore: 4.6444 4.6444

Update the logic with a miss. The current score decreases.

miss(scoreLogic,pd,pfa)
disp(['Score and MaxScore: ', num2str(output(scoreLogic))])

Score and MaxScore: 3.036 4.6444

The deletion flag is true because the current score is smaller than the maximum score by more than
1. In other words, scoreLogic.Score - scoreLogic.MaxScore is more negative than the
deletion threshold, -1.

deletionFlag = checkDeletion(scoreLogic)

deletionFlag = logical
 1

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

tentativeTrack — Track is tentative
false | true

Track is tentative, specified as false or true. Use tentativeTrack to indicate if the track is
tentative.

age — Number of updates
numeric scalar

Number of updates since track initialization, specified as a numeric scalar.

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

Output Arguments
tf — Track can be deleted
true | false

Track can be deleted, returned as true or false.

2 Classes

2-446

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

 checkDeletion

2-447

clone
Create copy of track logic

Syntax
clonedLogic = clone(logic)

Description
clonedLogic = clone(logic) returns a copy of the current track logic object, logic.

Examples

Clone Track History Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
 'DeletionThreshold',[6 7])

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [3 5]
 DeletionThreshold: [6 7]
 History: [0 0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)

Update the logic four more times, where only the odd updates register a hit.

for i = 2:5
 isOdd = logical(mod(i,2));
 if isOdd
 hit(historyLogic)
 else
 miss(historyLogic)
 end
end

Get the current state of the logic.

history = output(historyLogic)

history = 1x7 logical array

 1 0 1 0 1 0 0

2 Classes

2-448

Create a copy of the logic. The clone has the same confirmation threshold, deletion threshold, and
history as the original history logic.

clonedLogic = clone(historyLogic)

clonedLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [3 5]
 DeletionThreshold: [6 7]
 History: [1 0 1 0 1 0 0]

Input Arguments
logic — Track logic
trackHistoryLogic object | trackScoreLogic object

Track logic, specified as a trackHistoryLogic object or trackScoreLogic object.

Output Arguments
clonedLogic — Cloned track logic
trackHistoryLogic object | trackScoreLogic object

Cloned track logic, returned as a trackHistoryLogic object or trackScoreLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

 clone

2-449

hit
Update track logic with subsequent hit

Syntax
hit(historyLogic)

hit(scoreLogic,volume,likelihood)
hit(scoreLogic,volume,likelihood,pd,pfa)

Description
hit(historyLogic) updates the track history with a hit.

hit(scoreLogic,volume,likelihood) updates the track score in a case of a hit, given the
likelihood of a detection being assigned to the track.

hit(scoreLogic,volume,likelihood,pd,pfa) updates the track score in a case of a hit,
specifying the probability of detection pd and probability of false alarm pfa.

Examples

Update History Logic with Hit

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1 0 0 0 0 0].

Update the logic with a hit. The first two elements of the 'History' property are 1.

hit(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1 1 0 0 0 0].

Update Score Logic with Hit

Create a score-based logic with default confirmation and deletion thresholds.

2 Classes

2-450

scoreLogic = trackScoreLogic;

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta).

pd = 0.9;
pfa = 1e-6;
volume = 1.3;
beta = 0.1;

Initialize the logic using these parameters. The first update to the logic is a hit.

init(scoreLogic,volume,beta,pd,pfa);
disp(['Score and MaxScore: ', num2str(output(scoreLogic))]);

Score and MaxScore: 11.6699 11.6699

Specify the likelihood that the detection is assigned to the track.

likelihood = 0.05 + 0.05*rand(1);

Update the logic with a hit. The current score and maximum score increase.

hit(scoreLogic,volume,likelihood)
disp(['Score and MaxScore: ', num2str(output(scoreLogic))])

Score and MaxScore: 23.2426 23.2426

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

volume — Volume of sensor detection bin
nonnegative scalar

Volume of sensor detection bin, specified as a nonnegative scalar. For example, a 2-D radar will have
a sensor bin volume of (azimuth resolution in radians) * (range) * (range resolution).
Data Types: single | double

likelihood — Likelihood of a detection being assigned to the track
numeric vector

Likelihood of a detection being assigned to the track, specified as a numeric vector of length m.
Data Types: single | double

pd — Probability of detection
0.9 (default) | nonnegative scalar

 hit

2-451

Probability of detection, specified as a nonnegative scalar.
Data Types: single | double

pfa — Probability of false alarm
1e-6 (default) | nonnegative scalar

Probability of false alarm, specified as a nonnegative scalar.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

2 Classes

2-452

init
Initialize track logic with first hit

Syntax
init(historyLogic)

init(scoreLogic,volume,beta)
init(scoreLogic,volume,beta,pd,pfa)

Description
init(historyLogic) initializes the track history logic with the first hit.

init(scoreLogic,volume,beta) initializes the track score logic with the first hit, using default
probabilities of detection and false alarm.

init(scoreLogic,volume,beta,pd,pfa) initializes the track score logic with the first hit,
specifying the probability of detection pd and probability of false alarm pfa.

Examples

Initialize History-Based Logic

Create a history-based logic with default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic

historyLogic =
 trackHistoryLogic with properties:

 ConfirmationThreshold: [2 3]
 DeletionThreshold: [6 6]
 History: [0 0 0 0 0 0]

Initialize the logic, which records a hit as the first update to the logic.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1 0 0 0 0 0].

Initialize Score-Based Logic

Create a score-based logic with default confirmation and deletion thresholds.

scoreLogic = trackScoreLogic

 init

2-453

scoreLogic =
 trackScoreLogic with properties:

 ConfirmationThreshold: 20
 DeletionThreshold: -5
 Score: 0
 MaxScore: 0

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta).

pd = 0.9;
pfa = 1e-6;
volume = 1.3;
beta = 0.1;

Initialize the logic using these parameters. The first update to the logic is a hit.

init(scoreLogic,volume,beta,pd,pfa);

Display the current and maximum score of the logic. Since the logic has been updated once, the
current score is equal to the maximum score.

currentScore = scoreLogic.Score

currentScore = 11.6699

maximumScore = scoreLogic.MaxScore

maximumScore = 11.6699

Input Arguments
historyLogic — Track history logic
trackHistoryLogic object

Track history logic, specified as a trackHistoryLogic object.

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

volume — Volume of sensor detection bin
nonnegative scalar

Volume of sensor detection bin, specified as a nonnegative scalar. For example, a 2-D radar will have
a sensor bin volume of (azimuth resolution in radians) * (range) * (range resolution).
Data Types: single | double

beta — Rate of new targets in unit volume
nonnegative scalar

Rate of new targets in unit volume, specified as a nonnegative scalar.

2 Classes

2-454

Data Types: single | double

pd — Probability of detection
0.9 (default) | nonnegative scalar

Probability of detection, specified as a nonnegative scalar.
Data Types: single | double

pfa — Probability of false alarm
1e-6 (default) | nonnegative scalar

Probability of false alarm, specified as a nonnegative scalar.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

 init

2-455

miss
Update track logic with miss

Syntax
miss(historyLogic)

miss(scoreLogic)
miss(scoreLogic,pd,pfa)

Description
miss(historyLogic) updates the track history with a miss.

miss(scoreLogic) updates the track score in a case of a miss, using default probabilities of
detection and false alarm.

miss(scoreLogic,pd,pfa) updates the track score in a case of a miss, specifying the probability
of detection pd and probability of false alarm pfa.

Examples

Update History Logic with Miss

Create a history-based logic with the default confirmation and deletion thresholds.

historyLogic = trackHistoryLogic;

Initialize the logic, which records a hit as the first update to the logic. The first element of the
'History' property, which indicates the most recent update, is 1.

init(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [1 0 0 0 0 0].

Update the logic with a miss. The first element of the 'History' property is 0.

miss(historyLogic)
history = historyLogic.History;
disp(['History: [',num2str(history),'].']);

History: [0 1 0 0 0 0].

Update Score Logic with Miss

Create a score-based logic with default confirmation and deletion thresholds.

2 Classes

2-456

scoreLogic = trackScoreLogic;

Specify the probability of detection (pd), the probability of false alarm (pfa), the volume of a sensor
detection bin (volume), and the new target rate in a unit volume (beta).

pd = 0.9;
pfa = 1e-6;
volume = 1.3;
beta = 0.1;

Initialize the logic using these parameters. The first update to the logic is a hit.

init(scoreLogic,volume,beta,pd,pfa);
disp(['Score and MaxScore: ', num2str(output(scoreLogic))]);

Score and MaxScore: 11.6699 11.6699

Update the logic with a miss. The current score decreases, but the maximum score does not change.

miss(scoreLogic,pd,pfa)
disp(['Score and MaxScore: ', num2str(output(scoreLogic))])

Score and MaxScore: 9.36735 11.6699

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

pd — Probability of detection
0.9 (default) | nonnegative scalar

Probability of detection, specified as a nonnegative scalar.
Data Types: single | double

pfa — Probability of false alarm
1e-6 (default) | nonnegative scalar

Probability of false alarm, specified as a nonnegative scalar.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 miss

2-457

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

2 Classes

2-458

output
Get current state of track logic

Syntax
history = output(historyLogic)
scores = output(scoreLogic)

Description
history = output(historyLogic) returns the recent history updates of the track history logic
object, historyLogic.

scores = output(scoreLogic) returns in scores the current score and maximum score of track
score logic object, scoreLogic.

Examples

Get Recent History of History-Based Logic

Create a history-based logic. Specify confirmation threshold values Mc and Nc as the vector [3 5].
Specify deletion threshold values Md and Nd as the vector [6 7].

historyLogic = trackHistoryLogic('ConfirmationThreshold',[3 5], ...
 'DeletionThreshold',[6 7]);

Get the recent history of the logic. The history vector has a length of 7, which is the greater of Nc and
Nd. All values are 0 because the logic is not initialized.

h = output(historyLogic)

h = 1x7 logical array

 0 0 0 0 0 0 0

Initialize the logic, then get the recent history of the logic. The first element, which indicates the most
recent update, is 1.

init(historyLogic);
h = output(historyLogic)

h = 1x7 logical array

 1 0 0 0 0 0 0

Update the logic with a hit, then get the recent history of the logic.

hit(historyLogic);
h = output(historyLogic)

 output

2-459

h = 1x7 logical array

 1 1 0 0 0 0 0

Get Current Score of Score-Based Logic

Create a score-based logic with default confirmation and deletion thresholds.

scoreLogic = trackScoreLogic;

Get the current and maximum score of the logic. Both scores are 0 because the logic is not initialized.

s = output(scoreLogic)

s = 1×2

 0 0

Specify the volume of a sensor detection bin (volume), and the new target rate in a unit volume
(beta). Initialize the logic using these parameters and the default probabilities of detection and false
alarm. The first update to the logic is a hit.

volume = 1.3;
beta = 0.1;
init(scoreLogic,volume,beta);

Get the current and maximum score of the logic.

s = output(scoreLogic)

s = 1×2

 11.6699 11.6699

Update the logic with a miss, then get the updated scores.

miss(scoreLogic)
s = output(scoreLogic)

s = 1×2

 9.3673 11.6699

Input Arguments
historyLogic — Track history logic
trackHistoryLogic

Track history logic, specified as a trackHistoryLogic object.

2 Classes

2-460

scoreLogic — Track score logic
trackScoreLogic object

Track score logic, specified as a trackScoreLogic object.

Output Arguments
history — Recent history
logical vector

Recent track history of historyLogic, returned as a logical vector. The length of the vector is the
same as the length of the History property of the historyLogic. The first element is the most
recent update. A true value indicates a hit and a false value indicates a miss.

scores — Current and maximum scores
1-by-2 numeric vector

Current and maximum scores of scoreLogic, returned as a 1-by-2 numeric vector. The first element
specifies the current score. The second element specifies the maximum score.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

 output

2-461

reset
Reset state of track logic

Syntax
reset(logic)

Description
reset(logic) resets the track logic object, logic.

Examples

Reset Track Score Logic

Create a score-based logic using the default confirmation threshold and deletion threshold. Get the
current state of the logic. The current and maximum score are both 0.

scoreLogic = trackScoreLogic;
score = output(scoreLogic)

score = 1×2

 0 0

Initialize the logic, then get the current state of the logic.

volume = 1.3;
beta = 0.1;
init(scoreLogic,volume,beta);
score = output(scoreLogic)

score = 1×2

 11.6699 11.6699

Reset the logic, then get the current state of the logic. The current and maximum score are both 0.

reset(scoreLogic)
score = output(scoreLogic)

score = 1×2

 0 0

2 Classes

2-462

Input Arguments
logic — Track logic
trackHistoryLogic object | trackScoreLogic object

Track logic, specified as a trackHistoryLogic object or trackScoreLogic object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackHistoryLogic | trackScoreLogic

Introduced in R2018b

 reset

2-463

System Objects

3

altimeterSensor
Altimeter simulation model

Description
The altimeterSensor System object models receiving data from an altimeter sensor.

To model an altimeter:

1 Create the altimeterSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
altimeter = altimeterSensor
altimeter = altimeterSensor('ReferenceFrame',RF)
altimeter = altimeterSensor(___ ,Name,Value)

Description

altimeter = altimeterSensor returns an altimeterSensorSystem object that simulates
altimeter readings.

altimeter = altimeterSensor('ReferenceFrame',RF) returns an altimeterSensor
System object that simulates altimeter readings relative to the reference frame RF. Specify RF as
'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

altimeter = altimeterSensor(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

UpdateRate — Update rate of sensor (Hz)
1 (default) | positive scalar

Update rate of sensor in Hz, specified as a positive scalar.

3 System Objects

3-2

Data Types: single | double

ConstantBias — Constant offset bias (m)
0 (default) | scalar

Constant offset bias in meters, specified as a scalar.

Tunable: Yes
Data Types: single | double

NoiseDensity — Power spectral density of sensor noise (m/√Hz)
0 (default) | nonnegative scalar

Power spectral density of sensor noise in m/√Hz, specified as a nonnegative scalar.

Tunable: Yes
Data Types: single | double

BiasInstability — Instability of bias offset (m)
0 (default) | nonnegative scalar

Instability of the bias offset in meters, specified as a nonnegative scalar.

Tunable: Yes
Data Types: single | double

DecayFactor — Bias instability noise decay factor
0 (default) | scalar in the range [0,1]

Bias instability noise decay factor, specified as a scalar in the range [0,1]. A decay factor of 0 models
the bias instability noise as a white noise process. A decay factor of 1 models the bias instability noise
as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.

 altimeterSensor

3-3

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double

Usage

Syntax
altimeterReadings = altimeter(position)

Description

altimeterReadings = altimeter(position) generates an altimeter sensor altitude reading
from the position input.

Input Arguments

position — Position of sensor in local navigation coordinate system (m)
N-by-3 matrix

Position of sensor in the local navigation coordinate system, specified as an N-by-3 matrix with
elements measured in meters. N is the number of samples in the current frame.
Data Types: single | double

Output Arguments

altimeterReadings — Altitude of sensor relative to local navigation coordinate system (m)
N-element column vector

Altitude of sensor relative to the local navigation coordinate system in meters, returned as an N-
element column vector. N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

3 System Objects

3-4

Generate Noisy Altimeter Readings from Stationary Input

Create an altimeterSensor System object™ to model receiving altimeter sensor data. Assume a
typical one Hz sample rate and a 10 minute simulation time. Set ConstantBias to 0.01,
NoiseDensity to 0.05, BiasInstability to 0.05, and DecayFactor to 0.5.

Fs = 1;
duration = 60*10;
numSamples = duration*Fs;

altimeter = altimeterSensor('UpdateRate',Fs, ...
 'ConstantBias',0.01, ...
 'NoiseDensity',0.05, ...
 'BiasInstability',0.05, ...
 'DecayFactor',0.5);

truePosition = zeros(numSamples,3);

Call altimeter with the specified truePosition to model noisy altimeter readings from a
stationary platform.

altimeterReadings = altimeter(truePosition);

Plot the true position and the altimeter sensor readings for height.

t = (0:(numSamples-1))/Fs;

plot(t,altimeterReadings)
hold on
plot(t,truePosition(:,3),'LineWidth',2)
hold off
title('Altimeter Readings')
xlabel('Time (s)')
ylabel('Height (m)')
legend('Altimeter Readings','Ground Truth')

 altimeterSensor

3-5

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
gpsSensor | imuSensor | insSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2019a

3 System Objects

3-6

ahrsfilter
Orientation from accelerometer, gyroscope, and magnetometer readings

Description
The ahrsfilter System object fuses accelerometer, magnetometer, and gyroscope sensor data to
estimate device orientation.

To estimate device orientation:

1 Create the ahrsfilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = ahrsfilter
FUSE = ahrsfilter('ReferenceFrame',RF)
FUSE = ahrsfilter(___ ,Name,Value)

Description

FUSE = ahrsfilter returns an indirect Kalman filter System object, FUSE, for sensor fusion of
accelerometer, gyroscope, and magnetometer data to estimate device orientation and angular
velocity. The filter uses a 12-element state vector to track the estimation error for the orientation, the
gyroscope bias, the linear acceleration, and the magnetic disturbance.

FUSE = ahrsfilter('ReferenceFrame',RF) returns an ahrsfilter System object that fuses
accelerometer, gyroscope, and magnetometer data to estimate device orientation relative to the
reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default
value is 'NED'.

FUSE = ahrsfilter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

 ahrsfilter

3-7

SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

DecimationFactor — Decimation factor
1 (default) | positive integer

Decimation factor by which to reduce the input sensor data rate as part of the fusion algorithm,
specified as a positive integer.

The number of rows of the inputs –– accelReadings, gyroReadings, and magReadings –– must be
a multiple of the decimation factor.
Data Types: single | double

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

MagnetometerNoise — Variance of magnetometer signal noise (μT2)
0.1 (default) | positive real scalar

Variance of magnetometer signal noise in μT2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double

LinearAccelerationNoise — Variance of linear acceleration noise (m/s2)2

0.0096236 (default) | positive real scalar

3 System Objects

3-8

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double

LinearAccelerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1)

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1). If linear acceleration
is changing quickly, set LinearAcclerationDecayFactor to a lower value. If linear acceleration
changes slowly, set LinearAcclerationDecayFactor to a higher value. Linear acceleration drift is
modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceNoise — Variance of magnetic disturbance noise (μT2)
0.5 (default) | real finite positive scalar

Variance of magnetic disturbance noise in μT2, specified as a real finite positive scalar.

Tunable: Yes
Data Types: single | double

MagneticDisturbanceDecayFactor — Decay factor for magnetic disturbance
0.5 (default) | positive scalar in the range [0,1]

Decay factor for magnetic disturbance, specified as a positive scalar in the range [0,1]. Magnetic
disturbance is modeled as a first order Markov process.

Tunable: Yes
Data Types: single | double

InitialProcessNoise — Covariance matrix for process noise
12-by-12 matrix

Covariance matrix for process noise, specified as a 12-by-12 matrix. The default is:

 Columns 1 through 6

 0.000006092348396 0 0 0 0 0
 0 0.000006092348396 0 0 0 0
 0 0 0.000006092348396 0 0 0
 0 0 0 0.000076154354947 0 0
 0 0 0 0 0.000076154354947 0
 0 0 0 0 0 0.000076154354947
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 ahrsfilter

3-9

 Columns 7 through 12

 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0.009623610000000 0 0 0 0 0
 0 0.009623610000000 0 0 0 0
 0 0 0.009623610000000 0 0 0
 0 0 0 0.600000000000000 0 0
 0 0 0 0 0.600000000000000 0
 0 0 0 0 0 0.600000000000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double

ExpectedMagneticFieldStrength — Expected estimate of magnetic field strength (μT)
50 (default) | real positive scalar

Expected estimate of magnetic field strength in μT, specified as a real positive scalar. The expected
magnetic field strength is an estimate of the magnetic field strength of the Earth at the current
location.

Tunable: Yes
Data Types: single | double

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)

Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
fuses accelerometer, gyroscope, and magnetometer data to compute orientation and angular velocity
measurements. The algorithm assumes that the device is stationary before the first call.

3 System Objects

3-10

Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix. N
is the number of samples, and the three columns of magReadings represent the [x y z]
measurements. Magnetometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from local navigation coordinate system
to sensor body coordinate system
M-by-1 array of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from the local navigation coordinate system to a body
coordinate system, returned as quaternions or an array. The size and type of orientation depends
on whether the OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an M-by-1 vector of quaternions, with the same underlying data
type as the inputs

• 'Rotation matrix' –– the output is a 3-by-3-by-M array of rotation matrices the same data type
as the inputs

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a local navigation
system to a sensor body coordinate system.
Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)

 ahrsfilter

3-11

Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array. The number of input samples, N, and the DecimationFactor property
determine M.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Orientation Using ahrsfilter

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

load 'rpy_9axis' sensorData Fs
accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;
magnetometerReadings = sensorData.MagneticField;

Create an ahrsfilter System object™ with SampleRate set to the sample rate of the sensor data.
Specify a decimation factor of two to reduce the computational cost of the algorithm.

decim = 2;
fuse = ahrsfilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings, gyroscope readings, and magnetometer readings to the
ahrsfilter object, fuse, to output an estimate of the sensor body orientation over time. By default,
the orientation is output as a vector of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings,magnetometerReadings);

Orientation is defined by angular displacement required to rotate a parent coordinate system to a
child coordinate system. Plot the orientation in Euler angles in degrees over time.

ahrsfilter correctly estimates the change in orientation over time, including the south-facing
initial orientation.

time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))

3 System Objects

3-12

title('Orientation Estimate')
legend('z-axis', 'y-axis', 'x-axis')
ylabel('Rotation (degrees)')

Simulate Magnetic Jamming on ahrsFilter

This example shows how performance of the ahrsfilter System object™ is affected by magnetic
jamming.

Load StationaryIMUReadings, which contains accelerometer, magnetometer, and gyroscope
readings from a stationary IMU.

load 'StationaryIMUReadings.mat' accelReadings magReadings gyroReadings SampleRate

numSamples = size(accelReadings,1);

The ahrsfilter uses magnetic field strength to stabilize its orientation against the assumed
constant magnetic field of the Earth. However, there are many natural and man-made objects which
output magnetic fields and can confuse the algorithm. To account for the presence of transient
magnetic fields, you can set the MagneticDisturbanceNoise property on the ahrsfilter object.

Create an ahrsfilter object with the decimation factor set to 2 and note the default expected
magnetic field strength.

 ahrsfilter

3-13

decim = 2;
FUSE = ahrsfilter('SampleRate',SampleRate,'DecimationFactor',decim);

Fuse the IMU readings using the attitude and heading reference system (AHRS) filter, and then
visualize the orientation of the sensor body over time. The orientation fluctuates at the beginning and
stabilizes after approximately 60 seconds.

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');
time = (0:decim:(numSamples-1))'/SampleRate;

figure(1)
plot(time,orientationEulerAngles(:,1), ...
 time,orientationEulerAngles(:,2), ...
 time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data')

Mimic magnetic jamming by adding a transient, strong magnetic field to the magnetic field recorded
in the magReadings. Visualize the magnetic field jamming.

jamStrength = [10,5,2];
startStop = (50*SampleRate):(150*SampleRate);
jam = zeros(size(magReadings));
jam(startStop,:) = jamStrength.*ones(numel(startStop),3);

3 System Objects

3-14

magReadings = magReadings + jam;

figure(2)
plot(time,magReadings(1:decim:end,:))
xlabel('Time (s)')
ylabel('Magnetic Field Strength (\mu T)')
title('Simulated Magnetic Field with Jamming')
legend('z-axis','y-axis','x-axis')

Run the simulation again using the magReadings with magnetic jamming. Plot the results and note
the decreased performance in orientation estimation.

reset(FUSE)
orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(3)
plot(time,orientationEulerAngles(:,1), ...
 time,orientationEulerAngles(:,2), ...
 time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Default Properties')

 ahrsfilter

3-15

The magnetic jamming was misinterpreted by the AHRS filter, and the sensor body orientation was
incorrectly estimated. You can compensate for jamming by increasing the
MagneticDisturbanceNoise property. Increasing the MagneticDisturbanceNoise property
increases the assumed noise range for magnetic disturbance, and the entire magnetometer signal is
weighted less in the underlying fusion algorithm of ahrsfilter.

Set the MagneticDisturbanceNoise to 200 and run the simulation again.

The orientation estimation output from ahrsfilter is more accurate and less affected by the
magnetic transient. However, because the magnetometer signal is weighted less in the underlying
fusion algorithm, the algorithm may take more time to restabilize.

reset(FUSE)
FUSE.MagneticDisturbanceNoise = 20;

orientation = FUSE(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(4)
plot(time,orientationEulerAngles(:,1), ...
 time,orientationEulerAngles(:,2), ...
 time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('z-axis','y-axis','x-axis')
title('Filtered IMU Data with Magnetic Disturbance and Modified Properties')

3 System Objects

3-16

Track Shaking 9-Axis IMU

This example uses the ahrsfilter System object™ to fuse 9-axis IMU data from a sensor body that
is shaken. Plot the quaternion distance between the object and its final resting position to visualize
performance and how quickly the filter converges to the correct resting position. Then tune
parameters of the ahrsfilter so that the filter converges more quickly to the ground-truth resting
position.

Load IMUReadingsShaken into your current workspace. This data was recorded from an IMU that
was shaken then laid in a resting position. Visualize the acceleration, magnetic field, and angular
velocity as recorded by the sensors.

load 'IMUReadingsShaken' accelReadings gyroReadings magReadings SampleRate
numSamples = size(accelReadings,1);
time = (0:(numSamples-1))'/SampleRate;

figure(1)
subplot(3,1,1)
plot(time,accelReadings)
title('Accelerometer Reading')
ylabel('Acceleration (m/s^2)')

subplot(3,1,2)
plot(time,magReadings)
title('Magnetometer Reading')

 ahrsfilter

3-17

ylabel('Magnetic Field (\muT)')

subplot(3,1,3)
plot(time,gyroReadings)
title('Gyroscope Reading')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')

Create an ahrsfilter and then fuse the IMU data to determine orientation. The orientation is
returned as a vector of quaternions; convert the quaternions to Euler angles in degrees. Visualize the
orientation of the sensor body over time by plotting the Euler angles required, at each time step, to
rotate the global coordinate system to the sensor body coordinate system.

fuse = ahrsfilter('SampleRate',SampleRate);
orientation = fuse(accelReadings,gyroReadings,magReadings);

orientationEulerAngles = eulerd(orientation,'ZYX','frame');

figure(2)
plot(time,orientationEulerAngles(:,1), ...
 time,orientationEulerAngles(:,2), ...
 time,orientationEulerAngles(:,3))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation over Time')
legend('Rotation around z-axis', ...

3 System Objects

3-18

 'Rotation around y-axis', ...
 'Rotation around x-axis')

In the IMU recording, the shaking stops after approximately six seconds. Determine the resting
orientation so that you can characterize how fast the ahrsfilter converges.

To determine the resting orientation, calculate the averages of the magnetic field and acceleration for
the final four seconds and then use the ecompass function to fuse the data.

Visualize the quaternion distance from the resting position over time.

restingOrientation = ecompass(mean(accelReadings(6*SampleRate:end,:)), ...
 mean(magReadings(6*SampleRate:end,:)));

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
hold on
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')

 ahrsfilter

3-19

Modify the default ahrsfilter properties so that the filter converges to gravity more quickly.
Increase the GyroscopeDriftNoise to 1e-2 and decrease the LinearAccelerationNoise to
1e-4. This instructs the ahrsfilter algorithm to weigh gyroscope data less and accelerometer data
more. Because the accelerometer data provides the stabilizing and consistent gravity vector, the
resulting orientation converges more quickly.

Reset the filter, fuse the data, and plot the results.

fuse.LinearAccelerationNoise = 1e-4;
fuse.GyroscopeDriftNoise = 1e-2;
reset(fuse)

orientation = fuse(accelReadings,gyroReadings,magReadings);

figure(3)
plot(time,rad2deg(dist(restingOrientation,orientation)))
legend('Default AHRS Filter','Tuned AHRS Filter')

3 System Objects

3-20

Algorithms
Note: The following algorithm only applies to an NED reference frame.

The ahrsfilter uses the nine-axis Kalman filter structure described in [1]. The algorithm attempts
to track the errors in orientation, gyroscope offset, linear acceleration, and magnetic disturbance to
output the final orientation and angular velocity. Instead of tracking the orientation directly, the
indirect Kalman filter models the error process, x, with a recursive update:

xk =

θk
bk
ak
dk

= Fk

θk− 1
bk− 1
ak− 1
dk− 1

+ wk

where xk is a 12-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• dk –– 3-by-1 magnetic disturbance error vector measured in the sensor frame, in µT, at time k

and where wk is a 12-by-1 additive noise vector, and Fk is the state transition model.

 ahrsfilter

3-21

Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk
− = FkPk− 1

+ Fk
T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk

−

Kalman equations used in this algorithm:

xk
− = 0

Pk
− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk

−

where:

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.

3 System Objects

3-22

Before the first iteration, the accelReadings, gyroReadings, and magReadings inputs are
chunked into DecimationFactor-by-3 frames. For each chunk, the algorithm uses the most current
accelerometer and magnetometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Walk through the algorithm for an explanation of each stage of the detailed overview.

Model

The algorithm models acceleration and angular change as linear processes.

 ahrsfilter

3-23

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property and fs is the sample rate
specified by the SampleRate property.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass.
Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:

g1 × 3 = rPrior(: , 3) T

See [1] for an explanation of why the third column of rPrior can be interpreted as the gravity vector.

3 System Objects

3-24

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Estimate Earth's Magnetic Vector

Earth's magnetic vector is estimated by rotating the magnetic vector estimate from the previous
iteration by the a priori orientation estimate, in rotation matrix form:

mGyro1 × 3 = rPrior mT T

Error Model

The error model combines two differences:

• The difference between the gravity estimate from the accelerometer readings and the gravity
estimate from the gyroscope readings: zg = g− gAccel

• The difference between the magnetic vector estimate from the gyroscope readings and the
magnetic vector estimate from the magnetometer:zm = mGyro−magReadings

Magnetometer Correct

The magnetometer correct estimates the error in the magnetic vector estimate and detects magnetic
jamming.

Magnetometer Disturbance Error

The magnetic disturbance error is calculated by matrix multiplication of the Kalman gain associated
with the magnetic vector with the error signal:

mError3 × 1 = K(10:12, :)3 × 6 z1 × 6
T T

 ahrsfilter

3-25

The Kalman gain, K, is the Kalman gain calculated in the current iteration.

Magnetic Jamming Detection

Magnetic jamming is determined by verifying that the power of the detected magnetic disturbance is
less than or equal to four times the power of the expected magnetic field strength:

tf =
true
false

if
else

∑ mError 2 > 4 ExpectedMagneticFieldStrength 2

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, the magnetic
vector estimate derived from the gyroscope readings, mGyro, and the observation of the error
process, z, to update the Kalman gain and intermediary covariance matrices. The Kalman gain is
applied to the error signal, z, to output an a posteriori error estimate, x+.

Observation Model

The observation model maps the 1-by-3 observed states, g and mGyro, into the 6-by-12 true state, H.

The observation model is constructed as:

3 System Objects

3-26

H3 × 9 =

0 gz −gy 0 −κgz κgy 1 0 0 0 0 0
−gz 0 gx κgz 0 −κgx 0 1 0 0 0 0
gy −gx 0 −κgy κgx 0 0 0 1 0 0 0
0 mz −my 0 −κmz −κmy 0 0 0 −1 0 0
−mz 0 mx κmz 0 −κmx 0 0 0 0 −1 0
my −mx 0 −κmy κmx 0 0 0 0 0 0 −1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the a priori
orientation, respectively. mx, my, and mz are the x-, y-, and z-elements of the magnetic vector
estimated from the a priori orientation, respectively. κ is a constant determined by the SampleRate
and DecimationFactor properties: κ = DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] for a derivation of the observation model.

Innovation Covariance

The innovation covariance is a 6-by-6 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S6x6 = R6x6 + H6x12 P12x12
− H6x12

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration
• R is the covariance of the observation model noise, calculated as:

R6 × 6 =

accelnoise 0 0 0 0 0
0 accelnoise 0 0 0 0
0 0 accelnoise 0 0 0
0 0 0 magnoise 0 0
0 0 0 0 magnoise 0
0 0 0 0 0 magnoise

where

accelnoise = AccelerometerNoise + LinearAccelerationNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

and

magnoise = MagnetometerNoise + MagneticDisturbanceNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

The following properties define the observation model noise variance:

• κ –– DecimationFactor/SampleRate

 ahrsfilter

3-27

• AccelerometerNoise
• LinearAccelerationNoise
• GyroscopeDriftNoise
• GyroscopeNoise
• MagneticDisturbanceNoise
• MagnetometerNoise

Update Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P12 × 12
+ = P12 × 12

− − K12 × 6 H6 × 12 P12 × 12
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state. The a
priori error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, it is assumed that the cross-correlation terms are negligible compared to the
autocorrelation terms, and are set to zero:

3 System Objects

3-28

Q =

P+(1) + κ2P+(40) + β + η 0 0 −κ P+(40) + β 0 0 0 0 0 0 0 0

0 P+(14) + κ2P+(53) + β + η 0 0 −κ P+(53) + β 0 0 0 0 0 0 0

0 0 P+(27) + κ2P+(66) + β + η 0 0 −κ P+(66) + β 0 0 0 0 0 0

−κ P+(40) + β 0 0 P+(40) + β 0 0 0 0 0 0 0 0

0 −κ P+(53) + β 0 0 P+(53) + β 0 0 0 0 0 0 0

0 0 −κ P+(66) + β 0 0 P+(66) + β 0 0 0 0 0 0

0 0 0 0 0 0 ν2P+(79) + ξ 0 0 0 0 0

0 0 0 0 0 0 0 ν2P+(92) + ξ 0 0 0 0

0 0 0 0 0 0 0 0 ν2P+(105) + ξ 0 0 0

0 0 0 0 0 0 0 0 0 σ2P+(118) + γ 0 0

0 0 0 0 0 0 0 0 0 0 σ2P+(131) + γ 0

0 0 0 0 0 0 0 0 0 0 0 σ2P+(144) + γ

 ahrsfilter

3-29

where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
• ξ –– LinearAccelerationNoise
• σ –– MagneticDisturbanceDecayFactor
• γ –– MagneticDisturbanceNoise

See section 10.1 of [1] for a derivation of the terms of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 12-by-6 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K12 × 6 = P12 × 12
− H6 × 12

T S6 × 6
T −1

where

• P− –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector and magnetic vector estimations:

x12 × 1 = K12 × 6 (z1 × 6)T

If magnetic jamming is detected in the current iteration, the magnetic vector error signal is ignored,
and the a posterior error estimate is calculated as:

x9 × 1 = K(1:9, 1:3 (zg)T

3 System Objects

3-30

Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– LinearAcclerationDecayFactor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

 ahrsfilter

3-31

Update Magnetic Vector

If magnetic jamming was not detected in the current iteration, the magnetic vector estimate, m, is
updated using the a posteriori magnetic disturbance error and the a posteriori orientation.

The magnetic disturbance error is converted to the navigation frame:

mErrorNED1 × 3 = rPost3 × 3
T(mError1 × 3)T T

The magnetic disturbance error in the navigation frame is subtracted from the previous magnetic
vector estimate and then interpreted as inclination:

Μ = m−mErrorNED

inclination = atan2(Μ(3), Μ(1))

The inclination is converted to a constrained magnetic vector estimate for the next iteration:

m(1) = ExpectedMagneticFieldStrength cos(inclination)
m(2) = 0
m(3) = ExpectedMagneticFieldStrength sin(inclination)

ExpectedMagneticFieldStrength is a property of ahrsfilter.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ecompass | gpsSensor | imuSensor | imufilter | quaternion

Topics
“Determine Orientation Using Inertial Sensors”

Introduced in R2018b

3 System Objects

3-32

https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs

complementaryFilter

Orientation estimation from a complementary filter

Description
The complementaryFilter System object fuses accelerometer, gyroscope, and magnetometer
sensor data to estimate device orientation and angular velocity.

To estimate orientation using this object:

1 Create the complementaryFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = complementaryFilter
FUSE = complementaryFilter('ReferenceFrame',RF)
FUSE = complementaryFilter(___ ,Name,Value)

Description

FUSE = complementaryFilter returns a complementaryFilter System object, FUSE, for sensor
fusion of accelerometer, gyroscope, and magnetometer data to estimate device orientation and
angular velocity.

FUSE = complementaryFilter('ReferenceFrame',RF) returns a complementaryFilter
System object that fuses accelerometer, gyroscope, and magnetometer data to estimate device
orientation relative to the reference frame RF. Specify RF as 'NED' (North-East-Down) or 'ENU'
(East-North-Up). The default value is 'NED'.

FUSE = complementaryFilter(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

 complementaryFilter

3-33

SampleRate — Input sample rate of sensor data (Hz)
100 (default) | positive scalar

Input sample rate of the sensor data in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

AccelerometerGain — Accelerometer gain
0.01 (default) | real scar in [0, 1]

Accelerometer gain, specified as a real scalar in the range of [0, 1]. The gain determines how much
the accelerometer measurement is trusted over the gyroscope measurement for orientation
estimation. This property is tunable.
Data Types: single | double

MagnetometerGain — Magnetometer gain
0.01 (default) | real scar in [0, 1]

Magnetometer gain, specified as a real scalar in the range of [0, 1]. The gain determines how much
the magnetometer measurement is trusted over the gyroscope measurement for orientation
estimation. This property is tunable.
Data Types: single | double

HasMagnetomter — Enable magnetometer input
true (default) | false

Enable magnetometer input, specified as true or false.
Data Types: logical

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

N is the number of samples.
Data Types: char | string

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)

3 System Objects

3-34

Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings,magReadings)
fuses accelerometer, gyroscope, and magnetometer data to compute orientation and angular velocity.
To use this syntax, set the HasMagnetometer property as true.

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope data to compute orientation and angular velocity. To use this syntax, set
the HasMagnetometer property as false.

Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property. In the filter, the gravity constant g is assumed to be 9.81 m/s2.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

magReadings — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix. N
is the number of samples, and the three columns of magReadings represent the [x y z]
measurements. Magnetometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from local navigation coordinate system
to sensor body coordinate system
N-by-1 array of quaternions (default) | 3-by-3-by-N array

Orientation that rotates quantities from the local navigation coordinate system to the body coordinate
system, returned as quaternions or an array. The size and type of orientation depends on whether
the OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– the output is an N-by-1 vector of quaternions, where N is the number of
samples.

• 'Rotation matrix' –– the output is a 3-by-3-by-N array of rotation matrices, where N is the
number of samples.

 complementaryFilter

3-35

Data Types: quaternion | single | double

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
N-by-3 array (default)

Angular velocity expressed in the sensor body coordinate system in rad/s, returned as an N-by-3
array, where N is the number of samples.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

Examples

Estimate Orientation from Recorded IMU Data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

ld = load('rpy_9axis.mat');
accel = ld.sensorData.Acceleration;
gyro = ld.sensorData.AngularVelocity;
mag = ld.sensorData.MagneticField;

Create a complementary filter object with sample rate equal to the frequency of the data.

Fs = ld.Fs; % Hz
fuse = complementaryFilter('SampleRate', Fs);

Fuse accelerometer, gyroscope, and magnetometer data using the filter.

q = fuse(accel, gyro, mag);

Visualize the results.

plot(eulerd(q, 'ZYX', 'frame'));
title('Orientation Estimate');
legend('Z-rotation', 'Y-rotation', 'X-rotation');
ylabel('Degrees');

3 System Objects

3-36

References
[1] Valenti, R., I. Dryanovski, and J. Xiao. "Keeping a good attitude: A quaternion-based orientation

filter for IMUs and MARGs." Sensors. Vol. 15, Number 8, 2015, pp. 19302-19330.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ahrsfilter | imufilter

Introduced in R2019b

 complementaryFilter

3-37

imufilter

Orientation from accelerometer and gyroscope readings

Description
The imufilter System object fuses accelerometer and gyroscope sensor data to estimate device
orientation.

To estimate device orientation:

1 Create the imufilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
FUSE = imufilter
FUSE = imufilter('ReferenceFrame',RF)
FUSE = imufilter(___ ,Name,Value)

Description

FUSE = imufilter returns an indirect Kalman filter System object, FUSE, for fusion of
accelerometer and gyroscope data to estimate device orientation. The filter uses a nine-element state
vector to track error in the orientation estimate, the gyroscope bias estimate, and the linear
acceleration estimate.

FUSE = imufilter('ReferenceFrame',RF) returns an imufilter filter System object that
fuses accelerometer and gyroscope data to estimate device orientation relative to the reference frame
RF. Specify RF as 'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

FUSE = imufilter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: FUSE = imufilter('SampleRate',200,'GyroscopeNoise',1e-6) creates a System
object, FUSE, with a 200 Hz sample rate and gyroscope noise set to 1e-6 radians per second squared.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

3 System Objects

3-38

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SampleRate — Sample rate of input sensor data (Hz)
100 (default) | positive finite scalar

Sample rate of the input sensor data in Hz, specified as a positive finite scalar.

Tunable: No
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

DecimationFactor — Decimation factor
1 (default) | positive integer scalar

Decimation factor by which to reduce the sample rate of the input sensor data, specified as a positive
integer scalar.

The number of rows of the inputs, accelReadings and gyroReadings, must be a multiple of the
decimation factor.

Tunable: No
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

AccelerometerNoise — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

GyroscopeNoise — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

GyroscopeDriftNoise — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

LinearAccelerationNoise — Variance of linear acceleration noise ((m/s2)2)
0.0096236 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass filtered white noise process.

 imufilter

3-39

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

LinearAcclerationDecayFactor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1]

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1]. If linear acceleration
is changing quickly, set LinearAccelerationDecayFactor to a lower value. If linear acceleration
changes slowly, set LinearAccelerationDecayFactor to a higher value. Linear acceleration drift
is modeled as a lowpass-filtered white noise process.

Tunable: Yes
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

InitialProcessNoise — Covariance matrix for process noise
9-by-9 matrix

Covariance matrix for process noise, specified as a 9-by-9 matrix. The default is:
 Columns 1 through 6

 0.000006092348396 0 0 0 0 0
 0 0.000006092348396 0 0 0 0
 0 0 0.000006092348396 0 0 0
 0 0 0 0.000076154354947 0 0
 0 0 0 0 0.000076154354947 0
 0 0 0 0 0 0.000076154354947
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 9

 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0.009623610000000 0 0
 0 0.009623610000000 0
 0 0 0.009623610000000

The initial process covariance matrix accounts for the error in the process model.
Data Types: single | double | uint8 | uint16 | uint32 | uint64 | int8 | int16 | int32 | int64

OrientationFormat — Output orientation format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix'. The size of the
output depends on the input size, N, and the output orientation format:

• 'quaternion' –– Output is an N-by-1 quaternion.
• 'Rotation matrix' –– Output is a 3-by-3-by-N rotation matrix.

Data Types: char | string

3 System Objects

3-40

Usage

Syntax
[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings)

Description

[orientation,angularVelocity] = FUSE(accelReadings,gyroReadings) fuses
accelerometer and gyroscope readings to compute orientation and angular velocity measurements.
The algorithm assumes that the device is stationary before the first call.

Input Arguments

accelReadings — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix.
N is the number of samples, and the three columns of accelReadings represent the [x y z]
measurements. Accelerometer readings are assumed to correspond to the sample rate specified by
the SampleRate property.
Data Types: single | double

gyroReadings — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix. N is
the number of samples, and the three columns of gyroReadings represent the [x y z] measurements.
Gyroscope readings are assumed to correspond to the sample rate specified by the SampleRate
property.
Data Types: single | double

Output Arguments

orientation — Orientation that rotates quantities from global coordinate system to sensor
body coordinate system
M-by-1 vector of quaternions (default) | 3-by-3-by-M array

Orientation that can rotate quantities from a global coordinate system to a body coordinate system,
returned as quaternions or an array. The size and type of orientation depends on whether the
OrienationFormat property is set to 'quaternion' or 'Rotation matrix':

• 'quaternion' –– The output is an M-by-1 vector of quaternions, with the same underlying data
type as the inputs.

• 'Rotation matrix' –– The output is a 3-by-3-by-M array of rotation matrices the same data
type as the inputs.

The number of input samples, N, and the DecimationFactor property determine M.

You can use orientation in a rotateframe function to rotate quantities from a global coordinate
system to a sensor body coordinate system.
Data Types: quaternion | single | double

 imufilter

3-41

angularVelocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array. The number of input samples, N, and the DecimationFactor property determine
M.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Orientation from IMU data

Load the rpy_9axis file, which contains recorded accelerometer, gyroscope, and magnetometer
sensor data from a device oscillating in pitch (around y-axis), then yaw (around z-axis), and then roll
(around x-axis). The file also contains the sample rate of the recording.

load 'rpy_9axis.mat' sensorData Fs

accelerometerReadings = sensorData.Acceleration;
gyroscopeReadings = sensorData.AngularVelocity;

Create an imufilter System object™ with sample rate set to the sample rate of the sensor data.
Specify a decimation factor of two to reduce the computational cost of the algorithm.

decim = 2;
fuse = imufilter('SampleRate',Fs,'DecimationFactor',decim);

Pass the accelerometer readings and gyroscope readings to the imufilter object, fuse, to output
an estimate of the sensor body orientation over time. By default, the orientation is output as a vector
of quaternions.

q = fuse(accelerometerReadings,gyroscopeReadings);

Orientation is defined by the angular displacement required to rotate a parent coordinate system to a
child coordinate system. Plot the orientation in Euler angles in degrees over time.

imufilter fusion correctly estimates the change in orientation from an assumed north-facing initial
orientation. However, the device's x-axis was pointing southward when recorded. To correctly
estimate the orientation relative to the true initial orientation or relative to NED, use ahrsfilter.

3 System Objects

3-42

time = (0:decim:size(accelerometerReadings,1)-1)/Fs;

plot(time,eulerd(q,'ZYX','frame'))
title('Orientation Estimate')
legend('Z-axis', 'Y-axis', 'X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')

Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor System
object™. Use ideal and realistic models to compare the results of orientation tracking using the
imufilter System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct describes
sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second

 imufilter

3-43

6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-axis
rotation. The acceleration, angular velocity, and orientation are defined in the local NED coordinate
system.

load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

3 System Objects

3-44

Modify properties of your imuSensor to model real-world sensors. Run the loop again and plot the
orientation estimate over time.

IMU.Accelerometer = accelparams(...
 'MeasurementRange',19.62, ...
 'Resolution',0.00059875, ...
 'ConstantBias',0.4905, ...
 'AxesMisalignment',2, ...
 'NoiseDensity',0.003924, ...
 'BiasInstability',0, ...
 'TemperatureBias', [0.34335 0.34335 0.5886], ...
 'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams(...
 'MeasurementRange',4.3633, ...
 'Resolution',0.00013323, ...
 'AxesMisalignment',2, ...
 'NoiseDensity',8.7266e-05, ...
 'TemperatureBias',0.34907, ...
 'TemperatureScaleFactor',0.02, ...
 'AccelerationBias',0.00017809, ...
 'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 imufilter

3-45

 orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

The ability of the imufilter to track the ground-truth data is significantly reduced when modeling a
realistic IMU. To improve performance, modify properties of your imufilter object. These values
were determined empirically. Run the loop again and plot the orientation estimate over time.

aFilter.GyroscopeNoise = 7.6154e-7;
aFilter.AccelerometerNoise = 0.0015398;
aFilter.GyroscopeDriftNoise = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 orientationNondefault(i) = aFilter(accelBody,gyroBody);

3 System Objects

3-46

end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')

To quantify the improved performance of the modified imufilter, plot the quaternion distance
between the ground-truth motion and the orientation as returned by the imufilter with default and
nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
 'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')

 imufilter

3-47

Remove Bias from Angular Velocity Measurement

This example shows how to remove gyroscope bias from an IMU using imufilter.

Use kinematicTrajectory to create a trajectory with two parts. The first part has a constant
angular velocity about the y- and z-axes. The second part has a varying angular velocity in all three
axes.

duration = 60*8;
fs = 20;
numSamples = duration * fs;
rng('default') % Seed the RNG to reproduce noisy sensor measurements.

initialAngVel = [0,0.5,0.25];
finalAngVel = [-0.2,0.6,0.5];
constantAngVel = repmat(initialAngVel,floor(numSamples/2),1);
varyingAngVel = [linspace(initialAngVel(1), finalAngVel(1), ceil(numSamples/2)).', ...
 linspace(initialAngVel(2), finalAngVel(2), ceil(numSamples/2)).', ...
 linspace(initialAngVel(3), finalAngVel(3), ceil(numSamples/2)).'];

angVelBody = [constantAngVel; varyingAngVel];
accBody = zeros(numSamples,3);

traj = kinematicTrajectory('SampleRate',fs);

[~,qNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

3 System Objects

3-48

Create an imuSensor System object™, IMU, with a nonideal gyroscope. Call IMU with the ground-
truth acceleration, angular velocity, and orientation.

IMU = imuSensor('accel-gyro', ...
 'Gyroscope',gyroparams('RandomWalk',0.003,'ConstantBias',0.3), ...
 'SampleRate',fs);

[accelReadings, gyroReadingsBody] = IMU(accNED,angVelNED,qNED);

Create an imufilter System object, fuse. Call fuse with the modeled accelerometer readings and
gyroscope readings.

fuse = imufilter('SampleRate',fs, 'GyroscopeDriftNoise', 1e-6);

[~,angVelBodyRecovered] = fuse(accelReadings,gyroReadingsBody);

Plot the ground-truth angular velocity, the gyroscope readings, and the recovered angular velocity for
each axis.

The angular velocity returned from the imufilter compensates for the effect of the gyroscope bias
over time and converges to the true angular velocity.

time = (0:numSamples-1)'/fs;

figure(1)
plot(time,angVelBody(:,1), ...
 time,gyroReadingsBody(:,1), ...
 time,angVelBodyRecovered(:,1))
title('X-axis')
legend('True Angular Velocity', ...
 'Gyroscope Readings', ...
 'Recovered Angular Velocity')
ylabel('Angular Velocity (rad/s)')

 imufilter

3-49

figure(2)
plot(time,angVelBody(:,2), ...
 time,gyroReadingsBody(:,2), ...
 time,angVelBodyRecovered(:,2))
title('Y-axis')
ylabel('Angular Velocity (rad/s)')

3 System Objects

3-50

figure(3)
plot(time,angVelBody(:,3), ...
 time,gyroReadingsBody(:,3), ...
 time,angVelBodyRecovered(:,3))
title('Z-axis')
ylabel('Angular Velocity (rad/s)')
xlabel('Time (s)')

 imufilter

3-51

Algorithms
Note: The following algorithm only applies to an NED reference frame.

The imufilter uses the six-axis Kalman filter structure described in [1]. The algorithm attempts to
track the errors in orientation, gyroscope offset, and linear acceleration to output the final orientation
and angular velocity. Instead of tracking the orientation directly, the indirect Kalman filter models the
error process, x, with a recursive update:

xk =
θk
bk
ak

= Fk

θk− 1
bk− 1
ak− 1

+ wk

where xk is a 9-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• wk –– 9-by-1 additive noise vector
• Fk –– state transition model

3 System Objects

3-52

Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk− = FkPk− 1
+ Fk

T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk−

Kalman equations used in this algorithm:

xk
− = 0

Pk− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk−

where

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.

 imufilter

3-53

Before the first iteration, the accelReadings and gyroReadings inputs are chunked into 1-by-3
frames and DecimationFactor-by-3 frames, respectively. The algorithm uses the most current
accelerometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Step through the algorithm for an explanation of each stage of the detailed overview.

Model

The algorithm models acceleration and angular change as linear processes.

3 System Objects

3-54

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

where N is the decimation factor specified by the DecimationFactor property, and fs is the sample
rate specified by the SampleRate property.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass with an assumption
that the x-axis points north.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:

 imufilter

3-55

g1 × 3 = rPrior(: , 3) T

See ecompass for an explanation of why the third column of rPrior can be interpreted as the gravity
vector.

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Error Model

The error model is the difference between the gravity estimate from the accelerometer readings and
the gravity estimate from the gyroscope readings: z = g− gAccel.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, and the
observation of the error process, z, to update the Kalman gain and intermediary covariance matrices.
The Kalman gain is applied to the error signal, z, to output an a posteriori error estimate, x+.

3 System Objects

3-56

Observation Model

The observation model maps the 1-by-3 observed state, g, into the 3-by-9 true state, H.

The observation model is constructed as:

H3 × 9 =
0 gz −gy 0 −κgz κgy 1 0 0
−gz 0 gx κgz 0 −κgx 0 1 0
gy −gx 0 −κgy κgx 0 0 0 1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the orientation,
respectively. κ is a constant determined by the SampleRate and DecimationFactor properties: κ =
DecimationFactor/SampleRate.

See sections 7.3 and 7.4 of [1] for a derivation of the observation model.

Innovation Covariance

The innovation covariance is a 3-by-3 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S3x3 = R3x3 + H3x9 P9x9
− H3x9

T

where

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration

 imufilter

3-57

• R is the covariance of the observation model noise, calculated as:

R3 × 3 = λ + ξ + κ β + η
1 0 0
0 1 0
0 0 1

.

The following properties define the observation model noise variance:

• κ –– (DecimationFactor/SampleRate)2

• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• λ –– AccelerometerNoise
• ξ –– LinearAccelerationNoise

Update Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P9 × 9
+ = P9 × 9

− − K9 × 3 H3 × 9 P9 × 9
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 9-by-9 matrix used to track the variability in the state. The a priori
error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, the cross-correlation terms are assumed to be negligible compared to the
autocorrelation terms, and are set to zero:

3 System Objects

3-58

Q =

P+(1) + κ2P+(31) + β + η 0 0 −κ P+(31) + β 0 0 0 0 0

0 P+(11) + κ2P+(41) + β + η 0 0 P+(41) + β 0 0 0 0

0 0 P+(21) + κ2P+(51) + β + η 0 0 P+(51) + β 0 0 0

−κ P+(31) + β 0 0 P+(31) + β 0 0 0 0 0

0 P+(41) + β 0 0 P+(41) + β 0 0 0 0

0 0 P+(51) + β 0 0 P+(51) + β 0 0 0

0 0 0 0 0 0 ν2P+(61) + ξ 0 0

0 0 0 0 0 0 0 ν2P+(71) + ξ 0

0 0 0 0 0 0 0 0 ν2P+(81) + ξ

where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– DecimationFactor/SampleRate
• β –– GyroscopeDriftNoise
• η –– GyroscopeNoise
• ν –– LinearAcclerationDecayFactor
• ξ –– LinearAccelerationNoise

 imufilter

3-59

See section 10.1 of [1] for a derivation of the terms of the process error matrix.

Kalman Gain

The Kalman gain matrix is a 9-by-3 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K9 × 3 = P9 × 9
− H3 × 9

T S3 × 3
T −1

where

• P- –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector estimations:

x9 × 1 = K9 × 3 (z1 × 3)T

Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

3 System Objects

3-60

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– LinearAcclerationDecayFactor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
ahrsfilter | ecompass | gpsSensor | imuSensor | quaternion

Topics
“Determine Orientation Using Inertial Sensors”

Introduced in R2018b

 imufilter

3-61

https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs

insSensor
Inertial navigation and GPS simulation model

Description
The insSensor System object models data output from an inertial navigation and GPS.

To model output from an inertial navigation and GPS:

1 Create the insSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
INS = insSensor
INS = insSensor(Name,Value)

Description

INS = insSensor returns a System object, INS, that models an inertial navigation and GPS reading
based on an inertial input signal.

INS = insSensor(Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Roll is defined as rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. RollAccuracy sets the standard deviation, in degrees, of the roll measurement noise.

3 System Objects

3-62

Tunable: Yes
Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Pitch is defined as rotation around the y-axis of the sensor body. Pitch noise is modeled as a white
noise process. PitchAccuracy defines the standard deviation, in degrees, of the pitch measurement
noise.

Tunable: Yes
Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body in degrees, specified as a nonnegative real
scalar.

Yaw is defined as rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation, in degrees, of the yaw measurement noise.

Tunable: Yes
Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
1 (default) | nonnegative real scalar

Accuracy of the position measurement of the sensor body in meters, specified as a nonnegative real
scalar.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation, in meters, of the position measurement noise.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar

Accuracy of the velocity measurement of the sensor body in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation, in meters per second, of the velocity measurement noise.

Tunable: Yes
Data Types: single | double

 insSensor

3-63

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a real, nonnegative
integer scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
measurement = INS(motion)

Description

measurement = INS(motion) models the data received from an inertial navigation and GPS
reading. The measurement is based on the input signal, motion.

Input Arguments

motion — Ground-truth sensor body motion in local NED
struct

motion is a struct with the following fields:

• 'Position' –– Position of the sensor body in the local NED coordinate system specified as a real
finite N-by-3 array in meters. N is the number of samples in the current frame.

• 'Velocity' –– Velocity of the sensor body in the local NED coordinate system specified as a real
finite N-by-3 array in meters per second. N is the number of samples in the current frame.

• 'Orientation' –– Orientation of the sensor body with respect to the local NED coordinate
system specified as a quaternion N-element column vector or a single or double 3-by-3-by-N
rotation matrix. Each quaternion or rotation matrix is a frame rotation from the local NED
coordinate system to the current sensor body coordinate system. N is the number of samples in
the current frame.

Example: motion = struct('Position',[0,0,0],'Velocity',
[0,0,0],'Orientation',quaternion([1,0,0,0]))

3 System Objects

3-64

Output Arguments

measurement — Measurement of sensor body motion in local NED
struct

measurement is a struct with the following fields:

• 'Position' –– Position measurement of the sensor body in the local NED coordinate system
specified as a real finite N-by-3 array in meters. N is the number of samples in the current frame.

• 'Velocity' –– Velocity measurement of the sensor body in the local NED coordinate system
specified as a real finite N-by-3 array in meters per second. N is the number of samples in the
current frame.

• 'Orientation' –– Orientation measurement of the sensor body with respect to the local NED
coordinate system specified as a quaternion N-element column vector or a single or double 3-by-3-
by-N rotation matrix. Each quaternion or rotation matrix is a frame rotation from the local NED
coordinate system to the current sensor body coordinate system. N is the number of samples in
the current frame.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate INS Measurements from Stationary Input

Create a motion struct that defines a stationary position at the local NED origin. Because the
platform is stationary, you only need to define a single sample. Assume the ground-truth motion is
sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System object™.
Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct(...
 'Position', zeros(1,3), ...
 'Velocity', zeros(1,3), ...
 'Orientation', ones(1,1,'quaternion'));

INS = insSensor;

positionMeasurements = zeros(numSamples,3);

 insSensor

3-65

velocityMeasurements = zeros(numSamples,3);
orientationMeasurements = zeros(numSamples,1,'quaternion');

In a loop, call INS with the stationary motion struct to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = 1:numSamples

 measurements = INS(motion);

 positionMeasurements(i,:) = measurements.Position;
 velocityMeasurements(i,:) = measurements.Velocity;
 orientationMeasurements(i) = measurements.Orientation;

end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements,'ZYX','frame');

t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)')
legend('North','East','Down')

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
legend('North','East','Down')

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')

3 System Objects

3-66

Generate INS Measurements for a Scenario

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path. Use trackingScenario to organize the simulation and visualize
the motion.

Specify the ground-truth trajectory as a figure-eight path in the North-East plane. Use a 50 Hz
sample rate and 5 second duration.

Fs = 50;
duration = 5;
numSamples = Fs*duration;
t = (0:(numSamples-1)).'/Fs;

a = 2;

x = a.*sqrt(2).*cos(t) ./ (sin(t).^2 + 1);
y = sin(t) .* x;
z = zeros(numSamples,1);

waypoints = [x,y,z];

path = waypointTrajectory('Waypoints',waypoints,'TimeOfArrival',t);

 insSensor

3-67

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Create a tracking scenario with a single platform whose motion is defined by path.

scenario = trackingScenario('UpdateRate',Fs);
quadcopter = platform(scenario);
quadcopter.Trajectory = path;

Create a theater plot to visualize the ground-truth quadcopter motion and the quadcopter motion
measurements modeled by insSensor.

tp = theaterPlot('XLimits',[-3, 3],'YLimits', [-3, 3]);
quadPlotter = platformPlotter(tp, ...
 'DisplayName', 'Ground-Truth Motion', ...
 'Marker', 's', ...
 'MarkerFaceColor','blue');
insPlotter = detectionPlotter(tp, ...
 'DisplayName','INS Measurement', ...
 'Marker','d', ...
 'MarkerFaceColor','red');

In a loop, advance the scenario until it is complete. For each time step, get the current motion
sample, model INS measurements for the motion, and then plot the result.

while advance(scenario)
 motion = platformPoses(scenario,'quaternion');

3 System Objects

3-68

 insMeas = ins(motion);

 plotPlatform(quadPlotter,motion.Position);
 plotDetection(insPlotter,insMeas.Position);

 pause(1/scenario.UpdateRate)
end

Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0; ...
 0,0,0; ...
 90,0,0; ...
 90,0,0];

 insSensor

3-69

orientation = quaternion(eulerAngles,'eulerd','ZYX','frame');

r = 20;
waypoints = [0,0,0; ...
 100,0,0; ...
 100+r,r,0; ...
 100+r,100+r,0];

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];

Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints, ...
 'TimeOfArrival',toa, ...
 'Orientation',orientation, ...
 'SampleRate',Fs, ...
 'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation,'ZYX','frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')
xlabel('North (m)')
ylabel('East (m)')

subplot(2,1,2)
t = (0:(numSamples-1)).'/Fs;
plot(t,orientationMeasurementEuler(:,1), ...
 t,orientationMeasurementEuler(:,2), ...
 t,orientationMeasurementEuler(:,3));
title('Orientation')
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')

3 System Objects

3-70

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
gpsSensor | imuSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

 insSensor

3-71

gpsSensor

GPS receiver simulation model

Description
The gpsSensor System object models data output from a Global Positioning System (GPS) receiver.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
GPS = gpsSensor
GPS = gpsSensor('ReferenceFrame',RF)
GPS = gpsSensor(___ ,Name,Value)

Description

GPS = gpsSensor returns a gpsSensorSystem object that computes a Global Positioning System
receiver reading based on a local position and velocity input signal. The default reference position in
geodetic coordinates is

• latitude: 0o N
• longitude: 0o E
• altitude: 0 m

GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensorSystem object that computes a
global positioning system receiver reading relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU'(East-North-Up). The default value is 'NED'.

GPS = gpsSensor(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

3 System Objects

3-72

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

UpdateRate — Update rate of receiver (Hz)
1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | [degrees degrees meters]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location is in [degrees degrees meters]. The degree format is decimal degrees (DD).
Data Types: single | double

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.

Tunable: Yes
Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement.

Tunable: Yes
Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay factor of 1
models the global position noise as a random walk process.

Tunable: Yes

 gpsSensor

3-73

Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

Description

[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
computes global navigation satellite system receiver readings from the position and velocity inputs.

Input Arguments

truePosition — Position of GPS receiver in local navigation coordinate system (m)
N-by-3 matrix

Position of the GPS receiver in the local navigation coordinate system in meters, specified as a real
finite N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

trueVelocity — Velocity of GPS receiver in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of GPS receiver in the local navigation coordinate system in meters per second, specified as a
real finite N-by-3 matrix.

N is the number of samples in the current frame.

3 System Objects

3-74

Data Types: single | double

Output Arguments

position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real finite N-by-3 array.

N is the number of samples in the current frame.
Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real finite N-by-1 column vector.

N is the number of samples in the current frame.
Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system (°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
degrees, returned as a real finite N-by-1 column of values between 0 and 360. North corresponds to
360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 gpsSensor

3-75

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one Hz sample
rate and a 1000-second simulation time. Define the reference location in terms of latitude, longitude,
and altitude (LLA) of Natick, MA (USA). Define the sensor as stationary by specifying the true
position and velocity with zeros.

fs = 1;
duration = 1000;
numSamples = duration*fs;

refLoc = [42.2825 -71.343 53.0352];

truePosition = zeros(numSamples,3);
trueVelocity = zeros(numSamples,3);

gps = gpsSensor('UpdateRate',fs,'ReferenceLocation',refLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving GPS data for a
stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.

t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1), ...
 t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
 t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
 t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

3 System Objects

3-76

The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The DecayFactor
property controls the drift in the noise model. By default, DecayFactor is set to 0.999, which
approaches a random walk process. To observe the effect of the DecayFactor property:

1 Reset the gps object.
2 Set DecayFactor to 0.5.
3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.

reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
 t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings - Decay Factor = 0.5')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
 t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

 gpsSensor

3-77

subplot(3, 1, 3)
plot(t, position(:,3), ...
 t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this example, you create
a GPS receiver simulation object and simulate the data received from a platform that is accelerating
from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor

GPS =
 gpsSensor with properties:

 UpdateRate: 1 Hz
 ReferenceLocation: [0 0 0] [deg deg m]
 HorizontalPositionAccuracy: 1.6 m
 VerticalPositionAccuracy: 3 m
 VelocityAccuracy: 0.1 m/s

3 System Objects

3-78

 RandomStream: 'Global stream'
 DecayFactor: 0.999

Create matrices to describe the position and velocity of a platform in the NED coordinate system. The
platform begins from a stationary position and accelerates to 60 m/s North-East over 60 seconds,
then has a vertical acceleration to 2 m/s over 2 seconds, followed by a 2 m/s rate of climb for another
8 seconds. Assume a constant velocity, such that the velocity is the simple derivative of the position.

duration = 70;
numSamples = duration*GPS.UpdateRate;

course = 45*ones(duration,1);
groundspeed = [(1:60)';60*ones(10,1)];

Nvelocity = groundspeed.*sind(course);
Evelocity = groundspeed.*cosd(course);
Dvelocity = [zeros(60,1);-1;-2*ones(9,1)];
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];

Ndistance = cumsum(Nvelocity);
Edistance = cumsum(Evelocity);
Ddistance = cumsum(Dvelocity);
NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position matrices.

[~,~,groundspeedMeasurement,courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned by the GPS
simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity increase
during the last ten seconds has no effect, because the additional velocity is not in the ground plane.

t = (0:numSamples-1)/GPS.UpdateRate;

subplot(2,1,1)
plot(t,groundspeed);
ylabel('Speed (m/s)')
title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)
courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)
xlabel('Time (s)');
ylabel('Course Accuracy (degrees)')

 gpsSensor

3-79

Model GPS Receiver Data

Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston, MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and Boston, MA
USA. For simplicity, set the altitude for both locations to zero.

NatickLLA = [42.27752809999999, -71.34680909999997, 0];
BostonLLA = [42.3600825, -71.05888010000001, 0];

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the origin of the
local NED coordinate system as Natick. Create a waypointTrajectory object to output the
trajectory 10 samples at a time.

fs = 1;
duration = 60*20;

bearing = 68; % degrees
distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);
distanceNorth = distance*cosd(bearing);

NatickNED = [0,0,0];
BostonNED = [distanceNorth,distanceEast,0];

3 System Objects

3-80

trajectory = waypointTrajectory(...
 'Waypoints', [NatickNED;BostonNED], ...
 'TimeOfArrival',[0;duration], ...
 'SamplesPerFrame',10, ...
 'SampleRate',fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize the noise.
Set the ReferenceLocation to the Natick coordinates in LLA.

GPS = gpsSensor(...
 'HorizontalPositionAccuracy',25, ...
 'DecayFactor',0.25, ...
 'UpdateRate',fs, ...
 'ReferenceLocation',NatickLLA);

Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the received GPS
data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)
plot(NatickLLA(1),NatickLLA(2),'ko', ...
 BostonLLA(1),BostonLLA(2),'kx')
xlabel('Latitude (degrees)')
ylabel('Longitude (degrees)')
title('GPS Sensor Data for Natick to Boston Trajectory')
hold on

while ~isDone(trajectory)
 [truePositionNED,~,trueVelocityNED] = trajectory();
 reportedPositionLLA = GPS(truePositionNED,trueVelocityNED);

 figure(1)
 plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.')
end

 gpsSensor

3-81

As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
imuSensor | insSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

3 System Objects

3-82

radarSensor
Generate detections from radar emissions

Description
The radarSensor System object returns a statistical model to generate detections from radar
emissions. You can generate detections from monostatic radar, bistatic radar and Electronic Support
Measures (ESM). You can use the radarSensor object in a scenario that models moving and
stationary platforms using trackingScenario. The radar sensor can simulate real detections with
added random noise and also generate false alarm detections. In addition, you can use this object to
create input to trackers such as trackerGNN, trackerJPDA and trackerTOMHT.

This object enables you to configure a scanning radar. A scanning radar changes the look angle
between updates by stepping the mechanical and electronic position of the beam in increments of the
angular span specified in the FieldOfView property. The radar scans the total region in azimuth and
elevation defined by the radar mechanical scan limits, MechanicalScanLimits, and electronic scan
limits, ElectronicScanLimits. If the scanning limits for azimuth or elevation are set to [0 0],
then no scanning is performed along that dimension for that scan mode. If the maximum mechanical
scan rate for azimuth or elevation is set to zero, then no mechanical scanning is performed along that
dimension.

Using a single-exponential mode, the radar computes range and elevation biases caused by
propagation through the troposphere. A range bias means that measured ranges are greater than the
line-of-sight range to the target. Elevation bias means that the measured elevations are above their
true elevations. Biases are larger when the line-of-sight path between the radar and target passes
through lower altitudes because the atmosphere is thicker at these altitudes. See [1] and [2] for more
details.

To generate radar detections:

1 Create the radarSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = radarSensor(SensorIndex)

sensor = radarSensor(SensorIndex,'No scanning')
sensor = radarSensor(SensorIndex,'Raster')
sensor = radarSensor(SensorIndex,'Rotator')
sensor = radarSensor(SensorIndex,'Sector')

sensor = radarSensor(___ ,Name,Value)

 radarSensor

3-83

Description

sensor = radarSensor(SensorIndex) creates a radar detection generator object with a
specified sensor index, SensorIndex, and default property values.

sensor = radarSensor(SensorIndex,'No scanning') is a convenience syntax that creates a
radarSensor that stares along the radar antenna boresight direction. No mechanical or electronic
scanning is performed. This syntax sets the ScanMode property to 'No scanning'.

sensor = radarSensor(SensorIndex,'Raster') is a convenience syntax that creates a
radarSensor object that mechanically scans a raster pattern. The raster span is 90° in azimuth from
–45° to +45° and in elevation from the horizon to 10° above the horizon. See “Convenience Syntaxes”
on page 3-105 for the properties set by this syntax.

sensor = radarSensor(SensorIndex,'Rotator') is a convenience syntax that creates a
radarSensor object that mechanically scans 360° in azimuth by mechanically rotating the antenna
at a constant rate. When you set HasElevation to true, the radar antenna mechanically points
towards the center of the elevation field of view. See “Convenience Syntaxes” on page 3-105 for the
properties set by this syntax.

sensor = radarSensor(SensorIndex,'Sector') is a convenience syntax to create a
radarSensor object that mechanically scans a 90° azimuth sector from –45° to +45°. Setting
HasElevation to true, points the radar antenna towards the center of the elevation field of view.
You can change the ScanMode to 'Electronic' to electronically scan the same azimuth sector. In
this case, the antenna is not mechanically tilted in an electronic sector scan. Instead, beams are
stacked electronically to process the entire elevation spanned by the scan limits in a single dwell. See
“Convenience Syntaxes” on page 3-105 for the properties set by this syntax.

sensor = radarSensor(___ ,Name,Value) sets properties using one or more name-value pairs
after all other input arguments. Enclose each property name in quotes. For example,
radarSensor(1,'DetectionCoordinates','Sensor cartesian','MaxRange',200) creates
a radar detection generator that reports detections in the sensor Cartesian coordinate system and
has a maximum detection range of 200 meters. If you specify the sensor index using the
SensorIndex property, you can omit the SensorIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system. When creating a radarSensor system object,
you must either specify the SensorIndex as the first input argument in the creation syntax, or
specify it as the value for the SensorIndex property in the creation syntax.
Example: 2

3 System Objects

3-84

Data Types: double

UpdateRate — Sensor update rate
1 (default) | positive scalar

Sensor update rate, specified as a positive scalar. This interval must be an integer multiple of the
simulation time interval defined by trackingScenario. The trackingScenario object calls the
radar sensor at simulation time intervals. The radar generates new detections at intervals defined by
the reciprocal of the UpdateRate property. Any update requested to the sensor between update
intervals contains no detections. Units are in hertz.
Example: 5
Data Types: double

DetectionMode — Detection mode
'ESM' (default) | 'monostatic' | 'bistatic'

Detection mode, specified as 'ESM', 'monostatic' or 'bistatic'. When set to 'ESM', the sensor
operates passively and can model ESM and RWR systems. When set to 'monostatic', the sensor
generates detections from reflected signals originating from a collocated radar emitter. When set to
'bistatic', the sensor generates detections from reflected signals originating from a separate
radar emitter. For more details on detection mode, see “Radar Sensor Detection Modes” on page 3-
100.
Example: 'Monostatic'
Data Types: char | string

EmitterIndex — Unique monostatic emitter index
positive integer

Unique monostatic emitter index, specified as a positive integer. The emitter index identifies the
monostatic emitter providing the reference signal to the sensor.
Example: 404
Dependencies

To enable this property, set the DetectionMode property to 'Monostatic'.
Data Types: double

HasElevation — Enable elevation scan and measurements
false (default) | true

Enable the sensor to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a radar sensor that can estimate target elevation and scan
in elevation.
Data Types: logical

Sensitivity — Minimum operational sensitivity of receiver
-50 (default) | scalar

Minimum operational sensitivity of receiver, specified as a scalar. Sensitivity includes isotropic
antenna receiver gain. Units are in dBmi.
Example: -10

 radarSensor

3-85

Data Types: double

DetectionThreshold — Minimum SNR required to declare a detection
5 (default) | scalar

Minimum SNR required to declare a detection, specified as a scalar. Units are in dB.
Example: -1
Data Types: double

FalseAlarmRate — False alarm rate
1e-6 (default) | positive scalar

False alarm report rate within each sensor resolution cell, specified as a positive scalar in the range
of [10–7,10–3]. Units are dimensionless. Resolution cells are determined from the AzimuthResolution
and RangeResolution properties, and the ElevationResolution and RangeRateResolution properties
when they are enabled.
Example: 1e-5
Data Types: double

AzimuthResolution — Azimuth resolution
1 (default) | positive scalar

Azimuth resolution of the radar, specified as a positive scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish two targets. The azimuth
resolution is typically the 3-dB downpoint of the azimuth angle beamwidth of the radar. Units are in
degrees.
Data Types: double

ElevationResolution — Elevation resolution
1 (default) | positive scalar

Elevation resolution of the radar, specified as a positive scalar. The elevation resolution defines the
minimum separation in elevation angle at which the radar can distinguish two targets. The elevation
resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar. Units are in
degrees.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. The azimuth bias is expressed as
a fraction of the azimuth resolution specified in AzimuthResolution. This value sets a lower bound
on the azimuthal accuracy of the radar. This value is dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative scalar

3 System Objects

3-86

Elevation bias fraction of the radar, specified as a nonnegative scalar. Elevation bias is expressed as a
fraction of the elevation resolution specified by the value of the ElevationResolution property.
This value sets a lower bound on the elevation accuracy of the radar. This value is dimensionless.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

HasINS — Enable inertial navigation system (INS) input
false (default) | true

Enable the optional input argument that passes the current estimate of the sensor platform pose to
the sensor, specified as false or true. When true, pose information is added to the
MeasurementParameters structure of the reported detections. Pose information lets tracking and
fusion algorithms estimate the state of the target detections in the north-east-down (NED) frame.
Data Types: logical

HasNoise — Enable addition of noise to sensor measurements
true (default) | false

Enable addition of noise to sensor measurements, specified as true or false. Set this property to
true to add noise to the radar measurements. Otherwise, the measurements have no noise. Even if
you set HasNoise to false, the object still computes the MeasurementNoise property of each
detection.
Data Types: logical

HasFalseAlarms — Enable creating false alarm detections
true (default) | false

Enable creating false alarm measurements, specified as true or false. Set this property to true to
report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this
property is set to 'Property', the sensor reports up to the number of detections specified by the
MaxNumDetections property.
Data Types: char

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. If the
DetectionMode is set to 'monostatic' or 'bistatic', detections are reported in order of
distance to the sensor until the maximum number is reached. If the DetectionMode is set to 'ESM',
detections are reported from highest SNR to lowest SNR.

 radarSensor

3-87

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

HasOcclusion — Enable occlusion from extended objects
true (default) | false

Enable occlusion from extended objects, specified as true or false. Set this property to true to
model occlusion from extended objects. Two types of occlusion (self occlusion and inter object
occlusion) are modeled. Self occlusion occurs when one side of an extended object occludes another
side. Inter object occlusion occurs when one extended object stands in the line of sight of another
extended object or a point target. Note that both extended objects and point targets can be occluded
by extended objects, but a point target cannot occlude another point target or an extended object.

Set this property to false to disable occlusion of extended objects. This will also disable the merging
of objects whose detections share a common sensor resolution cell, which gives each object in the
tracking scenario an opportunity to generate a detection.
Data Types: logical

DetectionCoordinates — Coordinate system of reported detections
'Scenario' | 'Body' | 'Sensor rectangular | 'Sensor spherical'

Coordinate system of reported detections, specified as:

• 'Scenario' — Detections are reported in the rectangular scenario coordinate frame. The
scenario coordinate system is defined as the local NED frame at simulation start time. To enable
this value, set the HasINS property to true.

• 'Body' — Detections are reported in the rectangular body system of the sensor platform.
• 'Sensor rectangular' — Detections are reported in the sensor rectangular body coordinate

system.
• 'Sensor spherical' — Detections are reported in a spherical coordinate system derived from

the sensor rectangular body coordinate system. This coordinate system is centered at the sensor
and aligned with the orientation of the radar on the platform.

When the DetectionMode property is set to 'monostatic', you can specify the
DetectionCoordinates as 'Body' (default for 'monostatic'), 'Scenario', 'Sensor
rectangular', or 'Sensor spherical'. When the DetectionMode property is set to 'ESM' or
'bistatic', the default value of the DetectionCoordinates property is 'Sensor spherical',
which can not be changed.
Example: 'Sensor spherical'
Data Types: char

ESM and Bistatic Sensor Properties

MountingLocation — Sensor location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Sensor location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the sensor with respect to the platform origin. The default value specifies that the
sensor origin is at the origin of its platform. Units are in meters.

3 System Objects

3-88

Example: [.2 0.1 0]

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

MountingAngles — Orientation of sensor
[0 0 0] (default) | 3-element real-valued vector

Orientation of the sensor with respect to the platform, specified as a three-element real-valued vector.
Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the body axes
of the platform to the sensor axes. The three elements define the rotations around the z-, y-, and x-
axes, in that order. The first rotation rotates the platform axes around the z-axis. The second rotation
rotates the carried frame around the rotated y-axis. The final rotation rotates the frame around the
carried x-axis. Units are in degrees.
Example: [10 20 -15]

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view
azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

ScanMode — Scanning mode of radar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning'

Scanning mode of radar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', or 'No scanning'.

 radarSensor

3-89

Scan Modes

ScanMode Purpose
'Mechanical' The sensor scans mechanically across the

azimuth and elevation limits specified by the
MechanicalScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Electronic' The sensor scans electronically across the
azimuth and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Mechanical and electronic' The sensor mechanically scans the antenna
boresight across the mechanical scan limits and
electronically scans beams relative to the
antenna boresight across the electronic scan
limits. The total field of regard scanned in this
mode is the combination of the mechanical and
electronic scan limits. The scan direction
increments by the radar field of view angle
between dwells.

'No scanning' The sensor beam points along the antenna
boresight defined by the mountingAngles
property.

Example: 'No scanning'

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: char

MaxMechanicalScanRate — Maximum mechanical scan rate
[75;75] (default) | nonnegative scalar | real-valued 2-by-1 vector with nonnegative entries

Maximum mechanical scan rate, specified as a nonnegative scalar or real-valued 2-by-1 vector with
nonnegative entries.

When HasElevation is true, specify the scan rate as a 2-by-1 column vector of nonnegative entries
[maxAzRate; maxElRate]. maxAzRate is the maximum scan rate in azimuth and maxElRate is the
maximum scan rate in elevation.

When HasElevation is false, specify the scan rate as a nonnegative scalar representing the
maximum mechanical azimuth scan rate.

Scan rates set the maximum rate at which the sensor can mechanically scan. The sensor sets its scan
rate to step the radar mechanical angle by the field of regard. If the required scan rate exceeds the
maximum scan rate, the maximum scan rate is used. Units are degrees per second.
Example: [5;10]

3 System Objects

3-90

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic', and set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

MechanicalScanLimits — Angular limits of mechanical scan directions of radar
[0 360;-10 0] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of mechanical scan directions of radar, specified as a real-valued 1-by-2 row vector, or
a real-valued 2-by-2 matrix. The mechanical scan limits define the minimum and maximum
mechanical angles the radar can scan from its mounted orientation.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl
represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits cannot span more than 360° and elevation scan limits must lie within the closed
interval [-90° 90°]. Units are in degrees.
Example: [-90 90;0 85]
Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic', and set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle of radar, returned as a scalar or real-valued 2-by-1 vector. When
HasElevation is true, the scan angle takes the form [Az; El]. Az and El represent the azimuth and
elevation scan angles, respectively, relative to the mounted angle of the radar on the platform. When
HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.
Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic', and set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

ElectronicScanLimits — Angular limits of electronic scan directions of radar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of electronic scan directions of radar, specified as a real-valued 1-by-2 row vector, or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the radar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl

 radarSensor

3-91

represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.
Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic', and set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of radar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth and
elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic', and set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

LookAngle — Look angle of sensor
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of sensor, specified as a scalar or real-valued 2-by-1 vector. Look angle is a combination of
the mechanical angle and electronic angle depending on the ScanMode property.

ScanMode LookAngle
'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and Electronic' MechnicalAngle + ElectronicAngle
'No scanning' 0

When HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.

3 System Objects

3-92

CenterFrequency — Center frequency of radar band
positive scalar

Center frequency of radar band, specified as a positive scalar. Units are in hertz.
Example: 100e6
Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

Bandwidth — Radar waveform bandwidth
positive scalar

Radar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 100e3
Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

WaveformTypes — Types of detected waveforms
0 (default) | nonnegative integer-valued L-element vector

Types of detected waveforms, specified as a nonnegative integer-valued L-element vector.
Example: [1 4 5]
Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

ConfusionMatrix — Probability of correct classification of detected waveform
positive scalar | real-valued nonnegative L-element vector | real-valued nonnegative L-by-L matrix

Probability of correct classification of a detected waveform, specified as a positive scalar, a real-
valued nonnegative L-element vector, or a real-valued nonnegative L-by-L matrix. Matrix values lie
from 0 through 1 and matrix rows must sum to 1. L is the number of waveform types detectable by
the sensor, as indicated by the value set in the WaveformTypes property. The (i,j) matrix element
represents the probability of classifying the ith waveform as the jth waveform. When specified as a
scalar from 0 through 1, the value is expanded along the diagonal of the confusion matrix. When
specified as a vector, it must have the same number of elements as the WaveformTypes property.
When defined as a scalar or a vector, the off diagonal values are set to (1-val)/(L-1).
Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

Monostatic and Bistatic Sensor Properties

RangeResolution — Range resolution of radar
100 (default) | positive scalar

 radarSensor

3-93

Range resolution of the radar, specified as a positive scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.

Dependencies

To enable this property, set the DetectionMode property to 'monostatic' or 'bistatic'.
Data Types: double

RangeRateResolution — Range rate resolution of radar
10 (default) | positive scalar

Range rate resolution of the radar, specified as a positive scalar. The range rate resolution defines the
minimum separation in range rate at which the radar can distinguish between two targets. Units are
in meters per second.

Dependencies

To enable this property, set the HasRangeRate property to true, and set the DetectionMode
property to 'monostatic' or 'bistatic'.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is expressed as a
fraction of the range resolution specified in RangeResolution. This property sets a lower bound on
the range accuracy of the radar. This value is dimensionless.

Dependencies

To enable this property, set the DetectionMode property to 'monostatic' or 'bistatic'.
Data Types: double

RangeRateBiasFraction — Range rate bias fraction
0.05 (default) | nonnegative scalar

Range rate bias fraction of the radar, specified as a nonnegative scalar. Range rate bias is expressed
as a fraction of the range rate resolution specified in RangeRateResolution. This property sets a
lower bound on the range-rate accuracy of the radar. This value is dimensionless.

Dependencies

To enable this property, set the HasRangeRate property to true, and set the DetectionMode
property to 'monostatic' or 'bistatic'.
Data Types: double

HasRangeRate — Enable radar to measure range rate
false (default) | true

Enable the radar to measure target range rates, specified as false or true. Set this property to
true to model a radar sensor that can measure target range rate. Set this property to false to
model a radar sensor that cannot measure range rate.

3 System Objects

3-94

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: logical

HasRangeAmbiguities — Enable range ambiguities
false (default) | true

Enable range ambiguities, specified as false or true. Set this property to true to enable range
ambiguities by the sensor. In this case, the sensor cannot resolve range ambiguities for targets at
ranges beyond the MaxUnambiguousRange are wrapped into the interval [0
MaxUnambiguousRange]. When false, targets are reported at their unambiguous range.

Dependencies

To enable this property, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: logical

HasRangeRateAmbiguities — Enable range-rate ambiguities
false (default) | true

Enable range-rate ambiguities, specified as false or true. Set to true to enable range-rate
ambiguities by the sensor. When true, the sensor does not resolve range rate ambiguities and target
range rates beyond the MaxUnambiguousRadialSpeed are wrapped into the interval
[0,MaxUnambiguousRadialSpeed]. When false, targets are reported at their unambiguous
range rate.

Dependencies

To enable this property, set the HasRangeRate property to true and set the DetectionMode
property to 'ESM' or 'bistatic'.
Data Types: logical

MaxUnambiguousRange — Maximum unambiguous detection range
100e3 (default) | positive scalar

Maximum unambiguous range, specified as a positive scalar. Maximum unambiguous range defines
the maximum range for which the radar can unambiguously resolve the range of a target. When
HasRangeAmbiguities is set to true, targets detected at ranges beyond the maximum unambiguous
range are wrapped into the range interval [0,MaxUnambiguousRange]. This property applies to
true target detections when you set the HasRangeAmbiguities property to true.

This property also applies to false target detections when you set the HasFalseAlarms property to
true. In this case, the property defines the maximum range for false alarms.

Units are in meters.
Example: 5e3

Dependencies

To enable this property, set the HasRangeAmbiguities property or the HasFalseAlarms property
to true. Meanwhile, set the DetectionMode property to 'ESM' or 'bistatic'.
Data Types: double

 radarSensor

3-95

MaxUnambiguousRadialSpeed — Maximum unambiguous radial speed
200 (default) | positive scalar

Maximum unambiguous radial speed, specified as a positive scalar. Radial speed is the magnitude of
the target range rate. Maximum unambiguous radial speed defines the radial speed for which the
radar can unambiguously resolve the range rate of a target. When HasRangeRateAmbiguities is
set to true, targets detected at range rates beyond the maximum unambiguous radial speed are
wrapped into the range rate interval [-MaxUnambiguousRadialSpeed,
MaxUnambiguousRadialSpeed]. This property applies to true target detections when you set
HasRangeRateAmbiguities property to true.

This property also applies to false target detections obtained when you set both the HasRangeRate
and HasFalseAlarms properties to true. In this case, the property defines the maximum radial
speed for which false alarms can be generated.

Units are in meters per second.

Dependencies

To enable this property, set HasRangeRate and HasRangeRateAmbiguities to true and/or set
HasRangeRate and HasFalseAlarms to true. Meanwhile, set the DetectionMode property to
'ESM' or 'bistatic'.
Data Types: double

Usage

Syntax
dets = sensor(radarsigs,simTime)
dets = sensor(radarsigs,txconfigs,simTime)
dets = sensor(___ ,ins,simTime)
[dets,numDets,config] = sensor(___)

Description

dets = sensor(radarsigs,simTime) creates ESM or bistatic radar detections, dets, from radar
emissions, radarsigs, at the current simulation time, simTime. The sensor generates detections at
the rate defined by the UpdateRate property. To use this syntax, set ScanMode property to 'ESM' or
'bistatic'.

dets = sensor(radarsigs,txconfigs,simTime) also specifies emitter configurations,
txconfigs, of the monostatic sensor at the current simulation time. To use this syntax, set
ScanMode property to 'Monostatic'.

dets = sensor(___ ,ins,simTime) also specifies the inertial navigation system (INS) estimated
sensor platform pose, ins. INS information is used by tracking and fusion algorithms to estimate the
target positions in the NED frame.

To use this syntax, set the HasINS property to true.

[dets,numDets,config] = sensor(___) also returns the number of valid detections reported,
numDets, and the configuration of the sensor, config, at the current simulation time.

3 System Objects

3-96

Input Arguments

radarsigs — Radar emissions
array of radar emission objects

Radar emissions, specified as an array or a cell array of radarEmission objects.

txconfigs — Emitter configurations
array of structures

Emitter configurations, specified as an array of structures. This array must contain the configuration
of the radarEmitter whose EmitterIndex matches the value of the EmitterIndex property of the
radarSensor. Each structure has these fields:

Field Description
EmitterIndex Unique emitter index
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by UpdateInterval.

IsScanDone IsScanDone is true when the emitter has
completed a scan.

FieldOfView Field of view of emitter.
MeasurementParameters MeasurementParameters is an array of

structures containing the coordinate frame
transforms needed to transform positions and
velocities in the top-level frame to the current
emitter frame.

For more details on MeasurementParameters, see “Measurement Parameters” on page 3-102.
Data Types: struct

ins — Platform pose from INS
structure

Sensor platform pose obtained from the inertial navigation system (INS), specified as a structure. The
INS information can be used by tracking and fusion algorithms to estimate the platform's pose and
velocity in the NED frame.

Platform pose information from an inertial navigation system (INS) is a structure which has these
fields:

Field Definition
Position Position of the GPS receiver in the local NED

coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters.

Velocity Velocity of the GPS receiver in the local NED
coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters per second.

 radarSensor

3-97

Orientation Orientation of the INS with respect to the local
NED coordinate system, specified as a scalar
quaternion or a 3-by-3 real-valued orthonormal
frame rotation matrix. Defines the frame rotation
from the local NED coordinate system to the
current INS body coordinate system. This is also
referred to as a "parent to child" rotation.

Dependencies

To enable this argument, set the HasINS property to true.
Data Types: struct

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the scan
radar sensor at regular time intervals. The radar sensor generates new detections at intervals defined
by the UpdateInterval property. The value of the UpdateInterval property must be an integer
multiple of the simulation time interval. Updates requested from the sensor between update intervals
contain no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

dets — sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects. Each object has these
properties:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Measurement and MeasurementNoise are reported in the coordinate system specified by the
DetectionCoordinates property. For details on Measurement, MeasurementParameters, and
ObjectAttributes of radarSensor, please see “Object Detections” on page 3-101.

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.

3 System Objects

3-98

• When the MaxNumDetectionsSource property is set to 'Auto', numDets is set to the length of
dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. No more than MaxNumDetections
number of detections are returned. If the number of detections is fewer than
MaxNumDetections, the first numDets elements of dets hold valid detections. The remaining
elements of dets are set to the default value.

Data Types: double

config — Current sensor configuration
structure

Current sensor configuration, specified as a structure. This output can be used to determine which
objects fall within the radar beam during object execution.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarSensor
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm

 radarSensor

3-99

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Detect Radar Emission with ESM Sensor

Create an radar emission and then detect the emission using a radarSensor object.

First, create an radar emission.

orient = quaternion([180 0 0],'eulerd','zyx','frame');
rfSig = radarEmission('PlatformID',1,'EmitterIndex',1,'EIRP',100, ...
 'OriginPosition',[30 0 0],'Orientation',orient);

Then, create an ESM sensor using radarSensor.

sensor = radarSensor(1);

Detect the RF emission.

time = 0;
[dets,numDets,config] = sensor(rfSig,time)

More About
Radar Sensor Detection Modes

The radarSensor system object can model three detection modes: monostatic, bistatic, and
electronic support measures (ESM) as shown in the following figures.

For the monostatic detection mode, the transmitter and the receiver are collocated, as shown in
figure (a). In this mode, the range measurement R can be expressed as R = RT = RR, where RT and RR
are the ranges from the transmitter to the target and from the target to the receiver, respectively. In
the radar sensor, the range measurement is R = ct/2, where c is the speed of light and t is the total
time of the signal transmission. Other than the range measurement, a monostatic sensor can also
optionally report range rate, azimuth, and elevation measurements of the target.

For the bistatic detection mode, the transmitter and the receiver are separated by a distance L. As
shown in figure (b), the signal is emitted from the transmitter, reflected from the target, and

3 System Objects

3-100

eventually received by the receiver. The bistatic range measurement Rb is defined as Rb = RT + RR −
L. In the radar sensor, the bistatic range measurement is obtained by Rb = cΔt, where Δt is the time
difference between the receiver receiving the direct signal from the transmitter and receiving the
reflected signal from the target. Other than the bistatic range measurement, a bistatic sensor can
also optionally report bistatic range rate, azimuth, and elevation measurements of the target. Since
the bistatic range and the two bearing angles (azimuth and elevation) do not correspond to the same
position vector, they cannot be combined into a position vector and reported in a Cartesian
coordinate system. As a result, the measurements of a bistatic sensor can only be reported in a
spherical coordinate system.

For the ESM detection mode, the receiver can only receive a signal reflected from the target or
directly emitted from the transmitter, as shown in figure (c). Therefore, the only available
measurements are azimuth and elevation of the target or transmitter. These measurements can only
be reported in a spherical coordinate system.

Object Detections
Measurements

The sensor measures the coordinates of the target. The Measurement and MeasurementNoise
values are reported in the coordinate system specified by the DetectionCoordinates property of
the sensor.

When the DetectionCoordinates property is 'Scenario', 'Body', or 'Sensor rectangular',
the Measurement and MeasurementNoise values are reported in rectangular coordinates.
Velocities are only reported when the range rate property, HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical', the Measurement and
MeasurementNoise values are reported in a spherical coordinate system. Measurements are
ordered as [azimuth, elevation, range, range rate]. Angles are in degrees, range is in meters, and
range rate is in meters per second. Elevation and range rate are only reported when HasElevation
and HasRangeRate are true.

Note:

• When the DetectionMode is set to 'ESM' or 'bistatic', the detections can only be reported in
'Sensor spherical' coordinate system.

• When the DetectionMode is set to 'monostatic', the reported 'range' is the range measurement
from the target to the radar sensor.

• When the DetectionMode is set to 'bistatic', the reported 'range' is the bistatic range
measurement (see “Radar Sensor Detection Modes” on page 3-100).

 radarSensor

3-101

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x; y; z; vx; vy; vz]
false [x; y; z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate for 'monostatic' or 'bistatic'
Detection Mode (Dependence on
HasRangeRate and HasElevation)

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az; el; rng; rr]
true false [az; rng; rr]
false true [az; el; rng]
false false [az; rng]

Coordinate for 'ESM' Detection Mode
(Dependence on HasElevation)

HasElevation Coordinates
true [az; el]
false [az]

where az, el, rng and rr represent azimuth angle, elevation angle, range and range rate,
respectively.

Measurement Parameters

The MeasurementParameters property consists of an array of structures that describe a sequence
of coordinate transformations from a child frame to a parent frame or the inverse transformations
(see “Frame Rotation”). In most cases, the longest required sequence of transformations is Sensor →
Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to false, then the
sequence consists only of one transformation from sensor to platform. In the transformation, the
OriginPosition is same as the MountingLocation property of the sensor. The Orientation
consists of two consecutive rotations. The first rotation, corresponding to the MountingAngles
property of the sensor, accounts for the rotation from the platform frame (P) to the sensor mounting
frame (M). The second rotation, corresponding to the azimuth and elevation angles of the sensor,
accounts for the rotation from the sensor mounting frame (M) to the sensor scanning frame (S). In
the S frame, the x direction is the boresight direction, and the y direction lies within the x-y plane of
the sensor mounting frame (M).

3 System Objects

3-102

If HasINS is true, the sequence of transformations consists of two transformations – first form the
scenario frame to the platform frame then from platform frame to the sensor scanning frame. In the
first transformation, the Orientation is the rotation from the scenario frame to the platform frame,
and the OriginPosition is the position of the platform frame origin relative to the scenario frame.

Trivially, if the detections are reported in platform rectangular coordinates and HasINS is set to
false, the transformation consists only of the identity.

The fields of MeasurementParameters are shown here. Not all fields have to be present in the
structure. The set of fields and their default values can depend on the type of sensor.

Field Description
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

OriginVelocity Velocity offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

 radarSensor

3-103

Orientation 3-by-3 real-valued orthonormal frame rotation
matrix. The direction of the rotation depends on
the IsParentTochild field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child coordinate frame to the parent
coordinate frame.

HasElevation A logical scalar indicating if elevation is included
in the measurement. For measurements reported
in a rectangular frame, and if HasElevation is
false, the measurements are reported assuming
0 degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is included
in the measurement.

HasRange A logical scalar indicating if range is included in
the measurement.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. For
measurements reported in the rectangular frame,
if HasVelocity is false, the measurements are
reported as [x y z]. If HasVelocity is true,
measurements are reported as [x y z vx vy
vz].

Object Attributes

Object attributes contain additional information about a detection.

Attribute Description
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

EmitterIndex Index of the emitter from which the detected
signal was emitted.

SNR Detection signal-to-noise ratio in dB.
CenterFrequency • Measured center frequency of the detected

radar signal. Units are in Hz.
• This attribute is present only when the

DetectionMode property is set to 'ESM' or
'Bistatic'.

Bandwidth • Measured bandwidth of the detected radar
signal, Units are in Hz.

• This attribute is present only when the
DetectionMode property is set to 'ESM' or
'Bistatic'.

3 System Objects

3-104

WaveformType • Identifier of the waveform type that was
classified by the ESM sensor for the detected
signal.

• This attribute is present only when the
DetectionMode property is set to 'ESM' or
'Bistatic'.

Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of radar.

No Scanning

Sets ScanMode to 'No scanning'.

Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
HasElevation true
MaxMechanicalScanRate [75;75]
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]

You can change the ScanMode property to 'Electronic' to perform an electronic raster scan over
the same volume as a mechanical scan.

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1:10]
HasElevation false or true
MechanicalScanLimits [0 360; -10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1;10]
HasElevation false

 radarSensor

3-105

MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Changing the ScanMode property to 'Electronic' lets you perform an electronic raster scan over
the same volume as a mechanical scan.

References
[1] Doerry, A. W.. "Earth curvature and atmospheric refraction effects on radar signal propagation."

Sandia Report . SAND 2012-10690, 2013.

[2] Doerry, A. W.. "Motion Measurement for Synthetic Aperture Radar." Sandia Report . SAND
2015-20818, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
objectDetection | radarEmission

Functions
targetPoses

System Objects
monostaticRadarSensor | trackerGNN | trackerTOMHT

Introduced in R2018b

3 System Objects

3-106

irSensor
Generate infrared detections for tracking scenario

Description
The irSensor System object creates a statistical model for generating detections using infrared
sensors. You can use the irSensor object in a scenario that models moving and stationary platforms
using trackingScenario. The sensor can simulate real detections with added random noise and
also generate false alarm detections. In addition, you can use this object to create input to trackers
such as trackerGNN, trackerJPDA, or trackerTOMHT.

This object enables you to configure a mechanically scanning sensor. An infrared scanning sensor
changes the look angle between updates by stepping the mechanical position of the beam in
increments of the angular span specified in the FieldOfView property. The infrared sensor scans the
total region in azimuth and elevation defined by the MechanicalScanLimits property. If the
scanning limits for azimuth or elevation are set to [0 0], no scanning is performed along that
dimension for that scan mode. Also, if the maximum scan rate for azimuth or elevation is set to zero,
no scanning is performed along that dimension.

To generate infrared detections:

1 Create the irSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = irSensor(SensorIndex)

sensor = irSensor(SensorIndex,'No scanning')
sensor = irSensor(SensorIndex,'Raster')
sensor = irSensor(SensorIndex,'Rotator')
sensor = irSensor(SensorIndex,'Sector')

sensor = irSensor(___ ,Name,Value)

Description

sensor = irSensor(SensorIndex) creates an infrared detection generator object with a
specified sensor index, SensorIndex, and default property values.

sensor = irSensor(SensorIndex,'No scanning') is a convenience syntax that creates an
irSensor that stares along the sensor boresight direction. No mechanical scanning is performed.
This syntax sets the ScanMode property to 'No scanning'.

 irSensor

3-107

sensor = irSensor(SensorIndex,'Raster') is a convenience syntax that creates an
irSensor object that mechanically scans a raster pattern. The raster span is 90° in azimuth from –
45° to +45° and in elevation from the horizon to 10° above the horizon. See “Convenience Syntaxes”
on page 3-120 for the properties set by this syntax.

sensor = irSensor(SensorIndex,'Rotator') is a convenience syntax that creates an
irSensor object that mechanically scans 360° in azimuth by electronically rotating the sensor at a
constant rate. When you set HasElevation to true, the infrared sensor mechanically points
towards the center of the elevation field of view. See “Convenience Syntaxes” on page 3-120 for the
properties set by this syntax.

sensor = irSensor(SensorIndex,'Sector') is a convenience syntax to create an irSensor
object that mechanically scans a 90° azimuth sector from –45° to +45°. Setting HasElevation to
true, points the infrared sensor towards the center of the elevation field of view. Beams are stacked
mechanically to process the entire elevation spanned by the scan limits in a single dwell. See
“Convenience Syntaxes” on page 3-120 for the properties set by this syntax.

sensor = irSensor(___ ,Name,Value) sets properties using one or more name-value pairs after
all other input arguments. Enclose each property name in quotes. For example,
irSensor(1,'UpdateRate',1,'CutoffFrequency',20e3) creates an infrared sensor that
reports detections at an update rate of 1 Hz and a cut off frequency of 20 kHz. If you specify the
sensor index using the SensorIndex property, you can omit the SensorIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system. When creating an irSensor system object, you
must either specify the SensorIndex as the first input argument in the creation syntax, or specify it
as the value for the SensorIndex property in the creation syntax.
Example: 2
Data Types: double

UpdateRate — Sensor update rate
1 (default) | positive scalar

Sensor update rate, specified as a positive scalar. This interval must be an integer multiple of the
simulation time interval defined by trackingScenario. The trackingScenario object calls the
infrared sensor at simulation time intervals. The sensor generates new detections at intervals defined
by the reciprocal of the UpdateRate property. Any update requested to the sensor between update
intervals contains no detections. Units are in hertz.
Example: 5

3 System Objects

3-108

Data Types: double

ScanMode — Scanning mode of infrared sensor
'Mechanical' (default) | 'No scanning'

Scanning mode of infrared sensor, specified as 'Mechanical' or 'No scanning'. When set to
'Mechanical', the sensor scans mechanically across the azimuth and elevation limits specified by
the MechanicalScanLimits property. The scan positions step by the sensor's field of view between
dwells. When set to 'No scanning', no scanning is performed by the sensor.
Example: 'No scanning'
Data Types: char

MountingLocation — Sensor location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Sensor location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the sensor with respect to the platform origin. The default value specifies that the
sensor origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of sensor
[0 0 0] (default) | 3-element real-valued vector

Orientation of the sensor with respect to the platform, specified as a three-element real-valued vector.
Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the body axes
of the platform to the sensor axes. The three elements describes the rotations around the z-, y-, and x-
axes sequentially. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[1;5] | real-valued 2-by-1 vector of positive real-values

This property is read-only.

Fields of view of sensor, specified as a 2-by-1 vector of positive real values, [azfov;elfov]. The field of
view defines the total angular extent spanned by the sensor. Each component must lie in the interval
(0,180]. Targets outside of the field of view of the sensor will not be detected. Units are in degrees.
Example: [14;70]
Data Types: double

MaxMechanicalScanRate — Maximum mechanical scan rate
[75;75] (default) | nonnegative scalar | real-valued 2-by-1 vector with nonnegative entries

Maximum mechanical scan rate, specified as a nonnegative scalar or real-valued 2-by-1 vector with
nonnegative entries.

When HasElevation is true, specify the scan rate as a 2-by-1 column vector of nonnegative entries
[maxAzRate; maxElRate]. maxAzRate is the maximum scan rate in azimuth and maxElRate is the
maximum scan rate in elevation.

 irSensor

3-109

When HasElevation is false, specify the scan rate as a nonnegative scalar representing the
maximum mechanical azimuth scan rate.

Scan rates set the maximum rate at which the infrared sensor can mechanically scan. The sensor sets
its scan rate to step the mechanical angle by the field of regard. If the required scan rate exceeds the
maximum scan rate, the maximum scan rate is used. Units are degrees per second.
Example: [5;10]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical'.
Data Types: double

MechanicalScanLimits — Angular limits of mechanical scan directions of sensor
[0 360;-10 0] (default) | real-valued, 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of mechanical scan directions of sensor, specified as a real-valued, 1-by-2 row vector or
a real-valued 2-by-2 matrix. The mechanical scan limits define the minimum and maximum
mechanical angles the sensor can scan from its mounted orientation.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl
represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits cannot span more than 360° and elevation scan limits must lie within the closed
interval [-90° 90°]. Units are in degrees.
Example: [10 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical'.
Data Types: double

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle, returned as a scalar or real-valued 2-by-1 vector. When HasElevation
is true, the scan angle takes the form [Az; El]. Az and El represent the azimuth and elevation scan
angles, respectively, relative to the mounted angle of the sensor on the platform. When
HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.
Data Types: double

LookAngle — Look angle of sensor
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of sensor, specified as a scalar or real-valued 2-by-1 vector. Look angle depends on the
mechanical angle set in the ScanMode property.

3 System Objects

3-110

ScanMode LookAngle
'Mechanical' MechanicalAngle
'No scanning' 0

When HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

LensDiameter — Lens diameter
8.0e-2 (default) | positive scalar

Lens diameter, specified as a positive scalar. Units are in meters.
Example: 0.1
Data Types: double

FocalLength — Focal length of sensor circular lens
800 (default) | scalar

Focal length of sensor circular lens, specified as a scalar. The focal length in pixels is f = F s, where F
is the focal length in millimeters and s is the number of pixels per millimeter.
Example: 500
Data Types: double

NumDetectors — Number of infrared detectors in sensor imaging plane
[1000 1000] | positive, real-valued, two-element vector

Number of infrared detectors in the sensor imaging plane, specified as a positive, real-valued, two-
element row vector. The first element defines the number of rows in the imaging plane and the
second element defines the number of columns in the imaging plane. The number of rows
corresponds to the sensor elevation resolution and the number of columns corresponds to the sensor
azimuth resolution.
Example: [500 750]
Data Types: double

CutoffFrequency — Cut off frequency of sensor modulation transfer function
20e3 | positive scalar

Cut off frequency of the sensor modulation transfer function (MTF), specified as a positive scalar.
Units are in hertz.
Example: 30.5e3
Dependencies

To enable this property, set the ScanMode property to 'Mechanical'.
Data Types: double

DetectorArea — Area of infrared detector element
1.44e-6 | positive scalar

Area of an infrared detector element/pixel, specified as a positive scalar. Units are in square-meters.

 irSensor

3-111

Example: 3.0e-5
Data Types: double

Detectivity — Specific detectivity of detector material
1.2e10 | positive scalar

Specific detectivity of the detector material, specified as a positive scalar. Units are cm-sqrt(Hz)/W.
Example: .9e10
Data Types: double

NoiseEquivalentBandwidth — Noise equivalent bandwidth of sensor
30 (default) | positive scalar

Noise equivalent bandwidth of sensor, specified as a positive scalar. Units are in Hz.
Example: 100
Data Types: double

FalseAlarmRate — False alarm rate
1e-6 (default) | positive scalar

Rate of false alarm report in each resolution cell, specified as a positive scalar in the range of [10–
7,10–3]. Units are dimensionless. Resolution cells are determined from the AzimuthResolution
property and the optionally enabled ElevationResolution property.
Example: 1e-5
Data Types: double

AzimuthResolution — Azimuth resolution
1 (default) | positive scalar

This property is read-only.

Azimuth resolution of the sensor, specified as a positive scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the senor can distinguish two targets. The azimuth
resolution is derived from the focal length of the lens and the number of columns in the detector's
imaging plane. Units are in degrees.
Data Types: double

ElevationResolution — Elevation resolution of senor
1 (default) | positive scalar

This property is read-only.

Elevation resolution of the sensor, specified as a positive scalar. The elevation resolution defines the
minimum separation in elevation angle at which the senor can distinguish two targets. The elevation
resolution is derived from the focal length of the lens and the number of rows in the detector's
imaging plane. Units are in degrees.
Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

3 System Objects

3-112

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the sensor, specified as a nonnegative scalar. The azimuth bias is expressed
as a fraction of the azimuth resolution specified in AzimuthResolution. This value sets a lower
bound on the azimuthal accuracy of the sensor. This property only applies for modes where the sensor
is scanning. The value is dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative scalar

Elevation bias fraction of the sensor, specified as a nonnegative scalar. Elevation bias is expressed as
a fraction of the elevation resolution specified by the value of the ElevationResolution property.
This value sets a lower bound on the elevation accuracy of the sensor. This property only applies for
modes where the sensor is scanning. The value is dimensionless.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

HasElevation — Enable senor elevation scan and measurements
false (default) | true

Enable the sensor to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model an infrared sensor that can estimate target elevation and
scan in elevation.
Data Types: logical

HasAngularSize — Enable angular size measurements
false (default) | true

Enable the sensor to return the azimuth and elevation size or span of the target in the reported
detections, specified as false or true. If this property is set to false, then the only azimuth and
elevation locations instead of their angular extent are reported in the detections.
Data Types: logical

HasINS — Enable inertial navigation system (INS) input
false (default) | true

Enable the optional input argument that passes the current estimate of the sensor platform pose to
the sensor, specified as false or true. When true, pose information is added to the
MeasurementParameters structure of the reported detections. Pose information lets tracking and
fusion algorithms estimate the state of the target detections in the north-east-down (NED) frame.
Data Types: logical

HasNoise — Enable addition of noise to sensor measurements
true (default) | false

Enable addition of noise to senor sensor measurements, specified as true or false. Set this
property to true to add noise to the measurements. Otherwise, the measurements have no noise.

 irSensor

3-113

Note that the reported measurement noise covariance is not dependent on this property and is always
representative of the noise that will be added when HasNoise is set to true.
Data Types: logical

HasFalseAlarms — Enable creating false alarm sensor detections
true (default) | false

Enable creating false alarm sensor measurements, specified as true or false. Set this property to
true to report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

HasOcclusion — Enable occlusion from extended objects
true (default) | false

Enable occlusion from extended objects, specified as true or false. Set this property to true to
model occlusion from extended objects. Two types of occlusion (self occlusion and inter object
occlusion) are modeled. Self occlusion occurs when one side of an extended object occludes another
side. Inter object occlusion occurs when one extended object stands in the line of sight of another
extended object or a point target. Note that both extended objects and point targets can be occluded
by extended objects, but a point target cannot occlude another point target or an extended object.

Set this property to false to disable occlusion of extended objects. This will also disable the merging
of objects whose detections share a common sensor resolution cell, which gives each object in the
tracking scenario an opportunity to generate a detection.
Data Types: logical

MinClassificationArea — Minimum image size for classification
100 (default) | positive integer

Minimum image size for classification, specified as a positive integer. MinClassificationArea
specifies the minimum area (in square pixels) used to decide whether the sensor recognizes the
detection as a classified object. The irSensor tries to enclose the extent detection using a minimum
rectangular bounding box (along the azimuth and elevation directions) in the sensor image plane. If
the area of the minimum bounding box is less than the value given by the MinClassificationArea
property, then the reported ClassID is zero in the returned objectDetection for that detection.
Otherwise, the reported ClassID is obtained from the ClassID of the corresponding target input.
Data Types: double

MaxAllowedOcclusion — Maximum allowed occlusion
0.5 (default) | real scalar in [0,1)

Maximum allowed occlusion, specified as a real scalar on the interval of [0,1). The property specifies
the ratio of the occluded area relative to the total area of a target's bounding box. If the occluded
area ratio is larger than the value specified by the MaxAllowedOccusion property, the occluded
target will not be detected.
Data Types: double

MaxNumDetectionsSource — Source of maximum number of detections to be reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this

3 System Objects

3-114

property is set to 'Property', the sensor reports detections up to the number specified by the
MaxNumDetections property.
Data Types: char

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections can be reported by the sensor, specified as a positive integer.
Detections are reported in order of distance to the sensor until the maximum number is reached.

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

Usage

Syntax
dets = sensor(targets,simTime)
dets = sensor(targets,ins,simTime)
[dets,numDets,config] = sensor(___)

Description

dets = sensor(targets,simTime) creates infrared detections, dets, from sensor measurements
taken of targets at the current simulation time, simTime. The sensor can generate detections for
multiple targets simultaneously.

dets = sensor(targets,ins,simTime) also specifies the INS estimated pose information, ins,
for the sensor platform. INS information is used by tracking and fusion algorithms to estimate the
target positions in the NED frame.

To enable this syntax, set the HasINS property to true.

[dets,numDets,config] = sensor(___) also returns the number of valid detections reported,
numValidDets, and the configuration of the sensor, config, at the current simulation time.

Input Arguments

targets — Tracking scenario target poses
structure | structure array

Tracking scenario target poses, specified as a structure or array of structures. Each structure
corresponds to a target. You can generate this structure using the targetPoses method of a
platform. You can also create such a structure manually. The table shows the required fields of the
structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
with no default value.

 irSensor

3-115

Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Acceleration Acceleration of target in platform coordinates
specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

The values of the Position, Velocity, and Orientation fields are defined with respect to the
platform coordinate system.

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the
infrared sensor at regular time intervals. The sensor generates new detections at intervals defined by
the UpdateInterval property. The value of the UpdateInterval property must be an integer
multiple of the simulation time interval. Updates requested from the sensor between update intervals
contain no detections. Units are in seconds.
Example: 10.5
Data Types: double

ins — Platform pose from INS
structure

Sensor platform pose obtained from the inertial navigation system (INS), specified as a structure.

3 System Objects

3-116

Platform pose information from an inertial navigation system (INS) is a structure which has these
fields:

Field Definition
Position Position of the GPS receiver in the local NED

coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters.

Velocity Velocity of the GPS receiver in the local NED
coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters per second.

Orientation Orientation of the INS with respect to the local
NED coordinate system, specified as a scalar
quaternion or a 3-by-3 real-valued orthonormal
frame rotation matrix. Defines the frame rotation
from the local NED coordinate system to the
current INS body coordinate system. This is also
referred to as a "parent to child" rotation.

Dependencies

To enable this argument, set the HasINS property to true.
Data Types: struct

interference — Interfering or jamming signal
structure

Interfering or jamming signal, specified as a structure.

Dependencies

To enable this argument, set the HasInterference property to true.
Data Types: double
Complex Number Support: Yes

Output Arguments

dets — sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects. Each object has these
properties:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker

 irSensor

3-117

Property Definition
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Measurement and MeasurementNoise are reported in the sensor spherical coordinate frame.

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numDets is set to the length of
dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. No more than MaxNumDetections
number of detections are returned. If the number of detections is fewer than
MaxNumDetections, the first numDets elements of dets hold valid detections. The remaining
elements of dets are set to the default value.

Data Types: double

config — Current sensor configuration
structure

Current sensor configuration, specified as a structure. This output can be used to determine which
objects fall within the sensor beam during object execution.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

3 System Objects

3-118

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to irSensor
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Detection Using Infrared Sensor

Detect a target with an infrared sensor.

First create a target structure.

tgt = struct(...
 'PlatformID',1, ...
 'Position',[10e3 0 0], ...
 'Speed',900*1e3/3600);

Then create an IR sensor.

sensor = irSensor(1);

Generate detection from target.

time = 0;
[dets,numDets,config] = sensor(tgt,time)

dets = 1x1 cell array
 {1x1 objectDetection}

numDets = 1

config = struct with fields:
 SensorIndex: 1
 IsValidTime: 1
 IsScanDone: 0
 FieldOfView: [64.0108 64.0108]
 MeasurementParameters: [1x1 struct]

 irSensor

3-119

More About
Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of infrared sensor.
No Scanning

Sets ScanMode to 'No scanning'.
Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
HasElevation true
MaxMechanicalScanRate [75;75]
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1:10]
HasElevation false or true
MechanicalScanLimits [0 360; -10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1;10]
HasElevation false
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 System Objects

3-120

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
objectDetection

Functions
targetPoses

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

 irSensor

3-121

sonarSensor
Generate detections from sonar emissions

Description
The sonarSensor System object creates a statistical model for generating detections from infrared
emissions. You can generate detections from active or passive sonar systems. You can use the
sonarSensor object in a scenario that models moving and stationary platforms using
trackingScenario. The infrared sensor can simulate real detections with added random noise and
also generate false alarm detections. In addition, you can use this object to create input to trackers
such as trackerGNN or trackerTOMHT.

This object enables you to configure an electronically scanning sonar. A scanning sonar changes the
look angle between updates by stepping the electronic position of the beam in increments of the
angular span specified in the FieldOfView property. The sonar scans the total region in azimuth and
elevation defined by the sonar electronic scan limits, ElectronicScanLimits. If the scanning limits
for azimuth or elevation are set to [0 0], no scanning is performed along that dimension for that
scan mode. If the maximum electronic scan rate for azimuth or elevation is set to zero, no electronic
scanning is performed along that dimension.

To generate sonar detections:

1 Create the sonarSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = sonarSensor(SensorIndex)

sensor = sonarSensor(SensorIndex,'No scanning')
sensor = sonarSensor(SensorIndex,'Raster')
sensor = sonarSensor(SensorIndex,'Rotator')
sensor = sonarSensor(SensorIndex,'Sector')

sensor = sonarSensor(___ ,Name,Value)

Description

sensor = sonarSensor(SensorIndex) creates a sonar detection generator object with default
property values.

sensor = sonarSensor(SensorIndex,'No scanning') is a convenience syntax that creates a
sonarSensor that stares along the sonar transducer boresight direction. No electronic scanning is
performed. This syntax sets the ScanMode property to 'No scanning'.

3 System Objects

3-122

sensor = sonarSensor(SensorIndex,'Raster') is a convenience syntax that creates a
sonarSensor object that electronically scans a raster pattern. The raster span is 90° in azimuth
from –45° to +45° and in elevation from the horizon to 10° above the horizon. See “Convenience
Syntaxes” on page 3-139 for the properties set by this syntax.

sensor = sonarSensor(SensorIndex,'Rotator') is a convenience syntax that creates a
sonarSensor object that electronically scans 360° in azimuth by electronically rotating the
transducer at a constant rate. When you set HasElevation to true, the sonar transducer
electronically points towards the center of the elevation field of view. See “Convenience Syntaxes” on
page 3-139 for the properties set by this syntax.

sensor = sonarSensor(SensorIndex,'Sector') is a convenience syntax to create a
sonarSensor object that electronically scans a 90° azimuth sector from –45° to +45°. Setting
HasElevation to true, points the sonar transducer towards the center of the elevation field of view.
Beams are stacked electronically to process the entire elevation spanned by the scan limits in a single
dwell. See “Convenience Syntaxes” on page 3-139 for the properties set by this syntax.

sensor = sonarSensor(___ ,Name,Value) sets properties using one or more name-value pairs
after all other input arguments. Enclose each property name in quotes. For example,
sonarSensor('DetectionCoordinates','Sensor cartesian','MaxRange',200) creates a
sonar detection generator that reports detections in the sensor Cartesian coordinate system and has
a maximum detection range of 200 meters. If you specify the sensor index using the SensorIndex
property, you can omit the SensorIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system. When creating a sonarSensor system object,
you must either specify the SensorIndex as the first input argument in the creation syntax, or
specify it the value for the SensorIndex property in the creation syntax.
Example: 2
Data Types: double

UpdateRate — Sensor update rate
1 (default) | positive scalar

Sensor update rate, specified as a positive scalar. This interval must be an integer multiple of the
simulation time interval defined by trackingScenario. The trackingScenario object calls the
sonar sensor at simulation time intervals. The sonar generates new detections at intervals defined by
the reciprocal of the UpdateRate property. Any update requested to the sensor between update
intervals contains no detections. Units are in hertz.

 sonarSensor

3-123

Example: 5
Data Types: double

DetectionMode — Detection mode
'passive' (default) | 'monostatic'

Detection mode, specified as 'passive' or 'monostatic'. When set to 'passive', the sensor
operates passively. When set to 'monostatic', the sensor generates detections from reflected
signals originating from a collocated sonar emitter.
Example: 'Monostatic'
Data Types: char | string

EmitterIndex — Unique monostatic emitter index
positive integer

Unique monostatic emitter index, specified as a positive integer. The emitter index identifies the
monostatic sonar emitter providing the reference signal to the sensor.
Example: 404

Dependencies

Set this property when the DetectionMode property is set to 'monostatic'.
Data Types: double

MountingLocation — Sensor location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Sensor location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the sensor with respect to the platform origin. The default value specifies that the
sensor origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of sensor
[0 0 0] (default) | 3-element real-valued vector

Orientation of the sensor with respect to the platform, specified as a three-element real-valued vector.
Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the body axes
of the platform to the sensor axes. The three elements define the rotations around the z-, y-, and x-
axes, in that order. The first rotation rotates the platform axes around the z-axis. The second rotation
rotates the carried frame around the rotated y-axis. The final rotation rotates the frame around the
carried x-axis. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view

3 System Objects

3-124

azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

ScanMode — Scanning mode of sonar
'Electronic' (default) | 'No scanning'

Scanning mode of sonar, specified as 'Electronic' or 'No scanning'.

Scan Modes

ScanMode Purpose
'Electronic' The sonar scans electronically across the azimuth

and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the sonar field of view
angle between dwells.

'No scanning' The sonar beam points along the transducer
boresight defined by the mountingAngles
property.

Example: 'No scanning'
Data Types: char

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle of sonar, returned as a scalar or real-valued 2-by-1 vector. When
HasElevation is true, the scan angle takes the form [Az; El]. Az and El represent the azimuth and
elevation scan angles, respectively, relative to the mounted angle of the sonar on the platform. When
HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.
Data Types: double

ElectronicScanLimits — Angular limits of electronic scan directions of sonar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of electronic scan directions of sonar, specified as a real-valued, 1-by-2 row vector or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the sonar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl
represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.

 sonarSensor

3-125

Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Electronic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of sonar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth and
elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Electronic'.
Data Types: double

LookAngle — Look angle of sensor
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of sensor, specified as a scalar or real-valued 2-by-1 vector. Look angle depends on the
electronic angle set in the ScanMode property.

ScanMode LookAngle
'Electronic' ElectronicAngle
'No scanning' 0

When HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

HasElevation — Enable sonar elevation scan and measurements
false (default) | true

Enable the sonar to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a sonar sensor that can estimate target elevation and scan
in elevation.
Data Types: logical

CenterFrequency — Center frequency of sonar band
20e3 (default) | positive scalar

Center frequency of sonar band, specified as a positive scalar. Units are in hertz.
Example: 25.5e3
Data Types: double

3 System Objects

3-126

Bandwidth — Sonar waveform bandwidth
2e3 | positive scalar

Sonar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 1.5e3
Data Types: double

WaveformTypes — Types of detected waveforms
0 (default) | nonnegative integer-valued L-element vector

Types of detected waveforms, specified as a nonnegative integer-valued L-element vector.
Example: [1 4 5]
Data Types: double

ConfusionMatrix — Probability of correct classification of detected waveform
1 (default) | positive scalar | real-valued nonnegative L-element vector | real-valued nonnegative L-by-
L matrix

Probability of correct classification of a detected waveform, specified as a positive scalar, a real-
valued nonnegative L-element vector, or a real-valued nonnegative L-by-L matrix. Matrix values range
from 0 through 1 and matrix rows must sum to 1. L is the number of waveform types that the sensor
can detect, as indicated by the value set in the WaveformTypes property. The (i,j) matrix element
represents the probability of classifying the ith waveform as the jth waveform. When specified as a
scalar from 0 through 1, the value is expanded along the diagonal of the confusion matrix. When
specified as a vector, it must have the same number of elements as the WaveformTypes property.
When defined as a scalar or a vector, the off diagonal values are set to (1-val)/(L-1).
Data Types: double

AmbientNoiseLevel — Spectrum-level ambient isotropic noise
70 (default) | scalar

Spectrum-level ambient isotropic noise, specified as a scalar. Units are in dB relative to the intensity
of a plane wave with 1 μPa rms pressure in a 1-hertz frequency band.
Example: 25
Data Types: double

FalseAlarmRate — False alarm rate
1e-6 (default) | positive scalar

False alarm report rate within each resolution cell, specified as a positive scalar in the range [10–7,10–
3]. Units are dimensionless. Resolution cells are determined from the AzimuthResolutionproperty and
the ElevationResolution property when enabled.
Example: 1e-5
Data Types: double

AzimuthResolution — Azimuth resolution of sonar
1 (default) | positive scalar

Azimuth resolution of the sonar, specified as a positive scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the sonar can distinguish two targets. The azimuth

 sonarSensor

3-127

resolution is typically the 3-dB downpoint of the azimuth angle beamwidth of the sonar. Units are in
degrees.
Data Types: double

ElevationResolution — Elevation resolution of sonar
1 (default) | positive scalar

Elevation resolution of the sonar, specified as a positive scalar. The elevation resolution defines the
minimum separation in elevation angle at which the sonar can distinguish two targets. The elevation
resolution is typically the 3-dB downpoint in the elevation angle beamwidth of the sonar. Units are in
degrees.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeResolution — Range resolution of sonar
100 (default) | positive scalar

Range resolution of the sonar, specified as a positive scalar. The range resolution defines the
minimum separation in range at which the sonar can distinguish between two targets. Units are in
meters.
Data Types: double

RangeRateResolution — Range rate resolution of sonar
10 (default) | positive scalar

Range rate resolution of the sonar, specified as a positive scalar. The range rate resolution defines the
minimum separation in range rate at which the sonar can distinguish between two targets. Units are
in meters per second.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the sonar, specified as a nonnegative scalar. The azimuth bias is expressed as
a fraction of the azimuth resolution specified in AzimuthResolution. This value sets a lower bound
on the azimuthal accuracy of the sonar. This value is dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative scalar

Elevation bias fraction of the sonar, specified as a nonnegative scalar. Elevation bias is expressed as a
fraction of the elevation resolution specified by the value of the ElevationResolution property.
This value sets a lower bound on the elevation accuracy of the sonar. This value is dimensionless.

3 System Objects

3-128

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the sonar, specified as a nonnegative scalar. Range bias is expressed as a
fraction of the range resolution specified in RangeResolution. This property sets a lower bound on
the range accuracy of the sonar. This value is dimensionless.
Data Types: double

RangeRateBiasFraction — Range rate bias fraction
0.05 (default) | nonnegative scalar

Range rate bias fraction of the sonar, specified as a nonnegative scalar. Range rate bias is expressed
as a fraction of the range rate resolution specified in RangeRateResolution. This property sets a
lower bound on the range-rate accuracy of the sonar. This value is dimensionless.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

HasRangeRate — Enable sonar to measure range rate
false (default) | true

Enable the sonar to measure target range rates, specified as false or true. Set this property to
true to model a sonar sensor that can measure target range rate. Set this property to false to
model a sonar sensor that cannot measure range rate.
Data Types: logical

HasRangeAmbiguities — Enable range ambiguities
false (default) | true

Enable range ambiguities, specified as false or true. Set this property to true to enable range
ambiguities by the sensor. In this case, the sensor cannot resolve range ambiguities for targets at
ranges beyond the MaxUnambiguousRange are wrapped into the interval [0
MaxUnambiguousRange]. When false, targets are reported at their unambiguous range.
Data Types: logical

HasRangeRateAmbiguities — Enable range-rate ambiguities
false (default) | true

Enable range-rate ambiguities, specified as false or true. Set to true to enable range-rate
ambiguities by the sensor. When true, the sensor does not resolve range rate ambiguities and target
range rates beyond the MaxUnambiguousRadialSpeed are wrapped into the interval
[0,MaxUnambiguousRadialSpeed]. When false, targets are reported at their unambiguous
range rate.

 sonarSensor

3-129

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: logical

MaxUnambiguousRange — Maximum unambiguous detection range
100e3 (default) | positive scalar

Maximum unambiguous range, specified as a positive scalar. Maximum unambiguous range defines
the maximum range for which the sonar can unambiguously resolve the range of a target. When
HasRangeAmbiguities is set to true, targets detected at ranges beyond the maximum unambiguous
range are wrapped into the range interval [0,MaxUnambiguousRange]. This property applies to
true target detections when you set the HasRangeAmbiguities property to true.

This property also applies to false target detections when you set the HasFalseAlarms property to
true. In this case, the property defines the maximum range for false alarms.

Units are in meters.
Example: 5e3
Dependencies

To enable this property, set the HasRangeAmbiguities property to true or set the
HasFalseAlarms property to true.
Data Types: double

MaxUnambiguousRadialSpeed — Maximum unambiguous radial speed
200 (default) | positive scalar

Maximum unambiguous radial speed, specified as a positive scalar. Radial speed is the magnitude of
the target range rate. Maximum unambiguous radial speed defines the radial speed for which the
sonar can unambiguously resolve the range rate of a target. When HasRangeRateAmbiguities is
set to true, targets detected at range rates beyond the maximum unambiguous radial speed are
wrapped into the range rate interval [-MaxUnambiguousRadialSpeed,
MaxUnambiguousRadialSpeed]. This property applies to true target detections when you set
HasRangeRateAmbiguities property to true.

This property also applies to false target detections obtained when you set both the HasRangeRate
and HasFalseAlarms properties to true. In this case, the property defines the maximum radial
speed for which false alarms can be generated.

Units are in meters per second.
Dependencies

To enable this property, set HasRangeRate and HasRangeRateAmbiguities to true and/or set
HasRangeRate and HasFalseAlarms to true.
Data Types: double

HasINS — Enable inertial navigation system (INS) input
false (default) | true

Enable the optional input argument that passes the current estimate of the sensor platform pose to
the sensor, specified as false or true. When true, pose information is added to the

3 System Objects

3-130

MeasurementParameters structure of the reported detections. Pose information lets tracking and
fusion algorithms estimate the state of the target detections in the north-east-down (NED) frame.
Data Types: logical

HasNoise — Enable addition of noise to sonar sensor measurements
true (default) | false

Enable addition of noise to sonar sensor measurements, specified as true or false. Set this
property to true to add noise to the sonar measurements. Otherwise, the measurements have no
noise. Even if you set HasNoise to false, the object still computes the MeasurementNoise
property of each detection.
Data Types: logical

HasFalseAlarms — Enable creating false alarm sonar detections
true (default) | false

Enable creating false alarm sonar measurements, specified as true or false. Set this property to
true to report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this
property is set to 'Property', the sensor reports up to the number of detections specified by the
MaxNumDetections property.
Data Types: char

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of distance to the sensor until the maximum number is reached.

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Body' (default) | 'Scenario' | 'Sensor rectangular | 'Sensor spherical'

Coordinate system of reported detections, specified as:

• 'Scenario' — Detections are reported in the rectangular scenario coordinate frame. The
scenario coordinate system is defined as the local NED frame at simulation start time. To enable
this value, set the HasINS property to true.

• 'Body' — Detections are reported in the rectangular body system of the sensor platform.
• 'Sensor rectangular' — Detections are reported in the sonar sensor rectangular body

coordinate system.

 sonarSensor

3-131

• 'Sensor spherical' — Detections are reported in a spherical coordinate system derived from
the sensor rectangular body coordinate system. This coordinate system is centered at the sonar
sensor and aligned with the orientation of the sonar on the platform.

Example: 'Sensor spherical'
Data Types: char

Usage

Syntax
dets = sensor(sonarsigs,simTime)
dets = sensor(sonarsigs,txconfigs,simTime)
dets = sensor(___ ,ins,simTime)
[dets,numDets,config] = sensor(___)

Description

dets = sensor(sonarsigs,simTime) creates passive detections, dets, from sonar emissions,
sonarsigs, at the current simulation time, simTime. The sensor generates detections at the rate
defined by the UpdateRate property.

dets = sensor(sonarsigs,txconfigs,simTime) also specifies emitter configurations,
txconfigs, at the current simulation time.

dets = sensor(___ ,ins,simTime) also specifies the inertial navigation system (INS) estimated
sensor platform pose, ins. INS information is used by tracking and fusion algorithms to estimate the
target positions in the NED frame.

To enable this syntax, set the HasINS property to true.

[dets,numDets,config] = sensor(___) also returns the number of valid detections reported,
numValidDets, and the configuration of the sensor, config, at the current simulation time.

Input Arguments

sonarsigs — Sonar emissions
array of sonar emission objects

Sonar emissions, specified as an array of sonarEmission objects.

txconfigs — Emitter configurations
array of structures

Emitter configurations, specified as an array of structures. Each structure has these fields:

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.

3 System Objects

3-132

IsValidTime Valid emission time, returned as 0 or 1.
IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Data Types: struct

ins — Platform pose from INS
structure

Sensor platform pose obtained from the inertial navigation system (INS), specified as a structure.

Platform pose information from an inertial navigation system (INS) is a structure which has these
fields:

Field Definition
Position Position of the GPS receiver in the local NED

coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters.

Velocity Velocity of the GPS receiver in the local NED
coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters per second.

Orientation Orientation of the INS with respect to the local
NED coordinate system, specified as a scalar
quaternion or a 3-by-3 real-valued orthonormal
frame rotation matrix. Defines the frame rotation
from the local NED coordinate system to the
current INS body coordinate system. This is also
referred to as a "parent to child" rotation.

Dependencies

To enable this argument, set the HasINS property to true.
Data Types: struct

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the sonar
sensor at regular time intervals. The sonar sensor generates new detections at intervals defined by
the UpdateInterval property. The value of the UpdateInterval property must be an integer

 sonarSensor

3-133

multiple of the simulation time interval. Updates requested from the sensor between update intervals
contain no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

dets — sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects. Each object has these
properties:

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

Measurement and MeasurementNoise are reported in the coordinate system specified by the
DetectionCoordinates property.

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numDets is set to the length of
dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. No more than MaxNumDetections
number of detections are returned. If the number of detections is fewer than
MaxNumDetections, the first numDets elements of dets hold valid detections. The remaining
elements of dets are set to the default value.

Data Types: double

config — Current sensor configuration
structure

Current sensor configuration, specified as a structure. This output can be used to determine which
objects fall within the sonar beam during object execution.

Field Description

3 System Objects

3-134

SensorIndex Unique sensor index, returned as a positive
integer.

IsValidTime Valid detection time, returned as 0 or 1.
IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to sonarSensor
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Detect Sonar Emission with Passive Sensor

Create a sonar emission and then detect the emission using a sonarSensor object.

First, create a sonar emission.

orient = quaternion([180 0 0],'eulerd','zyx','frame');
sonarSig = sonarEmission('PlatformID',1,'EmitterIndex',1, ...
 'OriginPosition',[30 0 0],'Orientation',orient, ...
 'SourceLevel',140,'TargetStrength',100);

 sonarSensor

3-135

Then create a passive sonar sensor.

sensor = sonarSensor(1,'No scanning');

Detect the sonar emission.

time = 0;
[dets, numDets, config] = sensor(sonarSig,time)

More About
Object Detections
Measurements

The sensor measures the coordinates of the target. The Measurement and MeasurementNoise
values are reported in the coordinate system specified by the DetectionCoordinates property of
the sensor.

When the DetectionCoordinates property is 'Scenario', 'Body', or 'Sensor rectangular',
the Measurement and MeasurementNoise values are reported in rectangular coordinates.
Velocities are only reported when the range rate property, HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical', the Measurement and
MeasurementNoise values are reported in a spherical coordinate system derived from the sensor
rectangular coordinate system. Elevation and range rate are only reported when HasElevation and
HasRangeRate are true.

Measurements are ordered as [azimuth, elevation, range, range rate]. Reporting of elevation and
range rate depends on the corresponding HasElevation and HasRangeRate property values.
Angles are in degrees, range is in meters, and range rate is in meters per second.

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x; y; z; vx; vy; vz]
false [x; y; z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az; el; rng; rr]
true false [az; rng; rr]
false true [az; el; rng]
false false [az; rng]

3 System Objects

3-136

Measurement Parameters

The MeasurementParameters property consists of an array of structures that describe a sequence
of coordinate transformations from a child frame to a parent frame or the inverse transformations
(see “Frame Rotation”). In most cases, the longest required sequence of transformations is Sensor →
Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to false, then the
sequence consists only of one transformation from sensor to platform. In the transformation, the
OriginPosition is same as the MountingLocation property of the sensor. The Orientation
consists of two consecutive rotations. The first rotation, corresponding to the MountingAngles
property of the sensor, accounts for the rotation from the platform frame (P) to the sensor mounting
frame (M). The second rotation, corresponding to the azimuth and elevation angles of the sensor,
accounts for the rotation from the sensor mounting frame (M) to the sensor scanning frame (S). In
the S frame, the x direction is the boresight direction, and the y direction lies within the x-y plane of
the sensor mounting frame (M).

If HasINS is true, the sequence of transformations consists of two transformations – first form the
scenario frame to the platform frame then from platform frame to the sensor scanning frame. In the
first transformation, the Orientation is the rotation from the scenario frame to the platform frame,
and the OriginPosition is the position of the platform frame origin relative to the scenario frame.

Trivially, if the detections are reported in platform rectangular coordinates and HasINS is set to
false, the transformation consists only of the identity.

The fields of MeasurementParameters are shown here. Not all fields have to be present in the
structure. The set of fields and their default values can depend on the type of sensor.

 sonarSensor

3-137

Field Description
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

OriginVelocity Velocity offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

Orientation 3-by-3 real-valued orthonormal frame rotation
matrix. The direction of the rotation depends on
the IsParentTochild field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child coordinate frame to the parent
coordinate frame.

HasElevation A logical scalar indicating if elevation is included
in the measurement. For measurements reported
in a rectangular frame, and if HasElevation is
false, the measurements are reported assuming
0 degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is included
in the measurement.

HasRange A logical scalar indicating if range is included in
the measurement.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. For
measurements reported in the rectangular frame,
if HasVelocity is false, the measurements are
reported as [x y z]. If HasVelocity is true,
measurements are reported as [x y z vx vy
vz].

Object Attributes

Object attributes contain additional information about a detection.

Attribute Description
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

3 System Objects

3-138

EmitterIndex Index of the emitter from which the detected
signal was emitted.

SNR Detection signal-to-noise ratio in dB.
CenterFrequency • Measured center frequency of the detected

sonar signal. Units are in Hz.
• This attribute is present only when the

DetectionMode property is set to
'passive'.

Bandwidth • Measured bandwidth of the detected sonar
signal, Units are in Hz.

• This attribute is present only when the
DetectionMode property is set to
'passive'.

WaveformType • Identifier of the waveform type that was
classified by a passive sensor for the detected
signal.

• This attribute is present only when the
DetectionMode property is set to
'passive'.

Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of sonar.
No Scanning

Sets ScanMode to 'No scanning'.
Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Electronic'
HasElevation true
ElectronicScanLimits [-45 45; -10 0]

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Electronic'
FieldOfView [1:10]
HasElevation false or true
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

 sonarSensor

3-139

Property Value
ScanMode 'Electronic'
FieldOfView [1;10]
HasElevation false
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
objectDetection | sonarEmission

Functions
targetPoses

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

3 System Objects

3-140

radarEmitter
Radar signals and interferences generator

Description
The radarEmitter System object creates an emitter to simulate radar emissions. You can use the
radarEmitter object in a scenario that detects and tracks moving and stationary platforms.
Construct a scenario using trackingScenario.

A radar emitter changes the look angle between updates by stepping the mechanical and electronic
position of the beam in increments of the angular span specified in the FieldOfView property. The
radar scans the total region in azimuth and elevation defined by the radar mechanical and electronic
scan limits, MechanicalScanLimits and ElectronicScanLimits, respectively. If the scan limits
for azimuth or elevation are set to [0 0], then no scanning is performed along that dimension for
that scan mode. If the maximum mechanical scan rate for azimuth or elevation is set to zero, then no
mechanical scanning is performed along that dimension.

To generate radar detections:

1 Create the radarEmitter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
emitter = radarEmitter(EmitterIndex)

emitter = radarEmitter(EmitterIndex,'No scanning')
emitter = radarEmitter(EmitterIndex,'Raster')
emitter = radarEmitter(EmitterIndex,'Rotator')
emitter = radarEmitter(EmitterIndex,'Sector')

emitter = radarEmitter(___ ,Name,Value)

Description

emitter = radarEmitter(EmitterIndex) creates a radar emitter object with default property
values.

emitter = radarEmitter(EmitterIndex,'No scanning') is a convenience syntax that
creates a radarEmitter that stares along the radar antenna boresight direction. No mechanical or
electronic scanning is performed. This syntax sets the ScanMode property to 'No scanning'.

emitter = radarEmitter(EmitterIndex,'Raster') is a convenience syntax that creates a
radarEmitter object that mechanically scans a raster pattern. The raster span is 90° in azimuth

 radarEmitter

3-141

from –45° to +45° and in elevation from the horizon to 10° above the horizon. See “Raster Scanning”
on page 3-234 for the properties set by this syntax.

emitter = radarEmitter(EmitterIndex,'Rotator') is a convenience syntax that creates a
radarEmitter object that mechanically scans 360° in azimuth by mechanically rotating the antenna
at a constant rate. When you set HasElevation to true, the radar antenna mechanically points
towards the center of the elevation field of view. See “Rotator Scanning” on page 3-235 for the
properties set by this syntax.

emitter = radarEmitter(EmitterIndex,'Sector') is a convenience syntax to create a
radarEmitter object that mechanically scans a 90° azimuth sector from –45° to +45°. Setting
HasElevation to true, points the radar antenna towards the center of the elevation field of view.
You can change the ScanMode to 'Electronic' to electronically scan the same azimuth sector. In
this case, the antenna is not mechanically tilted in an electronic sector scan. Instead, beams are
stacked electronically to process the entire elevation spanned by the scan limits in a single dwell. See
“Sector Scanning” on page 3-235 for the properties set by this syntax.

emitter = radarEmitter(___ ,Name,Value) sets properties using one or more name-value
pairs after all other input arguments. Enclose each property name in quotes. For example,
radarEmitter('CenterFrequency',2e6) creates a radar emitter creates detections in the
emitter Cartesian coordinate system and has a maximum detection range of 200 meters. If you
specify the emitter index using the EmitterIndex property, you can omit the EmitterIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

EmitterIndex — Unique sensor identifier
positive integer

Unique emitter identifier, specified as a positive integer. When creating a radarEmitter system
object, you must either specify the EmitterIndex as the first input argument in the creation syntax,
or specify it as the value for the EmitterIndex property in the creation syntax.
Example: 2
Data Types: double

UpdateRate — Emitter update rate
1 (default) | positive scalar

Emitter update rate, specified as a positive scalar. The emitter generates new emissions at intervals
defined by the reciprocal of the UpdateRate property. This interval must be an integer multiple of
the simulation time interval defined in trackingScenario. Any update requested from the emitter
between update intervals contains no emissions. Units are in hertz.
Example: 5
Data Types: double

3 System Objects

3-142

MountingLocation — Emitter location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Emitter location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the emitter with respect to the platform origin. The default value specifies that the
emitter origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of emitter
[0 0 0] (default) | 3-element real-valued vector

Orientation of the emitter with respect to the platform, specified as a three-element real-valued
vector. Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the
body axes of the platform to the emitter axes. The three elements define the rotations around the z, y,
and x axes respectively, in that order. The first rotation rotates the platform axes around the z-axis.
The second rotation rotates the carried frame around the rotated y-axis. The final rotation rotates
carried frame around the carried x-axis. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view
azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

ScanMode — Scanning mode of radar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning'

Scanning mode of radar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', or 'No scanning'.

 radarEmitter

3-143

Scan Modes

ScanMode Purpose
'Mechanical' The radar scans mechanically across the azimuth

and elevation limits specified by the
MechanicalScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Electronic' The radar scans electronically across the azimuth
and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Mechanical and electronic' The radar mechanically scans the antenna
boresight across the mechanical scan limits and
electronically scans beams relative to the
antenna boresight across the electronic scan
limits. The total field of regard scanned in this
mode is the combination of the mechanical and
electronic scan limits. The scan direction
increments by the radar field of view angle
between dwells.

'No scanning' The radar beam points along the antenna
boresight defined by the mountingAngles
property.

Example: 'No scanning'
Data Types: char

MaxMechanicalScanRate — Maximum mechanical scan rate
[75;75] (default) | nonnegative scalar | real-valued 2-by-1 vector with nonnegative entries

Maximum mechanical scan rate, specified as a nonnegative scalar or real-valued 2-by-1 vector with
nonnegative entries.

When HasElevation is true, specify the scan rate as a 2-by-1 column vector of nonnegative entries,
[maxAzRate; maxElRate]. maxAzRate is the maximum scan rate in azimuth and maxElRate is
the maximum scan rate in elevation.

When HasElevation is false, specify the scan rate as a nonnegative scalar representing the
maximum mechanical azimuth scan rate.

Scan rates set the maximum rate at which the radar can mechanically scan. The radar sets its scan
rate to step the radar mechanical angle by the field of regard. If the required scan rate exceeds the
maximum scan rate, the maximum scan rate is used. Units are degrees per second.
Example: [5,10]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.

3 System Objects

3-144

Data Types: double

MechanicalScanLimits — Angular limits of mechanical scan directions of radar
[0 360; -10 0] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of mechanical scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The mechanical scan limits define the minimum and maximum mechanical
angles the radar can scan from its mounted orientation.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl].
minAz and maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and
maxEl represent the minimum and maximum limits of the elevation angle scan. When
HasElevation is false, the scan limits take the form [minAz maxAz]. If you specify the scan
limits as a 2-by-2 matrix but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits cannot span more than 360° and elevation scan limits must lie within the closed
interval [-90° 90°]. Units are in degrees.
Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle of radar, returned as a scalar or real-valued 2-by-1 vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth
and elevation scan angles, respectively, relative to the mounted angle of the radar on the platform.
When HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

ElectronicScanLimits — Angular limits of electronic scan directions of radar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of electronic scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the radar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl].
minAz and maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and
maxEl represent the minimum and maximum limits of the elevation angle scan. When
HasElevation is false, the scan limits take the form [minAz maxAz]. If you specify the scan
limits as a 2-by-2 matrix but set HasElevation to false, the second row of the matrix is ignored.

 radarEmitter

3-145

Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.
Example: [-90 90; 0 85]
Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of radar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth
and elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.
Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

LookAngle — Look angle of emitter
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of emitter, specified as a scalar or real-valued 2-by-1 vector. Look angle is a combination
of the mechanical angle and electronic angle depending on the ScanMode property. When
HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

ScanMode LookAngle
'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and Electronic' MechnicalAngle + ElectronicAngle
'No scanning' 0

Data Types: double

HasElevation — Enable radar elevation scan and measurements
false (default) | true

Enable the radar to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a radar emitter that can estimate target elevation and scan
in elevation.
Data Types: logical

3 System Objects

3-146

EIRP — Effective isotropic radiated power
100 (default) | scalar

Effective isotropic radiated power of the transmitter, specified as a scalar. EIRP is the root mean
squared power input to a lossless isotropic antenna that gives the same power density in the far field
as the actual transmitter. EIRP is equal to the power input to the transmitter antenna (in dBW) plus
the transmitter isotropic antenna gain. Units are in dBi.
Data Types: double

CenterFrequency — Center frequency of radar band
positive scalar

Center frequency of radar band, specified as a positive scalar. Units are in hertz.
Example: 100e6
Data Types: double

Bandwidth — Radar waveform bandwidth
positive scalar

Radar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

WaveformTypes — Types of detected waveforms
0 (default) | nonnegative integer-valued L-element vector

Types of detected waveforms, specified as a nonnegative integer-valued L-element vector.
Example: [1 4 5]
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain when demodulating an emitted signal waveform, specified as a scalar. Processing
gain is achieved by emitting a signal over a bandwidth which is greater than the minimum bandwidth
necessary to send the information contained in the signal. Units are in dB.
Example: 20
Data Types: double

Usage

Syntax
radarsigs = emitter(platform,simTime)
[radarsigs,config] = emitter(platform,simTime)

 radarEmitter

3-147

Description

radarsigs = emitter(platform,simTime) creates radar signals, radarsigs, from emitter on
the platform at the current simulation time, simTime. The emitter object can simultaneously
generate signals from multiple emitters on the platform.

[radarsigs,config] = emitter(platform,simTime) also returns the emitter configurations,
config, at the current simulation time.

Input Arguments

platform — emitter platform
object | structure

Emitter platform, specified as a platform object, Platform, or a platform structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

Acceleration Acceleration of the platform in scenario
coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).

3 System Objects

3-148

Field Description
AngularVelocity Angular velocity of platform in scenario

coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell array
{rcsSignature,irSignature , tsSignature}

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the radar
sensor at regular time intervals. The radar emitter generates new signals at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an integer multiple
of the simulation time interval. Updates requested from the emitter between update intervals contain
no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

radarsigs — Radar emissions
array of radar emission objects

Radar emissions, returned as an array of radarEmission objects.

config — Current emitter configuration
structure array

Current emitter configurations, returned as an array of structures.

Field Description
EmitterIndex Unique emitter index, returned as a positive

integer.
IsValidTime Valid emission time, returned as 0 or 1.

IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

 radarEmitter

3-149

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to radarEmitter
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Model Radar Jammer

Create an emitter that stares from the front of a jammer.

Create a platform to mount the jammer on.

plat = struct(...
 'PlatformID', 1, ...
 'Position', [0 0 0]);

Create an emitter that stares from the front of the jamming platform.

jammer = radarEmitter(1,'No scanning');

Emit the jamming waveform.

time = 0;
sig = jammer(plat, time)

sig =
 radarEmission with properties:

 PlatformID: 1
 EmitterIndex: 1
 OriginPosition: [0 0 0]
 OriginVelocity: [0 0 0]

3 System Objects

3-150

 Orientation: [1x1 quaternion]
 FieldOfView: [1 5]
 CenterFrequency: 300000000
 Bandwidth: 3000000
 WaveformType: 0
 ProcessingGain: 0
 PropagationRange: 0
 PropagationRangeRate: 0
 EIRP: 100
 RCS: 0

Model Radar Emitter for Air Traffic Control Tower

Model an radar emitter for an air traffic control tower.

Simulate one full rotation of the tower.

rpm = 12.5;
scanrate = rpm*360/60;
fov = [1.4;5];
updaterate = scanrate/fov(1);

Create a trackingScenario object to manage the motion of the platforms.

scene = trackingScenario('UpdateRate', updaterate, ...
 'StopTime', 60/rpm);

Add a platform to the scenario to host the air traffic control tower.

tower = platform(scene);

Create an emitter that provides 360 degree surveillance.

radarTx = radarEmitter(1,'Rotator', ...
 'UpdateRate',updaterate, ...
 'MountingLocation',[0 0 -15], ...
 'MaxMechanicalScanRate',scanrate, ...
 'FieldOfView',fov);

Attach the emitter to the tower.

tower.Emitters = radarTx

tower =
 Platform with properties:

 PlatformID: 1
 ClassID: 0
 Dimensions: [1x1 struct]
 Trajectory: [1x1 kinematicTrajectory]
 PoseEstimator: [1x1 insSensor]
 Emitters: {[1x1 radarEmitter]}
 Sensors: {}
 Signatures: {[1x1 rcsSignature] [1x1 irSignature] [1x1 tsSignature]}

 radarEmitter

3-151

Rotate the antenna and emit the radar waveform.

loggedData = struct('Time', zeros(0,1), ...
 'Orientation', quaternion.zeros(0, 1));
while advance(scene)
 time = scene.SimulationTime;
 txSig = emit(tower, time);
 loggedData.Time = [loggedData.Time; time];
 loggedData.Orientation = [loggedData.Orientation; ...
 txSig{1}.Orientation];
end

Plot the emitter azimuth direction.

angles = eulerd(loggedData.Orientation, 'zyx', 'frame');
plot(loggedData.Time, angles(:,1))
title('Emitted Azimuth')
xlabel('Time (s)')
ylabel('Azimuth (deg)')

More About
Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of radar emitter.

3 System Objects

3-152

No Scanning

Sets ScanMode to 'No scanning'.
Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
HasElevation true
MaxMechanicalScanRate [75;75]
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]

You can change the ScanMode property to 'Electronic' to perform an electronic raster scan over
the same volume as a mechanical scan.
Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1:10]
HasElevation false or true
MechanicalScanLimits [0 360; -10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1;10]
HasElevation false
MechanicalScanLimits [-45 45; -10 0]
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Changing the ScanMode property to 'Electronic' lets you perform an electronic raster scan over
the same volume as a mechanical scan.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 radarEmitter

3-153

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Classes
platform | radarEmission

Functions
emissionsInBody | targetPoses

System Objects
monostaticRadarSensor | radarSensor

Introduced in R2018b

3 System Objects

3-154

sonarEmitter
Acoustic signals and interferences generator

Description
The sonarEmitter System object creates an emitter to simulate sonar emissions. You can use the
sonarEmitter object in a scenario that detects and tracks moving and stationary platforms.
Construct a scenario using trackingScenario.

A sonar emitter changes the look angle between updates by stepping the mechanical and electronic
position of the beam in increments of the angular span specified in the FieldOfView property. The
sonar emitter scans the total region in azimuth and elevation defined by the sonar mechanical and
electronic scan limits, MechanicalScanLimits and ElectronicScanLimits, respectively. If the
scan limits for azimuth or elevation are set to [0 0], then no scanning is performed along that
dimension for that scan mode. If the maximum mechanical scan rate for azimuth or elevation is set to
zero, then no mechanical scanning is performed along that dimension.

To generate sonar detections:

1 Create the sonarEmitter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
emitter = sonarEmitter(EmitterIndex)

emitter = sonarEmitter(EmitterIndex,'No scanning')
emitter = sonarEmitter(EmitterIndex,'Raster')
emitter = sonarEmitter(EmitterIndex,'Rotator')
emitter = sonarEmitter(EmitterIndex,'Sector')

emitter = sonarEmitter(___ ,Name,Value)

Description

emitter = sonarEmitter(EmitterIndex) creates a sonar emitter object with default property
values.

emitter = sonarEmitter(EmitterIndex,'No scanning') is a convenience syntax that
creates a sonarEmitter that stares along the sonar transducer boresight direction. No mechanical
or electronic scanning is performed. This syntax sets the ScanMode property to 'No scanning'.

emitter = sonarEmitter(EmitterIndex,'Raster') is a convenience syntax that creates a
sonarEmitter object that mechanically scans a raster pattern. The raster span is 90° in azimuth

 sonarEmitter

3-155

from –45° to +45° and in elevation from the horizon to 10° above the horizon. See “Raster Scanning”
on page 3-234 for the properties set by this syntax.

emitter = sonarEmitter(EmitterIndex,'Rotator') is a convenience syntax that creates a
sonarEmitter object that mechanically scans 360° in azimuth by mechanically rotating the sonar at
a constant rate. When you set HasElevation to true, the sonar mechanically points towards the
center of the elevation field of view. See “Rotator Scanning” on page 3-235 for the properties set by
this syntax.

emitter = sonarEmitter(EmitterIndex,'Sector') is a convenience syntax to create a
sonarEmitter object that mechanically scans a 90° azimuth sector from –45° to +45°. Setting
HasElevation to true, points the sonar towards the center of the elevation field of view. You can
change the ScanMode to 'Electronic' to electronically scan the same azimuth sector. In this case,
the sonar is not mechanically tilted in an electronic sector scan. Instead, beams are stacked
electronically to process the entire elevation spanned by the scan limits in a single dwell. See “Sector
Scanning” on page 3-235 for the properties set by this syntax.

emitter = sonarEmitter(___ ,Name,Value) sets properties using one or more name-value
pairs after all other input arguments. Enclose each property name in quotes. For example,
sonarEmitter('CenterFrequency',2e6) creates a sonar emitter creates detections in the
emitter Cartesian coordinate system and has a maximum detection range of 200 meters. If you
specify the emitter index using the EmitterIndex property, you can omit the EmitterIndex input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

EmitterIndex — Unique sensor identifier
positive integer

Unique emitter identifier, specified as a positive integer. When creating a sonarEmitter system
object, you must either specify the EmitterIndex as the first input argument in the creation syntax,
or specify it as the value for the EmitterIndex property in the creation syntax.
Example: 2
Data Types: double

UpdateRate — Emitter update rate
1 (default) | positive scalar

Emitter update rate, specified as a positive scalar. The emitter generates new emissions at intervals
defined by the reciprocal of the UpdateRate property. This interval must be an integer multiple of
the simulation time interval defined in trackingScenario. Any update requested from the emitter
between update intervals contains no emissions. Units are in hertz.
Example: 5
Data Types: double

3 System Objects

3-156

MountingLocation — Emitter location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Emitter location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the emitter with respect to the platform origin. The default value specifies that the
emitter origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of emitter
[0 0 0] (default) | 3-element real-valued vector

Orientation of the emitter with respect to the platform, specified as a three-element real-valued
vector. Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the
body axes of the platform to the emitter axes. The three elements define the rotations around the z, y,
and x axes respectively, in that order. The first rotation rotates the platform axes around the z-axis.
The second rotation rotates the carried frame around the rotated y-axis. The final rotation rotates
carried frame around the carried x-axis. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view
azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

ScanMode — Scanning mode of sonar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning'

Scanning mode of sonar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', or 'No scanning'.

Scan Modes

ScanMode Purpose
'Electronic' The sonar scans electronically across the azimuth

and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the sonar field of view
angle between dwells.

'No scanning' The sonar beam points along the antenna
boresight defined by the mountingAngles
property.

Example: 'No scanning'

 sonarEmitter

3-157

Data Types: char

ElectronicScanLimits — Angular limits of electronic scan directions of sonar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of electronic scan directions of sonar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the sonar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl].
minAz and maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and
maxEl represent the minimum and maximum limits of the elevation angle scan. When
HasElevation is false, the scan limits take the form [minAz maxAz]. If you specify the scan
limits as a 2-by-2 matrix but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.
Example: [-90 90; 0 85]

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of sonar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth
and elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

LookAngle — Look angle of emitter
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of emitter, specified as a scalar or real-valued 2-by-1 vector. Look angle is a combination
of the mechanical angle and electronic angle depending on the ScanMode property. When
HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

ScanMode LookAngle

3 System Objects

3-158

'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and Electronic' MechnicalAngle + ElectronicAngle
'No scanning' 0

Data Types: double

HasElevation — Enable sonar elevation scan and measurements
false (default) | true

Enable the sonar to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a sonar emitter that can estimate target elevation and scan
in elevation.
Data Types: logical

SourceLevel — Sonar source level
140 (default) | scalar

Sonar source level, specified as a scalar. Source level is relative to the intensity of a sound wave
having an rms pressure of 1 μPa. Units are in dB//1 μPa.
Data Types: double

CenterFrequency — Center frequency of sonar band
positive scalar

Center frequency of sonar band, specified as a positive scalar. Units are in hertz.
Example: 100e6
Data Types: double

Bandwidth — Sonar waveform bandwidth
positive scalar

Sonar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

WaveformTypes — Types of detected waveforms
0 (default) | nonnegative integer-valued L-element vector

Types of detected waveforms, specified as a nonnegative integer-valued L-element vector.
Example: [1 4 5]
Data Types: double

ProcessingGain — Processing gain
0 (default) | scalar

Processing gain when demodulating an emitted signal waveform, specified as a scalar. Processing
gain is achieved by emitting a signal over a bandwidth which is greater than the minimum bandwidth
necessary to send the information contained in the signal. Units are in dB.

 sonarEmitter

3-159

Example: 20
Data Types: double

Usage

Syntax
sonarsigs = emitter(platform,simTime)
[sonarsigs,config] = emitter(platform,simTime)

Description

sonarsigs = emitter(platform,simTime) creates sonar signals, sonarsigs, from emitter on
the platform at the current simulation time, simTime. The emitter object can simultaneously
generate signals from multiple emitters on the platform.

[sonarsigs,config] = emitter(platform,simTime) also returns the emitter configurations,
config, at the current simulation time.

Input Arguments

platform — emitter platform
object | structure

Emitter platform, specified as a platform object, Platform, or a platform structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
which has no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in scenario coordinates,
specified as a real-valued 1-by-3 vector. This is a
required field. There is no default value. Units are
in meters.

Velocity Velocity of platform in scenario coordinates,
specified as a real-valued 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Speed Speed of the platform in the scenario frame
specified as a real scalar. When speed is
specified, the platform velocity is aligned with its
orientation. Specify either the platform speed or
velocity, but not both. Units are in meters per
second The default is 0.

3 System Objects

3-160

Field Description
Acceleration Acceleration of the platform in scenario

coordinates specified as a 1-by-3 row vector in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the platform with respect to the
local scenario NED coordinate frame, specified as
a scalar quaternion or a 3-by-3 rotation matrix.
Orientation defines the frame rotation from the
local NED coordinate system to the current
platform body coordinate system. Units are
dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of platform in scenario
coordinates, specified as a real-valued 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

Signatures Cell array of signatures defining the visibility of
the platform to emitters and sensors in the
scenario. The default is the cell array
{rcsSignature,irSignature , tsSignature}

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the sonar
emitter at regular time intervals. The sonar emitter generates new signals at intervals defined by the
UpdateInterval property. The value of the UpdateInterval property must be an integer multiple
of the simulation time interval. Updates requested from the emitter between update intervals contain
no detections. Units are in seconds.
Example: 10.5
Data Types: double

Output Arguments

sonarsigs — Sonar emissions
array of sonar emission objects

Sonar emissions, returned as an array of sonarEmission objects.

config — Current emitter configuration
structure array

Current emitter configurations, returned as an array of structures.

Field Description

 sonarEmitter

3-161

EmitterIndex Unique emitter index, returned as a positive
integer.

IsValidTime Valid emission time, returned as 0 or 1.
IsValidTime is 0 when emitter updates are
requested at times that are between update
intervals specified by the UpdateInterval
property.

IsScanDone Whether the emitter has completed a scan,
returned as true or false.

FieldOfView Field of view of the emitter, returned as a two-
element vector [azimuth; elevation] in degrees.

MeasurementParameters Emitter measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current emitter frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to sonarEmitter
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Reflect Sonar Emission from Platform within Tracking Scenario
Reflect a sonar emission from a platform defined within a trackingScenario.

Create a tracking scenario object.

scenario = trackingScenario;

Create an sonarEmitter.

emitter = sonarEmitter(1);

Mount the emitter on a platform within the scenario.

3 System Objects

3-162

plat = platform(scenario,'Emitters',emitter);

Add another platform to reflect the emitted signal.

tgt = platform(scenario);
tgt.Trajectory.Position = [30 0 0];

Emit the signal using the emit object function of a platform .

txSigs = emit(plat, scenario.SimulationTime)

txSigs = 1x1 cell array
 {1x1 sonarEmission}

Reflect the signal from the platforms in the scenario.

sigs = underwaterChannel(txSigs, scenario.Platforms)

sigs = 1x1 cell array
 {1x1 sonarEmission}

More About
Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of sonar emitter.

No Scanning

Sets ScanMode to 'No scanning'.

Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Electronic'
HasElevation true
ElectronicScanLimits [-45 45; -10 0]

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Electronic'
FieldOfView [1:10]
HasElevation false or true
ElevationResolution 10/sqrt(12)

 sonarEmitter

3-163

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Electronic'
FieldOfView [1;10]
HasElevation false
ElectronicScanLimits [-45 45; -10 0]
ElevationResolution 10/sqrt(12)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Classes
platform | sonarEmission

Functions
emissionsInBody | targetPoses

System Objects
sonarSensor

Introduced in R2018b

3 System Objects

3-164

kinematicTrajectory
Rate-driven trajectory generator

Description
The kinematicTrajectory System object generates trajectories using specified acceleration and
angular velocity.

To generate a trajectory from rates:

1 Create the kinematicTrajectory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
trajectory = kinematicTrajectory
trajectory = kinematicTrajectory(Name,Value)

Description

trajectory = kinematicTrajectory returns a System object, trajectory, that generates a
trajectory based on acceleration and angular velocity.

trajectory = kinematicTrajectory(Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: trajectory = kinematicTrajectory('SampleRate',200,'Position',[0,1,10])
creates a kinematic trajectory System object, trajectory, with a sample rate of 200 Hz and the
initial position set to [0,1,10].

Properties
If a property is tunable, you can change its value at any time.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Position — Position state in local navigation coordinate system (m)
[0 0 0] (default) | 3-element row vector

 kinematicTrajectory

3-165

Position state in the local navigation coordinate system in meters, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Velocity — Velocity state in local navigation coordinate system (m/s)
[0 0 0] (default) | 3-element row vector

Velocity state in the local navigation coordinate system in m/s, specified as a three-element row
vector.

Tunable: Yes
Data Types: single | double

Orientation — Orientation state in local navigation coordinate system
quaternion(1,0,0,0) (default) | scalar quaternion | 3-by-3 real matrix

Orientation state in the local navigation coordinate system, specified as a scalar quaternion or 3-by-3
real matrix. The orientation is a frame rotation from the local navigation coordinate system to the
current body frame.

Tunable: Yes
Data Types: quaternion | single | double

AccelerationSource — Source of acceleration state
'Input' (default) | 'Property'

Source of acceleration state, specified as 'Input' or 'Property'.

• 'Input' –– specify acceleration state as an input argument to the kinematic trajectory object
• 'Property' –– specify acceleration state by setting the Acceleration property

Tunable: No
Data Types: char | string

Acceleration — Acceleration state (m/s2)
[0 0 0] (default) | three-element row vector

Acceleration state in m/s2, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AccelerationSource to 'Property'.
Data Types: single | double

AngularVelocitySource — Source of angular velocity state
'Input' (default) | 'Property'

Source of angular velocity state, specified as 'Input' or 'Property'.

3 System Objects

3-166

• 'Input' –– specify angular velocity state as an input argument to the kinematic trajectory object
• 'Property' –– specify angular velocity state by setting the AngularVelocity property

Tunable: No
Data Types: char | string

AngularVelocity — Angular velocity state (rad/s)
[0 0 0] (default) | three-element row vector

Angular velocity state in rad/s, specified as a three-element row vector.

Tunable: Yes

Dependencies

To enable this property, set AngularVelocitySource to 'Property'.
Data Types: single | double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive integer

Number of samples per output frame, specified as a positive integer.

Tunable: No

Dependencies

To enable this property, set AngularVelocitySource to 'Property' and AccelerationSource to
'Property'.
Data Types: single | double

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration)
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration,bodyAngularVelocity) outputs the trajectory state and then updates the
trajectory state based on bodyAcceleration and bodyAngularVelocity.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Input'.

 kinematicTrajectory

3-167

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAngularVelocity) outputs the trajectory state and then updates the trajectory state based on
bodyAngularAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Input' and AccelerationSource
is set to 'Property'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory(
bodyAcceleration) outputs the trajectory state and then updates the trajectory state based on
bodyAcceleration.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Input'.

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs the trajectory state and then updates the trajectory state.

This syntax is only valid if AngularVelocitySource is set to 'Property' and
AccelerationSource is set to 'Property'.

Input Arguments

bodyAcceleration — Acceleration in body coordinate system (m/s2)
N-by-3 matrix

Acceleration in the body coordinate system in meters per second squared, specified as an N-by-3
matrix.

N is the number of samples in the current frame.

bodyAngularVelocity — Angular velocity in body coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the body coordinate system in radians per second, specified as an N-by-3 matrix.

N is the number of samples in the current frame.

Output Arguments

position — Position in local navigation coordinate system (m)
N-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

orientation — Orientation in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N real array

Orientation in the local navigation coordinate system, returned as an N-by-1 quaternion column
vector or a 3-by-3-by-N real array. Each quaternion or 3-by-3 rotation matrix is a frame rotation from
the local navigation coordinate system to the current body coordinate system.

N is the number of samples in the current frame.

3 System Objects

3-168

Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

acceleration — Acceleration in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
N-by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an N-
by-3 matrix.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
step Run System object algorithm

Examples

Create Default kinematicTrajectory

Create a default kinematicTrajectory System object™ and explore the relationship between
input, properties, and the generated trajectories.

trajectory = kinematicTrajectory

trajectory =
 kinematicTrajectory with properties:

 SampleRate: 100
 Position: [0 0 0]
 Orientation: [1×1 quaternion]
 Velocity: [0 0 0]
 AccelerationSource: 'Input'
 AngularVelocitySource: 'Input'

 kinematicTrajectory

3-169

By default, the kinematicTrajectory object has an initial position of [0 0 0] and an initial velocity
of [0 0 0]. Orientation is described by a quaternion one (1 + 0i + 0j + 0k).

The kinematicTrajectory object maintains a visible and writable state in the properties
Position, Velocity, and Orientation. When you call the object, the state is output and then
updated.

For example, call the object by specifying an acceleration and angular velocity relative to the body
coordinate system.

bodyAcceleration = [5,5,0];
bodyAngularVelocity = [0,0,1];
[position,orientation,velocity,acceleration,angularVelocity] = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

 0 0 0

orientation = quaternion
 1 + 0i + 0j + 0k

velocity = 1×3

 0 0 0

acceleration = 1×3

 5 5 0

angularVelocity = 1×3

 0 0 1

The position, orientation, and velocity output from the trajectory object correspond to the state
reported by the properties before calling the object. The trajectory state is updated after being
called and is observable from the properties:

trajectory

trajectory =
 kinematicTrajectory with properties:

 SampleRate: 100
 Position: [2.5000e-04 2.5000e-04 0]
 Orientation: [1×1 quaternion]
 Velocity: [0.0500 0.0500 0]
 AccelerationSource: 'Input'
 AngularVelocitySource: 'Input'

The acceleration and angularVelocity output from the trajectory object correspond to the
bodyAcceleration and bodyAngularVelocity, except that they are returned in the navigation
coordinate system. Use the orientation output to rotate acceleration and angularVelocity

3 System Objects

3-170

to the body coordinate system and verify they are approximately equivalent to bodyAcceleration
and bodyAngularVelocity.

rotatedAcceleration = rotatepoint(orientation,acceleration)

rotatedAcceleration = 1×3

 5 5 0

rotatedAngularVelocity = rotatepoint(orientation,angularVelocity)

rotatedAngularVelocity = 1×3

 0 0 1

The kinematicTrajectory System object™ enables you to modify the trajectory state through the
properties. Set the position to [0,0,0] and then call the object with a specified acceleration and
angular velocity in the body coordinate system. For illustrative purposes, clone the trajectory
object before modifying the Position property. Call both objects and observe that the positions
diverge.

trajectoryClone = clone(trajectory);
trajectory.Position = [0,0,0];

position = trajectory(bodyAcceleration,bodyAngularVelocity)

position = 1×3

 0 0 0

clonePosition = trajectoryClone(bodyAcceleration,bodyAngularVelocity)

clonePosition = 1×3
10-3 ×

 0.2500 0.2500 0

Create Oscillating Trajectory

This example shows how to create a trajectory oscillating along the North axis of a local NED
coordinate system using the kinematicTrajectory System object™.

Create a default kinematicTrajectory object. The default initial orientation is aligned with the
local NED coordinate system.

traj = kinematicTrajectory

traj =

 kinematicTrajectory with properties:

 kinematicTrajectory

3-171

 SampleRate: 100
 Position: [0 0 0]
 Orientation: [1x1 quaternion]
 Velocity: [0 0 0]
 AccelerationSource: 'Input'
 AngularVelocitySource: 'Input'

Define a trajectory for a duration of 10 seconds consisting of rotation around the East axis (pitch) and
an oscillation along North axis of the local NED coordinate system. Use the default
kinematicTrajectory sample rate.

fs = traj.SampleRate;
duration = 10;

numSamples = duration*fs;

cyclesPerSecond = 1;
samplesPerCycle = fs/cyclesPerSecond;
numCycles = ceil(numSamples/samplesPerCycle);
maxAccel = 20;

triangle = [linspace(maxAccel,1/fs-maxAccel,samplesPerCycle/2), ...
 linspace(-maxAccel,maxAccel-(1/fs),samplesPerCycle/2)]';
oscillation = repmat(triangle,numCycles,1);
oscillation = oscillation(1:numSamples);

accNED = [zeros(numSamples,2),oscillation];

angVelNED = zeros(numSamples,3);
angVelNED(:,2) = 2*pi;

Plot the acceleration control signal.

timeVector = 0:1/fs:(duration-1/fs);

figure(1)
plot(timeVector,oscillation)
xlabel('Time (s)')
ylabel('Acceleration (m/s)^2')
title('Acceleration in Local NED Coordinate System')

3 System Objects

3-172

Generate the trajectory sample-by-sample in a loop. The kinematicTrajectory System object
assumes the acceleration and angular velocity inputs are in the local sensor body coordinate system.
Rotate the acceleration and angular velocity control signals from the NED coordinate system to the
sensor body coordinate system using rotateframe and the Orientation state. Update a 3-D plot
of the position at each time. Add pause to mimic real-time processing. Once the loop is complete,
plot the position over time. Rotating the accNED and angVelNED control signals to the local body
coordinate system assures the motion stays along the Down axis.

figure(2)
plotHandle = plot3(traj.Position(1),traj.Position(2),traj.Position(3),'bo');
grid on
xlabel('North')
ylabel('East')
zlabel('Down')
axis([-1 1 -1 1 0 1.5])
hold on

q = ones(numSamples,1,'quaternion');
for ii = 1:numSamples
 accBody = rotateframe(traj.Orientation,accNED(ii,:));
 angVelBody = rotateframe(traj.Orientation,angVelNED(ii,:));

 [pos(ii,:),q(ii),vel,ac] = traj(accBody,angVelBody);

 set(plotHandle,'XData',pos(ii,1),'YData',pos(ii,2),'ZData',pos(ii,3))

 pause(1/fs)

 kinematicTrajectory

3-173

end

figure(3)
plot(timeVector,pos(:,1),'bo',...
 timeVector,pos(:,2),'r.',...
 timeVector,pos(:,3),'g.')
xlabel('Time (s)')
ylabel('Position (m)')
title('NED Position Over Time')
legend('North','East','Down')

3 System Objects

3-174

Convert the recorded orientation to Euler angles and plot. Although the orientation of the platform
changed over time, the acceleration always acted along the North axis.

figure(4)
eulerAngles = eulerd(q,'ZYX','frame');
plot(timeVector,eulerAngles(:,1),'bo',...
 timeVector,eulerAngles(:,2),'r.',...
 timeVector,eulerAngles(:,3),'g.')
axis([0,duration,-180,180])
legend('Roll','Pitch','Yaw')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')

 kinematicTrajectory

3-175

Generate a Coil Trajectory

This example shows how to generate a coil trajectory using the kinematicTrajectory System
object™.

Create a circular trajectory for a 1000 second duration and a sample rate of 10 Hz. Set the radius of
the circle to 5000 meters and the speed to 80 meters per second. Set the climb rate to 100 meters
per second and the pitch to 15 degrees. Specify the initial orientation as pointed in the direction of
motion.

duration = 1000; % seconds
fs = 10; % Hz
N = duration*fs; % number of samples

radius = 5000; % meters
speed = 80; % meters per second
climbRate = 50; % meters per second
initialYaw = 90; % degrees
pitch = 15; % degrees

initPos = [radius, 0, 0];
initVel = [0, speed, climbRate];
initOrientation = quaternion([initialYaw,pitch,0],'eulerd','zyx','frame');

trajectory = kinematicTrajectory('SampleRate',fs, ...

3 System Objects

3-176

 'Velocity',initVel, ...
 'Position',initPos, ...
 'Orientation',initOrientation);

Specify a constant acceleration and angular velocity in the body coordinate system. Rotate the body
frame to account for the pitch.

accBody = zeros(N,3);
accBody(:,2) = speed^2/radius;
accBody(:,3) = 0.2;

angVelBody = zeros(N,3);
angVelBody(:,3) = speed/radius;

pitchRotation = quaternion([0,pitch,0],'eulerd','zyx','frame');
angVelBody = rotateframe(pitchRotation,angVelBody);
accBody = rotateframe(pitchRotation,accBody);

Call trajectory with the specified acceleration and angular velocity in the body coordinate system.
Plot the position, orientation, and speed over time.

[position, orientation, velocity] = trajectory(accBody,angVelBody);

eulerAngles = eulerd(orientation,'ZYX','frame');
speed = sqrt(sum(velocity.^2,2));

timeVector = (0:(N-1))/fs;

figure(1)
plot3(position(:,1),position(:,2),position(:,3))
xlabel('North (m)')
ylabel('East (m)')
zlabel('Down (m)')
title('Position')
grid on

 kinematicTrajectory

3-177

figure(2)
plot(timeVector,eulerAngles(:,1),...
 timeVector,eulerAngles(:,2),...
 timeVector,eulerAngles(:,3))
axis([0,duration,-180,180])
legend('Yaw (Rotation Around Down)','Pitch (Rotation Around East)','Roll (Rotation Around North)')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')

3 System Objects

3-178

figure(3)
plot(timeVector,speed)
xlabel('Time (s)')
ylabel('Speed (m/s)')
title('Speed')

 kinematicTrajectory

3-179

Generate Spiraling Circular Trajectory with No Inputs

Define a constant angular velocity and constant acceleration that describe a spiraling circular
trajectory.

Fs = 100;
r = 10;
speed = 2.5;
initialYaw = 90;

initPos = [r 0 0];
initVel = [0 speed 0];
initOrient = quaternion([initialYaw 0 0], 'eulerd', 'ZYX', 'frame');

accBody = [0 speed^2/r 0.01];
angVelBody = [0 0 speed/r];

Create a kinematic trajectory object.

traj = kinematicTrajectory('SampleRate',Fs, ...
 'Position',initPos, ...
 'Velocity',initVel, ...
 'Orientation',initOrient, ...
 'AccelerationSource','Property', ...
 'Acceleration',accBody, ...

3 System Objects

3-180

 'AngularVelocitySource','Property', ...
 'AngularVelocity',angVelBody);

Call the kinematic trajectory object in a loop and log the position output. Plot the position over time.

N = 10000;
pos = zeros(N, 3);
for i = 1:N
 pos(i,:) = traj();
end

plot3(pos(:,1), pos(:,2), pos(:,3))
title('Position')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 kinematicTrajectory

3-181

See Also
platform | trackingScenario | waypointTrajectory

Introduced in R2018b

3 System Objects

3-182

waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories using specified waypoints. When
you create the System object, you can optionally specify the time of arrival, velocity, and orientation
at each waypoint.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a
trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the Waypoints
that the generated trajectory passes through and the TimeOfArrival at each waypoint.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each
creation argument or property Name to the specified Value. Unspecified properties and creation
arguments have default or inferred values.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and TimeOfArrival
creation arguments. You can specify Waypoints and TimeOfArrival as value-only arguments or
name-value pairs.

 waypointTrajectory

3-183

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: Yes
Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.
Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double

Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each way point in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.

3 System Objects

3-184

The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory. If the velocity is specified as zero, the object infers the course of the trajectory from
adjacent waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified in object creation.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

Climbrate — Climbrate at each waypoint (m/s)
N-element real vector

Climbrate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climbrate is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

 waypointTrajectory

3-185

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: quaternion | double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteract the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

ReferenceFrame — Reference frame of trajectory
'NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()

Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.

Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

3 System Objects

3-186

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table
lookupPose Obtain pose information for certain time

 waypointTrajectory

3-187

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory

trajectory = waypointTrajectory

trajectory =
 waypointTrajectory with properties:

 SampleRate: 100
 SamplesPerFrame: 1
 Waypoints: [2x3 double]
 TimeOfArrival: [2x1 double]
 Velocities: [2x3 double]
 Course: [2x1 double]
 GroundSpeed: [2x1 double]
 ClimbRate: [2x1 double]
 Orientation: [2x1 quaternion]
 AutoPitch: 0
 AutoBank: 0
 ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
 TimeOfArrival Waypoints
 _____________ ___________

 0 0 0 0
 1 0 0 0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each
waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

3 System Objects

3-188

waypoints = [0,0,0; ... % Initial position
 0,1,0; ...
 1,1,0; ...
 1,0,0; ...
 0,0,0]; % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
 45,0,0; ...
 135,0,0; ...
 225,0,0; ...
 0,0,0], ...
 'eulerd','ZYX','frame');

trajectory = waypointTrajectory(waypoints, ...
 'TimeOfArrival',toa, ...
 'Orientation',orientation, ...
 'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

 waypointTrajectory

3-189

In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end
hold off

3 System Objects

3-190

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
plot(toa,eulerAngles(:,1),'ko', ...
 toa,eulerAngles(:,2),'bd', ...
 toa,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

 waypointTrajectory

3-191

So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

3 System Objects

3-192

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end
hold off

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),'ko', ...
 t,eulerAngles(:,2),'bd', ...
 t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

 waypointTrajectory

3-193

The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

 % Time, Waypoint, Orientation
trajectoryInfo = [0, 0,0,0, 0,0,0; ... % Initial position
 0.1, 0,0.1,0, 0,0,0; ...

 0.9, 0,0.9,0, 0,0,0; ...
 1, 0,1,0, 45,0,0; ...
 1.1, 0.1,1,0, 90,0,0; ...

 1.9, 0.9,1,0, 90,0,0; ...
 2, 1,1,0, 135,0,0; ...
 2.1, 1,0.9,0, 180,0,0; ...

 2.9, 1,0.1,0, 180,0,0; ...
 3, 1,0,0, 225,0,0; ...
 3.1, 0.9,0,0, 270,0,0; ...

 3.9, 0.1,0,0, 270,0,0; ...
 4, 0,0,0, 270,0,0]; % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
 'TimeOfArrival',trajectoryInfo(:,1), ...
 'Orientation',quaternion(trajectoryInfo(:,5:end),'eulerd','ZYX','frame'), ...
 'SampleRate',100);

3 System Objects

3-194

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
 [currentPosition,orientationLog(count)] = trajectory();

 plot(currentPosition(1),currentPosition(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count+1;
end
hold off

The trajectory output now appears more square-like, especially around the vertices with waypoints.

 waypointTrajectory

3-195

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),'ko', ...
 t,eulerAngles(:,2),'bd', ...
 t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be
within preset bounds.

3 System Objects

3-196

Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constrains matrix to
quaternions when specifying the Orientation property.

 % Arrival, Waypoints, Orientation
constraints = [0, 20,20,0, 90,0,0;
 3, 50,20,0, 90,0,0;
 4, 58,15.5,0, 162,0,0;
 5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
 'TimeOfArrival',constraints(:,1), ...
 'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

 4x3 table

 TimeOfArrival Waypoints Orientation
 _____________ ____________________ ________________

 0 20 20 0 {1x1 quaternion}
 3 50 20 0 {1x1 quaternion}
 4 58 15.5 0 {1x1 quaternion}
 5.5 59.5 0 0 {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')
title('Position')
axis([20,65,0,25])
xlabel('North')
ylabel('East')
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)

 waypointTrajectory

3-197

 [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

 plot(pos(1),pos(2),'bo')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],'ZYX','frame');
plot(timeVector,eulerAngles(:,1), ...
 timeVector,eulerAngles(:,2), ...
 timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

3 System Objects

3-198

figure(3)
plot(timeVector(2:end),vel(:,1), ...
 timeVector(2:end),vel(:,2), ...
 timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
 timeVector(2:end),acc(:,2), ...
 timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down','Location','southwest')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
 timeVector(2:end),angVel(:,2), ...
 timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

 waypointTrajectory

3-199

3 System Objects

3-200

 waypointTrajectory

3-201

3 System Objects

3-202

Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,'r','LineWidth',2);
plot(xLowerBound,yLowerBound,'r','LineWidth',2)

 waypointTrajectory

3-203

To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

 % Time, Waypoint, Orientation
constraints = [0, 20,20,0, 90,0,0;
 1.5, 35,20,0, 90,0,0;
 2.5 45,20,0, 90,0,0;
 3, 50,20,0, 90,0,0;
 3.3, 53,19.5,0, 108,0,0;
 3.6, 55.5,18.25,0, 126,0,0;
 3.9, 57.5,16,0, 144,0,0;
 4.2, 59,14,0, 162,0,0;
 4.5, 59.5,10,0 180,0,0;
 5, 59.5,5,0 180,0,0;
 5.5, 59.5,0,0 180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
 'TimeOfArrival',constraints(:,1), ...
 'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')

count = 1;

3 System Objects

3-204

while ~isDone(trajectory)
 [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

 plot(pos(1),pos(2),'gd')

 pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
 count = count + 1;
end

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,'ZYX','frame');
plot(timeVector(2:end),eulerAngles(:,1), ...
 timeVector(2:end),eulerAngles(:,2), ...
 timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
 'Rotation around Y-axis', ...
 'Rotation around X-axis', ...
 'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)

 waypointTrajectory

3-205

plot(timeVector(2:end),vel(:,1), ...
 timeVector(2:end),vel(:,2), ...
 timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
 timeVector(2:end),acc(:,2), ...
 timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
 timeVector(2:end),angVel(:,2), ...
 timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on

3 System Objects

3-206

 waypointTrajectory

3-207

3 System Objects

3-208

 waypointTrajectory

3-209

Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Platform | kinematicTrajectory | trackingScenario

Introduced in R2018b

3 System Objects

3-210

waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times of arrival,
velocities, and orientation for the trajectory System object

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation properties:
Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival. If the
Velocities property is set during construction, the trajectory information table additionally returns
velocities. If the Orientation property is set during construction, the trajectory information table
additionally returns orientation.

See Also
kinematicTrajectory | waypointTrajectory

Introduced in R2018b

 waypointInfo

3-211

lookupPose
Obtain pose information for certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes)

Description
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes) returns the pose information of the waypoint trajectory at the specified sample
times. If any sample time is beyond the duration of the trajectory, the corresponding pose information
is returned as NaN.

Input Arguments
traj — Waypoint trajectory
waypointTrajectory object

Waypoint trajectory, specified as a waypointTrajectory object.

sampleTimes — Sample times
M-element vector of nonnegative scalar

Sample times in seconds, specified as an M-element vector of nonnegative scalars.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the sampleTimes input.
Data Types: double

3 System Objects

3-212

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the sampleTimes input.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

See Also
waypointTrajectory

Introduced in R2020a

 lookupPose

3-213

monostaticRadarSensor

Generate radar detections for tracking scenario

Description
The monostaticRadarSensor System object generates detections of targets by a monostatic
surveillance scanning radar. You can use the monostaticRadarSensor object in a scenario
containing moving and stationary platforms such as one created using trackingScenario. The
monostaticRadarSensor object can simulate real detections with added random noise and also
generate false alarm detections. In addition, you can use the detections generated by this object as
input to trackers such as trackerGNN or trackerTOMHT.

This object enable you to configure a scanning radar. A scanning radar changes its look angle by
stepping the mechanical and electronic position of the beam in increments of the angular span
specified in the FieldOfView property. The radar scans the total region in azimuth and elevation
defined by the radar mechanical and electronic scan limits, MechanicalScanLimits and
ElectronicScanLimits. If the scanning limits for azimuth or elevation are set to [0 0], then no
scanning is performed along that dimension for that scan mode. If the maximum mechanical scan rate
for azimuth or elevation is set to zero, then no mechanical scanning is performed along that
dimension.

Using a single-exponential mode, the radar computes range and elevation biases caused by
propagation through the troposphere. A range bias means that measured ranges are greater than the
line-of-sight range to the target. Elevation bias means that the measured elevations are above their
true elevations. Biases are larger when the line-of-sight path between the radar and target passes
through lower altitudes because the atmosphere is thicker.

To generate radar detections:

1 Create the monostaticRadarSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
sensor = monostaticRadarSensor(SensorIndex)
sensor = monostaticRadarSensor(SensorIndex,Name,Value)

sensor = monostaticRadarSensor(SensorIndex,'No scanning')
sensor = monostaticRadarSensor(SensorIndex,'Raster')
sensor = monostaticRadarSensor(SensorIndex,'Rotator')
sensor = monostaticRadarSensor(SensorIndex,'Sector')

3 System Objects

3-214

Description

sensor = monostaticRadarSensor(SensorIndex) creates a radar detection generator object
with a specified sensor index, SensorIndex, and default property values.

sensor = monostaticRadarSensor(SensorIndex,Name,Value) sets properties using one or
more name-value pairs. Enclose each property name in quotes. For example,
monostaticRadarSensor(1,'DetectionCoordinates','Sensor rectangular') creates a
radar detection generator that reports detections in the sensor Cartesian coordinate system with
sensor index equal to 1.

sensor = monostaticRadarSensor(SensorIndex,'No scanning') is a convenience syntax
that creates a monostaticRadarSensor that only points along the radar antenna boresight
direction. No mechanical or electronic scanning is performed. This syntax sets the ScanMode
property to 'No scanning'.

sensor = monostaticRadarSensor(SensorIndex,'Raster') is a convenience syntax that
creates a monostaticRadarSensor object that mechanically scans a raster pattern. The raster span
is 90° in azimuth from –45° to +45° and in elevation from the horizon to 10° above the horizon. See
“Convenience Syntaxes” on page 3-234 for the properties set by this syntax.

sensor = monostaticRadarSensor(SensorIndex,'Rotator') is a convenience syntax that
creates a monostaticRadarSensor object that mechanically scans 360° in azimuth by mechanically
rotating the antenna at a constant rate. When you set HasElevation to true, the radar antenna
mechanically points towards the center of the elevation field of view. See “Convenience Syntaxes” on
page 3-234 for the properties set by this syntax.

sensor = monostaticRadarSensor(SensorIndex,'Sector') is a convenience syntax to create
a monostaticRadarSensor object that mechanically scans a 90° azimuth sector from –45° to +45°.
Setting HasElevation to true points the radar antenna towards the center of the elevation field of
view. You can change the ScanMode to 'Electronic' to electronically scan the same azimuth
sector. In this case, the antenna is not mechanically tilted in an electronic sector scan. Instead, beams
are stacked electronically to process the entire elevation spanned by the scan limits in a single dwell.
See “Convenience Syntaxes” on page 3-234 for the properties set by this syntax.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SensorIndex — Unique sensor identifier
positive integer

Unique sensor identifier, specified as a positive integer. This property distinguishes detections that
come from different sensors in a multi-sensor system. When creating a monostaticRadarSensor
system object, you must either specify the SensorIndex as the first input argument in the creation
syntax, or specify it as the value for the SensorIndex property in the creation syntax.
Data Types: double

 monostaticRadarSensor

3-215

UpdateRate — Sensor update rate
1 (default) | positive scalar

Sensor update rate, specified as a positive scalar. This interval must be an integer multiple of the
simulation time interval defined by trackingScenario. The trackingScenario object calls the
radar scanning sensor at simulation time intervals. The radar generates new detections at intervals
defined by the reciprocal of the UpdateRate property. Any update requested to the sensor between
update intervals contains no detections. Units are in hertz.
Example: 5
Data Types: double

MountingLocation — Sensor location on platform
[0 0 0] (default) | 1-by-3 real-valued vector

Sensor location on platform, specified as a 1-by-3 real-valued vector. This property defines the
coordinates of the sensor with respect to the platform origin. The default value specifies that the
sensor origin is at the origin of its platform. Units are in meters.
Example: [.2 0.1 0]
Data Types: double

MountingAngles — Orientation of sensor
[0 0 0] (default) | 3-element real-valued vector

Orientation of the sensor with respect to the platform, specified as a three-element real-valued vector.
Each element of the vector corresponds to an intrinsic Euler angle rotation that carries the body axes
of the platform to the sensor axes. The three elements define the rotations around the z-, y-, and x-
axes, in that order. The first rotation rotates the platform axes around the z-axis. The second rotation
rotates the carried frame around the rotated y-axis. The final rotation rotates the frame around the
carried x-axis. Units are in degrees.
Example: [10 20 -15]
Data Types: double

FieldOfView — Fields of view of sensor
[10;50] | 2-by-1 vector of positive scalar

Fields of view of sensor, specified as a 2-by-1 vector of positive scalars in degree, [azfov;elfov].
The field of view defines the total angular extent spanned by the sensor. The azimuth filed of view
azfov must lie in the interval (0,360]. The elevation filed of view elfov must lie in the interval
(0,180].
Example: [14;7]
Data Types: double

HasRangeAmbiguities — Enable range ambiguities
false (default) | true

Enable range ambiguities, specified as false or true. Set this property to true to enable range
ambiguities by the sensor. In this case, the sensor cannot resolve range ambiguities and target ranges
beyond the MaxUnambiguousRange are wrapped into the interval [0 MaxUnambiguousRange].
When false, targets are reported at their unambiguous range.

3 System Objects

3-216

Data Types: logical

MaxUnambiguousRange — Maximum unambiguous detection range
100e3 (default) | positive scalar

Maximum unambiguous range, specified as a positive scalar. Maximum unambiguous range defines
the maximum range for which the radar can unambiguously resolve the range of a target. When
HasRangeAmbiguities is set to true, targets detected at ranges beyond the maximum unambiguous
range are wrapped into the range interval [0,MaxUnambiguousRange]. This property applies to
true target detections when you set the HasRangeAmbiguities property to true.

This property also applies to false target detections when you set the HasFalseAlarms property to
true. In this case, the property defines the maximum range for false alarms.

Units are in meters.
Example: 5e3

Dependencies

To enable this property, set the HasRangeAmbiguities property to true or set the
HasFalseAlarms property to true.
Data Types: double

HasRangeRateAmbiguities — Enable range-rate ambiguities
false (default) | true

Enable range-rate ambiguities, specified as false or true. Set to true to enable range-rate
ambiguities by the sensor. When true, the sensor does not resolve range rate ambiguities and target
range rates beyond the MaxUnambiguousRadialSpeed are wrapped into the interval [-
MaxUnambiguousRadialSpeed,MaxUnambiguousRadialSpeed]. When false, targets are
reported at their unambiguous range rate.

Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: logical

MaxUnambiguousRadialSpeed — Maximum unambiguous radial speed
200 (default) | positive scalar

Maximum unambiguous radial speed, specified as a positive scalar. Radial speed is the magnitude of
the target range rate. Maximum unambiguous radial speed defines the radial speed for which the
radar can unambiguously resolve the range rate of a target. When HasRangeRateAmbiguities is
set to true, targets detected at range rates beyond the maximum unambiguous radial speed are
wrapped into the range rate interval [-MaxUnambiguousRadialSpeed,
MaxUnambiguousRadialSpeed]. This property applies to true target detections when you set
HasRangeRateAmbiguities property to true.

This property also applies to false target detections obtained when you set both the HasRangeRate
and HasFalseAlarms properties to true. In this case, the property defines the maximum radial
speed for which false alarms can be generated.

Units are in meters per second.

 monostaticRadarSensor

3-217

Dependencies

To enable this property, set HasRangeRate and HasRangeRateAmbiguities to true and/or set
HasRangeRate and HasFalseAlarms to true.
Data Types: double

ScanMode — Scanning mode of radar
'Mechanical' (default) | 'Electronic' | 'Mechanical and electronic' | 'No scanning'

Scanning mode of radar, specified as 'Mechanical', 'Electronic', 'Mechanical and
electronic', or 'No scanning'.

Scan Modes

ScanMode Purpose
'Mechanical' The radar scans mechanically across the azimuth

and elevation limits specified by the
MechanicalScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Electronic' The radar scans electronically across the azimuth
and elevation limits specified by the
ElectronicScanLimits property. The scan
direction increments by the radar field of view
angle between dwells.

'Mechanical and electronic' The radar mechanically scans the antenna
boresight across the mechanical scan limits and
electronically scans beams relative to the
antenna boresight across the electronic scan
limits. The total field of regard scanned in this
mode is the combination of the mechanical and
electronic scan limits. The scan direction
increments by the radar field of view angle
between dwells.

'No scanning' The radar beam points along the antenna
boresight defined by the MountingAngles
property.

Example: 'No scanning'

MaxMechanicalScanRate — Maximum mechanical scan rate
[75;75] (default) | nonnegative scalar | real-valued 2-by-1 vector with nonnegative entries

Maximum mechanical scan rate, specified as a nonnegative scalar or real-valued 2-by-1 vector with
nonnegative entries.

When HasElevation is true, specify the scan rate as a 2-by-1 column vector of nonnegative entries
[maxAzRate; maxElRate]. maxAzRate is the maximum scan rate in azimuth and maxElRate is the
maximum scan rate in elevation.

When HasElevation is false, specify the scan rate as a nonnegative scalar representing the
maximum mechanical azimuth scan rate.

3 System Objects

3-218

Scan rates set the maximum rate at which the radar can mechanically scan. The radar sets its scan
rate to step the radar mechanical angle by the field of regard. If the required scan rate exceeds the
maximum scan rate, the maximum scan rate is used. Units are degrees per second.
Example: [5;10]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MechanicalScanLimits — Angular limits of mechanical scan directions of radar
[0 360;-10 0] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

Angular limits of mechanical scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The mechanical scan limits define the minimum and maximum mechanical
angles the radar can scan from its mounted orientation.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl
represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits cannot span more than 360° and elevation scan limits must lie within the closed
interval [-90° 90°]. Units are in degrees.
Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

MechanicalAngle — Current mechanical scan angle
scalar | real-valued 2-by-1 vector

This property is read-only.

Current mechanical scan angle of radar, returned as a scalar or real-valued 2-by-1 vector. When
HasElevation is true, the scan angle takes the form [Az; El]. Az and El represent the azimuth and
elevation scan angles, respectively, relative to the mounted angle of the radar on the platform. When
HasElevation is false, the scan angle is a scalar representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Mechanical' or 'Mechanical and
electronic'.
Data Types: double

ElectronicScanLimits — Angular limits of electronic scan directions of radar
[-45 45;-45 45] (default) | real-valued 1-by-2 row vector | real-valued 2-by-2 matrix

 monostaticRadarSensor

3-219

Angular limits of electronic scan directions of radar, specified as a real-valued 1-by-2 row vector or a
real-valued 2-by-2 matrix. The electronic scan limits define the minimum and maximum electronic
angles the radar can scan from its current mechanical direction.

When HasElevation is true, the scan limits take the form [minAz maxAz; minEl maxEl]. minAz and
maxAz represent the minimum and maximum limits of the azimuth angle scan. minEl and maxEl
represent the minimum and maximum limits of the elevation angle scan. When HasElevation is
false, the scan limits take the form [minAz maxAz]. If you specify the scan limits as a 2-by-2 matrix
but set HasElevation to false, the second row of the matrix is ignored.

Azimuthal scan limits and elevation scan limits must lie within the closed interval [-90° 90°]. Units
are in degrees.
Example: [-90 90;0 85]

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

ElectronicAngle — Current electronic scan angle
electronic scalar | nonnegative scalar

This property is read-only.

Current electronic scan angle of radar, returned as a scalar or 1-by-2 column vector. When
HasElevation is true, the scan angle takes the form [Az;El]. Az and El represent the azimuth and
elevation scan angles, respectively. When HasElevation is false, the scan angle is a scalar
representing the azimuth scan angle.

Dependencies

To enable this property, set the ScanMode property to 'Electronic' or 'Mechanical and
electronic'.
Data Types: double

LookAngle — Look angle of sensor
scalar | real-valued 2-by-1 vector

This property is read-only.

Look angle of sensor, specified as a scalar or real-valued 2-by-1 vector. Look angle is a combination of
the mechanical angle and electronic angle depending on the ScanMode property.

ScanMode LookAngle
'Mechanical' MechnicalAngle
'Electronic' ElectronicAngle
'Mechanical and Electronic' MechnicalAngle + ElectronicAngle
'No scanning' 0

3 System Objects

3-220

When HasElevation is true, the look angle takes the form [Az;El]. Az and El represent the azimuth
and elevation look angles, respectively. When HasElevation is false, the look angle is a scalar
representing the azimuth look angle.

DetectionProbability — Probability of detecting a target
0.9 | positive scalar less than or equal to 1

Probability of detecting a target, specified as a positive scalar less than or equal to one. This quantity
defines the probability of detecting a target with a radar cross-section, ReferenceRCS, at the
reference detection range, ReferenceRange.
Example: 0.95
Data Types: double

FalseAlarmRate — False alarm rate
1e-6 (default) | positive scalar

False alarm report rate within each radar resolution cell, specified as a positive scalar in the range
[10–7,10–3]. Units are dimensionless. Resolution cells are determined from the AzimuthResolution and
RangeResolution properties, and the ElevationResolution and RangeRateResolution properties when
they are enabled.
Example: 1e-5
Data Types: double

ReferenceRange — Reference range for given probability of detection
100e3 (default) | positive scalar

Reference range for the given probability of detection and the given reference radar cross-section
(RCS), specified as a positive scalar. The reference range is the range at which a target having a
radar cross-section specified by ReferenceRCS is detected with a probability of detection specified
by DetectionProbability. Units are in meters.
Example: 25e3
Data Types: double

ReferenceRCS — Reference radar cross-section for given probability of detection
0 (default) | scalar

Reference radar cross-section (RCS) for given a probability of detection and reference range,
specified as a scalar. The reference RCS is the RCS value at which a target is detected with
probability specified by DetectionProbability at ReferenceRange. Units are in dBsm.
Example: -10
Data Types: double

RadarLoopGain — Radar loop gain
scalar

This property is read-only.

Radar loop gain, returned as a scalar. RadarLoopGain depends on the values of the
DetectionProbability, ReferenceRange, ReferenceRCS, and FalseAlarmRate properties.
Radar loop gain is a function of the reported signal-to-noise ratio of the radar, SNR, the target radar
cross-section, RCS, and the target range, R. The function is

 monostaticRadarSensor

3-221

SNR = RadarLoopGain + RCS - 40log10(R) (3-1)

where SNR and RCS are in dB and dBsm, respectively, and range is in meters. Radar loop gain is in
dB.
Data Types: double

HasElevation — Enable radar elevation scan and measurements
false (default) | true

Enable the radar to measure target elevation angles and to scan in elevation, specified as false or
true. Set this property to true to model a radar sensor that can estimate target elevation and scan
in elevation.
Data Types: logical

HasRangeRate — Enable radar to measure range rate
false (default) | true

Enable the radar to measure target range rates, specified as false or true. Set this property to
true to model a radar sensor that can measure target range rate. Set this property to false to
model a radar sensor that cannot measure range rate.
Data Types: logical

AzimuthResolution — Azimuth resolution of radar
1 (default) | positive scalar

Azimuth resolution of the radar, specified as a positive scalar. The azimuth resolution defines the
minimum separation in azimuth angle at which the radar can distinguish two targets. The azimuth
resolution is typically the 3dB downpoint of the azimuth angle beamwidth of the radar. Units are in
degrees.
Data Types: double

ElevationResolution — Elevation resolution of radar
1 (default) | positive scalar

Elevation resolution of the radar, specified as a positive scalar. The elevation resolution defines the
minimum separation in elevation angle at which the radar can distinguish two targets. The elevation
resolution is typically the 3dB-downpoint in elevation angle beamwidth of the radar. Units are in
degrees.

Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeResolution — Range resolution of radar
100 (default) | positive scalar

Range resolution of the radar, specified as a positive scalar. The range resolution defines the
minimum separation in range at which the radar can distinguish between two targets. Units are in
meters.
Data Types: double

3 System Objects

3-222

RangeRateResolution — Range rate resolution of radar
10 (default) | positive scalar

Range rate resolution of the radar, specified as a positive scalar. The range rate resolution defines the
minimum separation in range rate at which the radar can distinguish between two targets. Units are
in meters per second.
Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

AzimuthBiasFraction — Azimuth bias fraction
0.1 (default) | nonnegative scalar

Azimuth bias fraction of the radar, specified as a nonnegative scalar. The azimuth bias is expressed as
a fraction of the azimuth resolution specified in AzimuthResolution. This value sets a lower bound
on the azimuthal accuracy of the radar. This value is dimensionless.
Data Types: double

ElevationBiasFraction — Elevation bias fraction
0.1 (default) | nonnegative scalar

Elevation bias fraction of the radar, specified as a nonnegative scalar. Elevation bias is expressed as a
fraction of the elevation resolution specified by the value of the ElevationResolution property.
This value sets a lower bound on the elevation accuracy of the radar. This value is dimensionless.
Dependencies

To enable this property, set the HasElevation property to true.
Data Types: double

RangeBiasFraction — Range bias fraction
0.05 (default) | nonnegative scalar

Range bias fraction of the radar, specified as a nonnegative scalar. Range bias is expressed as a
fraction of the range resolution specified in RangeResolution. This property sets a lower bound on
the range accuracy of the radar. This value is dimensionless.
Data Types: double

RangeRateBiasFraction — Range rate bias fraction
0.05 (default) | nonnegative scalar

Range rate bias fraction of the radar, specified as a nonnegative scalar. Range rate bias is expressed
as a fraction of the range rate resolution specified in RangeRateResolution. This property sets a
lower bound on the range-rate accuracy of the radar. This value is dimensionless.
Dependencies

To enable this property, set the HasRangeRate property to true.
Data Types: double

HasINS — Enable inertial navigation system (INS) input
false (default) | true

 monostaticRadarSensor

3-223

Enable the optional input argument that passes the current estimate of the sensor platform pose to
the sensor, specified as false or true. When true, pose information is added to the
MeasurementParameters structure of the reported detections. Pose information lets tracking and
fusion algorithms estimate the state of the target detections in the north-east-down (NED) frame.
Data Types: logical

HasNoise — Enable addition of noise to radar sensor measurements
true (default) | false

Enable addition of noise to radar sensor measurements, specified as true or false. Set this property
to true to add noise to the radar measurements. Otherwise, the measurements have no noise. Even if
you set HasNoise to false, the object still computes the MeasurementNoise property of each
detection.
Data Types: logical

HasFalseAlarms — Enable creating false alarm radar detections
true (default) | false

Enable creating false alarm radar measurements, specified as true or false. Set this property to
true to report false alarms. Otherwise, only actual detections are reported.
Data Types: logical

HasOcclusion — Enable occlusion from extended objects
true (default) | false

Enable occlusion from extended objects, specified as true or false. Set this property to true to
model occlusion from extended objects. Two types of occlusion (self occlusion and inter object
occlusion) are modeled. Self occlusion occurs when one side of an extended object occludes another
side. Inter object occlusion occurs when one extended object stands in the line of sight of another
extended object or a point target. Note that both extended objects and point targets can be occluded
by extended objects, but a point target cannot occlude another point target or an extended object.

Set this property to false to disable occlusion of extended objects. This will also disable the merging
of objects whose detections share a common sensor resolution cell, which gives each object in the
tracking scenario an opportunity to generate a detection.
Data Types: logical

MaxNumDetectionsSource — Source of maximum number of detections reported
'Auto' (default) | 'Property'

Source of maximum number of detections reported by the sensor, specified as 'Auto' or
'Property'. When this property is set to 'Auto', the sensor reports all detections. When this
property is set to 'Property', the sensor reports up to the number of detections specified by the
MaxNumDetections property.
Data Types: char

MaxNumDetections — Maximum number of reported detections
50 (default) | positive integer

Maximum number of detections reported by the sensor, specified as a positive integer. Detections are
reported in order of distance to the sensor until the maximum number is reached.

3 System Objects

3-224

Dependencies

To enable this property, set the MaxNumDetectionsSource property to 'Property'.
Data Types: double

DetectionCoordinates — Coordinate system of reported detections
'Body' (default) | 'Scenario' | 'Sensor rectangular | 'Sensor spherical'

Coordinate system of reported detections, specified as:

• 'Scenario' — Detections are reported in the rectangular scenario coordinate frame. The
scenario coordinate system is defined as the local NED frame at simulation start time. To enable
this value, set the HasINS property to true.

• 'Body' — Detections are reported in the rectangular body system of the sensor platform.
• 'Sensor rectangular' — Detections are reported in the radar sensor rectangular body

coordinate system.
• 'Sensor spherical' — Detections are reported in a spherical coordinate system derived from

the sensor rectangular body coordinate system. This coordinate system is centered at the radar
sensor and aligned with the orientation of the radar on the platform.

Example: 'Sensor spherical'
Data Types: char

HasInterference — Enable RF interference input
false (default) | true

Enable RF interference input, specified as false or true. When true, you can add RF interference
using an input argument of the object.
Data Types: logical

Bandwidth — Radar waveform bandwidth
positive scalar

Radar waveform bandwidth, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

CenterFrequency — Center frequency of radar band
positive scalar

Center frequency of radar band, specified as a positive scalar. Units are in hertz.
Example: 100e6
Data Types: double

Sensitivity — Minimum operational sensitivity of receiver
-50 (default) | scalar

Minimum operational sensitivity of receiver, specified as a scalar. Sensitivity includes isotropic
antenna receiver gain. Units are in dBmi.
Example: -10

 monostaticRadarSensor

3-225

Data Types: double

Usage

Syntax
dets = sensor(targets,simTime)
dets = sensor(targets,ins,simTime)
dets = sensor(targets,interference,simTime)
[dets,numDets,config] = sensor(___)

Description

dets = sensor(targets,simTime) creates radar detections, dets, from sensor measurements
taken of targets at the current simulation time, simTime. The sensor can generate detections for
multiple targets simultaneously.

dets = sensor(targets,ins,simTime) also specifies the INS-estimated pose information, ins,
for the sensor platform. INS information is used by tracking and fusion algorithms to estimate the
target positions in the NED frame.

To enable this syntax, set the HasINS property to true.

dets = sensor(targets,interference,simTime) also specifies an interference signal,
interference.

To enable this syntax, set the HasInterference property to true.

[dets,numDets,config] = sensor(___) also returns the number of valid detections reported,
numDets, and the configuration of the sensor, config, at the current simulation time. You can use
these output arguments with any of the previous input syntaxes.

Input Arguments

targets — Tracking scenario target poses
structure | structure array

Tracking scenario target poses, specified as a structure or array of structures. Each structure
corresponds to a target. You can generate this structure using the targetPoses method of a
platform. You can also create such a structure manually. The table shows the required fields of the
structure:

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
with no default value.

ClassID User-defined integer used to classify the type of
target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

3 System Objects

3-226

Field Description
Position Position of target in platform coordinates,

specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Acceleration Acceleration of target in platform coordinates
specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

The values of the Position, Velocity, and Orientation fields are defined with respect to the
platform coordinate system.

simTime — Current simulation time
nonnegative scalar

Current simulation time, specified as a positive scalar. The trackingScenario object calls the scan
radar sensor at regular time intervals. The radar sensor generates new detections at intervals defined
by the UpdateInterval property. The value of the UpdateInterval property must be an integer
multiple of the simulation time interval. Updates requested from the sensor between update intervals
contain no detections. Units are in seconds.
Data Types: double

ins — Platform pose from INS
structure

Platform pose information from an inertial navigation system (INS) is a structure which has these
fields:

Field Definition
Position Position of the GPS receiver in the local NED

coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters.

 monostaticRadarSensor

3-227

Velocity Velocity of the GPS receiver in the local NED
coordinate system, specified as a real-valued 1-
by-3 vector. Units are in meters per second.

Orientation Orientation of the INS with respect to the local
NED coordinate system, specified as a scalar
quaternion or a 3-by-3 real-valued orthonormal
frame rotation matrix. Defines the frame rotation
from the local NED coordinate system to the
current INS body coordinate system. This is also
referred to as a "parent to child" rotation.

Dependencies

To enable this argument, set the HasINS property to true.
Data Types: struct

interference — Interfering or jamming signal
array of radarEmission objects

Interfering or jamming signal, specified as an array of radarEmission objects.

Dependencies

To enable this argument, set the HasInterference property to true.
Data Types: double
Complex Number Support: Yes

Output Arguments

dets — sensor detections
cell array of objectDetection objects

Sensor detections, returned as a cell array of objectDetection objects. For a high level view of
object detections, see objectDetection objects. Each object has these properties but the contents
of the properties depend on the specific sensor. For the monostaticRadarSensor, see “Object
Detections” on page 3-231.

Property Definition
Time Measurement time
Measurement Object measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
ObjectAttributes Additional information passed to tracker
MeasurementParameters Parameters used by initialization functions of

nonlinear Kalman tracking filters

For the Measurement and MeasurementNoise are reported in the coordinate system specified by
the DetectionCoordinates property.

3 System Objects

3-228

numDets — Number of detections
nonnegative integer

Number of detections reported, returned as a nonnegative integer.

• When the MaxNumDetectionsSource property is set to 'Auto', numDets is set to the length of
dets.

• When the MaxNumDetectionsSource property is set to 'Property', dets is a cell array with
length determined by the MaxNumDetections property. The maximum number of detections
returned is MaxNumDetections. If the number of detections is fewer than MaxNumDetections,
the first numDets elements of dets hold valid detections. The remaining elements of dets are set
to the default value.

Data Types: double

config — Current sensor configuration
structure

Current sensor configuration, specified as a structure. This output can be used to determine which
objects fall within the radar beam during object execution.

Field Description
SensorIndex Unique sensor index, returned as a positive

integer.
IsValidTime Valid detection time, returned as 0 or 1.

IsValidTime is 0 when detection updates are
requested between update intervals specified by
UpdateInterval.

IsScanDone IsScanDone is true when the sensor has
completed a scan.

FieldOfView Field of view of the sensor, returned as a 2-by-1
vector of positive real values, [azfov;elfov]. azfov
and elfov represent the field of view in azimuth
and elevation, respectively.

MeasurementParameters Sensor measurement parameters, returned as an
array of structures containing the coordinate
frame transforms needed to transform positions
and velocities in the top-level frame to the
current sensor frame.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 monostaticRadarSensor

3-229

Specific to monostaticRadarSensor
coverageConfig Sensor and emitter coverage configuration

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Air-Traffic Control Tower Radar

Simulate a radar scenario.

sc = trackingScenario('UpdateRate',1);

Create an airport control tower with a surveillance radar located 15 meters above the ground. The
radar rotates at 12.5 rpm and its field of view in azimuth is 5 degrees and its field of view in elevation
is 10 degrees.

rpm = 12.5;
fov = [5;10]; % [azimuth; elevation]
scanrate = rpm*360/60;
updaterate = scanrate/fov(1) % Hz

radar = monostaticRadarSensor(1,'Rotator', ...
 'UpdateRate',updaterate, ...
 'MountingLocation',[0 0 -15], ...
 'MaxMechanicalScanRate',scanrate, ...
 'FieldOfView',fov, ...
 'AzimuthResolution',fov(1));
towermotion = kinematicTrajectory('SampleRate',1,'Position',[0 0 0],'Velocity',[0 0 0]);
tower = platform(sc,'ClassID',1,'Trajectory',towermotion);
aircraft1motion = kinematicTrajectory('SampleRate',1,'Position',[10000 0 1000],'Velocity',[-100 0 0]);
aircraft1 = platform(sc,'ClassID',2,'Trajectory',aircraft1motion);
aircraft2motion = kinematicTrajectory('SampleRate',1,'Position',[5000 5000 200],'Velocity',[100 100 0]);
aircraft2 = platform(sc,'ClassID',2,'Trajectory',aircraft2motion);

Perform 5 scans.

detBuffer = {};
scanCount = 0;
while advance(sc)
 simTime = sc.SimulationTime;
 targets = targetPoses(tower);
 [dets,numDets,config] = radar(targets,simTime);
 detBuffer = [detBuffer;dets];
 if config.IsScanDone
 scanCount = scanCount + 1;
 if scanCount == 5;
 break;
 end
 end
end

3 System Objects

3-230

Plot detections

tp = theaterPlot;
clrs = lines(3);
rp = platformPlotter(tp,'DisplayName','Radar','Marker','s',...
 'MarkerFaceColor',clrs(1,:));
pp = platformPlotter(tp,'DisplayName','Truth',...
 'MarkerFaceColor',clrs(2,:));
dp = detectionPlotter(tp,'DisplayName','Detections',...
 'MarkerFaceColor',clrs(3,:));
plotPlatform(rp,[0 0 0])
plotPlatform(pp,[targets(1).Position; targets(2).Position])
if ~isempty(detBuffer)
 detPos = cellfun(@(d)d.Measurement(1:3),detBuffer,...
 'UniformOutput',false);
 detPos = cell2mat(detPos')';
 plotDetection(dp,detPos)
end

More About
Object Detections
Measurements

The sensor measures the coordinates of the target. The Measurement and MeasurementNoise
values are reported in the coordinate system specified by the DetectionCoordinates property of
the sensor.

When the DetectionCoordinates property is 'Scenario', 'Body', or 'Sensor rectangular',
the Measurement and MeasurementNoise values are reported in rectangular coordinates.
Velocities are only reported when the range rate property, HasRangeRate, is true.

When the DetectionCoordinates property is 'Sensor spherical', the Measurement and
MeasurementNoise values are reported in a spherical coordinate system derived from the sensor
rectangular coordinate system. Elevation and range rate are only reported when HasElevation and
HasRangeRate are true.

Measurements are ordered as [azimuth, elevation, range, range rate]. Reporting of elevation and
range rate depends on the corresponding HasElevation and HasRangeRate property values.
Angles are in degrees, range is in meters, and range rate is in meters per second.

 monostaticRadarSensor

3-231

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x; y; z; vx; vy; vz]
false [x; y; z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az; el; rng; rr]
true false [az; rng; rr]
false true [az; el; rng]
false false [az; rng]

Measurement Parameters

The MeasurementParameters property consists of an array of structures that describe a sequence
of coordinate transformations from a child frame to a parent frame or the inverse transformations
(see “Frame Rotation”). In most cases, the longest required sequence of transformations is Sensor →
Platform → Scenario.

If the detections are reported in sensor spherical coordinates and HasINS is set to false, then the
sequence consists only of one transformation from sensor to platform. In the transformation, the
OriginPosition is same as the MountingLocation property of the sensor. The Orientation
consists of two consecutive rotations. The first rotation, corresponding to the MountingAngles
property of the sensor, accounts for the rotation from the platform frame (P) to the sensor mounting
frame (M). The second rotation, corresponding to the azimuth and elevation angles of the sensor,
accounts for the rotation from the sensor mounting frame (M) to the sensor scanning frame (S). In
the S frame, the x direction is the boresight direction, and the y direction lies within the x-y plane of
the sensor mounting frame (M).

3 System Objects

3-232

If HasINS is true, the sequence of transformations consists of two transformations – first form the
scenario frame to the platform frame then from platform frame to the sensor scanning frame. In the
first transformation, the Orientation is the rotation from the scenario frame to the platform frame,
and the OriginPosition is the position of the platform frame origin relative to the scenario frame.

Trivially, if the detections are reported in platform rectangular coordinates and HasINS is set to
false, the transformation consists only of the identity.

The fields of MeasurementParameters are shown here. Not all fields have to be present in the
structure. The set of fields and their default values can depend on the type of sensor.

Field Description
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

OriginVelocity Velocity offset of the origin of the child frame
relative to the parent frame, represented as a 3-
by-1 vector.

 monostaticRadarSensor

3-233

Orientation 3-by-3 real-valued orthonormal frame rotation
matrix. The direction of the rotation depends on
the IsParentTochild field.

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child coordinate frame to the parent
coordinate frame.

HasElevation A logical scalar indicating if elevation is included
in the measurement. For measurements reported
in a rectangular frame, and if HasElevation is
false, the measurements are reported assuming
0 degrees of elevation.

HasAzimuth A logical scalar indicating if azimuth is included
in the measurement.

HasRange A logical scalar indicating if range is included in
the measurement.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. For
measurements reported in the rectangular frame,
if HasVelocity is false, the measurements are
reported as [x y z]. If HasVelocity is true,
measurements are reported as [x y z vx vy
vz].

Object Attributes

Object attributes contain additional information about a detection:

Attribute Description
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

SNR Detection signal-to-noise ratio in dB.

Convenience Syntaxes

The convenience syntaxes set several properties together to model a specific type of radar.

No Scanning

Sets ScanMode to 'No scanning'.

Raster Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'

3 System Objects

3-234

HasElevation true
MaxMechanicalScanRate [75;75]
MechanicalScanLimits [-45 45;-10 0]
ElectronicScanLimits [-45 45;-10 0]

You can change the ScanMode property to 'Electronic' to perform an electronic raster scan over
the same volume as a mechanical scan.

Rotator Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1:10]
HasElevation false or true
MechanicalScanLimits [0 360;-10 0]
ElevationResolution 10/sqrt(12)

Sector Scanning

This syntax sets these properties:

Property Value
ScanMode 'Mechanical'
FieldOfView [1;10]
HasElevation false
MechanicalScanLimits [-45 45;-10 0]
ElectronicScanLimits [-45 45;-10 0]
ElevationResolution 10/sqrt(12)

Changing the ScanMode property to 'Electronic' lets you perform an electronic raster scan over
the same volume as a mechanical scan.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
objectDetection | radarEmission

 monostaticRadarSensor

3-235

Functions
targetPoses

System Objects
trackerGNN | trackerTOMHT

Introduced in R2018b

3 System Objects

3-236

trackAssignmentMetrics
Track establishment, maintenance, and deletion metrics

Description
The trackAssignmentMetrics System object compares tracks from a multi-object tracking system
against known truth by automatic assignment of tracks to the known truths at each track update. An
assignment distance metric determines the maximum distance for which a track can be assigned to
the truth object. A divergence distance metric determines when a previously assigned track can be
reassigned to a different truth object when the distance exceeds another set threshold.

To generate track assignment metrics:

1 Create the trackAssignmentMetrics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
assignmentMetics = trackAssignmentMetrics
assignmentMetics = trackAssignmentMetrics(Name,Value)

Description

assignmentMetics = trackAssignmentMetrics creates a trackAssignmentMetrics System
object, assignmentMetics, with default property values.

assignmentMetics = trackAssignmentMetrics(Name,Value) sets properties for the
trackAssignmentMetrics object using one or more name-value pairs. For example,
assignmentMetics = trackAssignmentMetrics('AssignmentThreshold',5) creates a
trackAssignmentMetrics object with an assignment threshold of 5. Enclose property names in
quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

AssignmentThreshold — Maximum permitted assignment distance
1 (default) | nonnegative scalar

 trackAssignmentMetrics

3-237

Maximum permitted assignment distance between a newly encountered or divergent track and a
truth object, specified as a nonnegative scalar. For distances beyond this value, assignments between
the track and the truth cannot take place. Units are in normalized estimation error squared (NEES).
Data Types: single | double

DivergenceThreshold — Maximum permitted divergence distance
2 (default) | nonnegative scalar

Maximum permitted divergence distance between a track state and the state of an assigned truth
object, specified as a nonnegative scalar. For distances beyond this value, tracks are eligible for
reassignment to a different truth object. Units are in NEES.
Data Types: single | double

DistanceFunctionFormat — Distance function format
'built-in' (default) | 'custom'

Distance function format specified as 'built-in' or 'custom'.

• 'built-in' – Enable the MotionModel, AssignmentDistance, and DivergenceDistance
properties. These properties are convenient interfaces when tracks are reported by any built-in
multi-object tracker (such as trackerGNN), and truths reported by the platformPoses object
function of a trackingScenario object.

• 'custom' – Enable custom properties: AssignmentDistanceFcn, DivergenceDistanceFcn,
IsInsideCoverageAreaFcn, TruthIdentifierFcn, and TrackIdentifierFcns. You can use
these properties to construct acceptance or divergence distances, coverage areas, and identifiers
for arbitrary 'tracks' and 'truths' input arrays.

MotionModel — Desired platform motion model
'constvel' (default) | 'constacc' | 'constturn'

Desired platform motion model, specified as 'constvel', 'constacc', or 'constturn'. This
property selects the motion model used by the tracks input. The motion model governs the outputs
when the object is executed.

The motion models expect the 'State' field of the tracks to have a column vector as follows:

• 'constvel' - Position is in elements [1 3 5], velocity in elements [2 4 6].
• 'constacc' - Position is in elements [1 4 7], velocity in elements [2 5 8], and acceleration in

elements [3 6 9].
• 'constturn' - Position is in elements [1 3 6], velocity in elements [2 4 7], and yaw rate in

element 5.

The 'StateCovariance' field of the tracks input must have position, velocity, and turn-rate
covariances in the rows and columns corresponding to the position, velocity and turn-rate of the
'State' field of the tracks input.

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'built-in'.

AssignmentDistance — Type of assignment distance
'posnees' (default) | 'velnees' | 'posabserr' | 'velabserr'

3 System Objects

3-238

Type of assignment distance, specified as 'posnees', 'velnees', 'posabserr', or 'velabserr'.
The type specifies the physical quantity used for assignment. When a new track is detected or a track
becomes divergent, the track is compared against truth using this quantity. The assignment seeks the
closest truth within the threshold defined by the AssignmentThreshold property.

• 'posnees' – NEES error of track position
• 'velnees' – NEES error in track velocity
• 'posabserr' – Absolute error of track position
• 'velabserr' – Absolute error of track velocity

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'built-in'.

DivergenceDistance — Type of assignment distance
'posnees' (default) | 'velnees' | 'posabserr' | 'velabserr'

Type of divergence distance, specified as 'posnees', 'velnees', 'posabserr', or 'velabserr'.
The type specifies the physical quantity used for assessing divergence. When a track was previously
assigned to truth, the distance between them is compared to this quantity on subsequent update
steps. Any track whose divergence distance to its truth assignment exceeds the value of
DivergenceThreshold is considered divergent and can be reassigned to a new truth.

• 'posnees' – NEES error of track position
• 'velnees' – NEES error in track velocity
• 'posabserr' – Absolute error of track position
• 'velabserr' – Absolute error of track velocity

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'built-in'.

AssignmentDistanceFcn — Assignment distance function
function handle

Assignment distance function, specified as a function handle. This function determines the
assignment distance between truths and tracks. Whenever a new track is detected or an existing
track becomes divergent, the track needs to be compared against all truths at the current step. This
function help to find the closest truth relative to the track within the threshold defined by the
AssignmentThreshold property.

The function must have the following syntax:

dist = assignmentdistance(onetrack,onetruth)

The function must return a nonnegative assignment distance, dist, typically expressed in units of
NEES. onetrack is an element of the tracks array input argument. onetruth is an element of the
truths array input argument.

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'custom'.
Data Types: function_handle

 trackAssignmentMetrics

3-239

DivergenceDistanceFcn — Divergence distance function
function handle

Divergence distance function, specified as a function handle. This function determines the divergence
distance between truths and tracks. If the divergence distance from a track to its truth assignment
exceeds the DivergenceThreshold, the track is considered divergent and can be reassigned to a
new truth.

The function must have the following syntax:

dist = divergencedistance(onetrack,onetruth)

The function must return a non-negative divergence distance, dist, typically expressed in units of
NEES. onetrack is an element of the tracks array input argument. onetruth is an element of the
truths array input argument.

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'custom'.
Data Types: function_handle

IsInsideCoverageAreaFcn — Determine the time that a truth object is detectable
function handle

Function to determine the time that a truth object is detectable, specified as a function handle. This
function determines the time that a truth object is inside the coverage area of the sensors and is
therefore detectable.

The function must have the following syntax:

status = isinsidecoveragearea(truths)

and return a logical array, status. truths is an array of truth objects expected to be passed in on
each step. status is a logical array with the same size as the truths input. An entry of status is
true when the corresponding truth object specified by truths is within the coverage area of the
sensors.

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'custom'.
Data Types: function_handle

TrackIdentifierFcn — Track identifier function
function handle

Track identifier function for the tracks input, specified as a function handle. The track identifiers
are unique strings or numeric values.

The function must have the following syntax

trackids = trackidentifier(tracks)

and return a numeric array, trackids. trackids must have the same size as tracks input
argument. The default track identification function assumes Tracks is an array of struct or class with
a TrackID field or property.

3 System Objects

3-240

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'custom'.
Data Types: function_handle

TruthIdentifierFcn — Truth identifier function
function handle

Truth identifier function for the truths input, specified as a function handle. The truth identifiers are
unique strings or numeric values.

The function must have the following syntax

truthids = truthidentifier(truths)

and return a numeric array, truthids. truthids must have the same size as the truths input
argument. The default truth identification function assumes truths is an array of struct or class with
a PlatformID field or property.

Dependencies

To enable this property, set the DistanceFunctionFormat property to 'custom'.
Data Types: function_handle

InvalidTrackIdentifier — Track identifier for invalid assignment
NaN (default) | scalar | string

Track identifier for invalid assignment, specified as a scalar or string. This value is returned when the
track assignment is invalid. The value must be of the same class as returned by the function handle
specified in TrackIdentifierFcn.
Example: -1
Data Types: single | double | string

InvalidTruthIdentifier — Truth identifier for invalid assignment
NaN (default) | scalar | string

Truth identifier for invalid assignment, specified as a scalar or string. This value is returned when the
truth assignment is invalid. The value must be of the same class as returned by the function handle
specified in TruthIdentifierFcn.
Example: -1
Data Types: single | double | string

Usage
To compute metrics, call the track assignment metrics with arguments, as if it were a function
(described here).

Syntax
[tracksummary,truthsummary] = assignmentMetics(tracks,truths)

 trackAssignmentMetrics

3-241

Description

[tracksummary,truthsummary] = assignmentMetics(tracks,truths) returns structures,
tracksummary and truthsummary, containing cumulative metrics across all tracks and truths,
obtained from the previous object update.

Input Arguments

tracks — Track information
array of objects | array of structures

Track information, specified as an array of objects or an array of structures. If the
DistanceFunctionFormat property is specified as 'built-in', then tracks must contain State,
StateCovariance, and TrackID as property names or field names. The track outputs from built-in
trackers, such as trackerGNN, are compatible with the tracks input.
Data Types: struct

truths — Truth information
structure | array of structures

Truth information, specified as a structure or array of structures. When using a trackingScenario,
truth information can be obtained from the platformPoses object function.
Data Types: struct

Output Arguments

tracksummary — Cumulative track assignment metrics
structure

Cumulative metrics over all tracks, returned as a structure. The metrics are computed over all tracks
since the last call to the reset object function. The structure has these fields:

Field Description
TotalNumTracks The total number of unique track identifiers

encountered
NumFalseTracks The number of tracks never assigned to any truth
MaxSwapCount Maximum number of track swaps of each track. A

track swap occurs whenever a track is assigned
to a different truth.

TotalSwapCount Total number of track swaps of each track. A
track swap occurs whenever a track is assigned
to a different truth.

MaxDivergenceCount Maximum number of divergences. A track is
divergent when the result of the
DivergenceDistanceFcn is greater than the
divergence threshold.

TotalDivergenceCount Total number of divergences. A track is divergent
when the result of the divergence distance
function is greater than the divergence threshold.

3 System Objects

3-242

MaxDivergenceLength Maximum number of updates during which each
track was in a divergent state

TotalDivergenceLength Total number of updates during which each track
was in a divergent state

MaxRedundancyCount The maximum number of additional tracks
assigned to the same truth

TotalRedundancyCount The total number of additional tracks assigned to
the same truth

MaxRedundancyLength Maximum number of updates during which each
track was in a redundant state

TotalRedundancyLength Total number of updates during which each track
was in a redundant state

Data Types: struct

truthsummary — Cumulative truth assignment metrics
structure

Cumulative assignment metrics over all truths, returned as a structure. The metrics are computed
over all truths since the last call to the reset object function. The structure has these fields:

Field Description
TotalNumTruths The total number of unique truth identifiers

encountered
NumMissingTruths The number of truths never established with any

track
MaxEstablishmentLength Maximum number of updates before a truth was

associated with any track while inside the
coverage area. The lengths of missing truths do
not count toward this summary metric.

TotalEstablishmentLength Total number of updates before a truth was
associated with any track while inside the
coverage area. The lengths of missing truths do
not count toward this summary metric.

MaxBreakCount Maximum number of times each truth was
unassociated by any track after being
established.

TotalBreakCount Total number of times each truth was
unassociated by any track after being
established.

MaxBreakLength Maximum number of updates during which each
truth was in a broken state

TotalBreakLength Total number of updates during which each truth
was in a broken state

Data Types: struct

 trackAssignmentMetrics

3-243

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackAssignmentMetrics
currentAssignment Mapping of tracks to truth
trackMetricsTable Compare tracks to truth
truthMetricsTable Compare truth to tracks

Common to All System Objects
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use
clone Create duplicate System object

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);

3 System Objects

3-244

 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

 trackAssignmentMetrics

3-245

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

3 System Objects

3-246

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

See Also
System Objects
monostaticRadarSensor | trackErrorMetrics | trackOSPAMetric | trackerGNN |
trackerTOMHT

Introduced in R2018b

 trackAssignmentMetrics

3-247

currentAssignment
Mapping of tracks to truth

Syntax
[trackIDs,truthIDs] = currentAssignment(assignmentMetric)

Description
[trackIDs,truthIDs] = currentAssignment(assignmentMetric) returns the assignment of
tracks to truth after the most recent update of the assignmentMetric System object. The
assignment is returned as a vector of track identifiers, trackIDs, and truth identifiers, truthIDs.
Corresponding elements of the trackIDs and truthIDs vectors define the assignments.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

3 System Objects

3-248

Show the track metrics table.

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

 currentAssignment

3-249

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

3 System Objects

3-250

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
assignmentMetric — Track assignment metrics object
trackAssignmentMetrics System object

Track assignment metrics object, specified as a trackAssignmentMetrics System object.

Output Arguments
trackIDs — Track identifiers
vector

Track identifiers, returned as a vector. trackIDs and truthIDs have the same size. Corresponding
elements of trackIDs and truthIDs represent a track-truth assignment.

truthIDs — Truth identifiers
vector

Truth identifiers, returned as a vector. trackIDs and truthIDs have the same size. Corresponding
elements of trackIDs and truthIDs represent a track-truth assignment.

Introduced in R2018b

 currentAssignment

3-251

trackMetricsTable
Compare tracks to truth

Syntax
metricsTable = trackMetricsTable(assignmentMetric)

Description
metricsTable = trackMetricsTable(assignmentMetric) returns a table of metrics,
metricsTable, for all tracks in the track assignment metrics object, assignmentMetric.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

3 System Objects

3-252

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

 trackMetricsTable

3-253

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

3 System Objects

3-254

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
assignmentMetric — Track assignment metrics object
trackAssignmentMetrics System object

Track assignment metrics object, specified as a trackAssignmentMetrics System object.

Output Arguments
metricsTable — Track metrics table
table

Track metrics table, returned as a table. Each row of the table represents a track. The table has these
columns:

Column Description
TrackID Unique track identifier
AssignedTruthID Unique truth identifier. If the track is not

assigned to any truth, or the track was not
reported in the last update, then the value of
AssignedTruthID is NaN.

Surviving True if the track was reported in the last update
TotalLength Number of updates in which this track was

reported
DeletionStatus True if the track was previously assigned to a

truth that was deleted while inside its coverage
area.

 trackMetricsTable

3-255

DeletionLength The number of updates in which the track was
following a deleted truth

DivergenceStatus True when the divergence distance between this
track and its corresponding truth exceeds the
divergence threshold

DivergenceCount Number of times this track entered a divergent
state

DivergenceLength Number of updates in which this track was in a
divergent state

RedundancyStatus True if this track is assigned to a truth already
associated with another track

RedundancyCount Number of times this track entered a redundant
state

RedundancyLength Number of updates for which this track was in a
redundant state

FalseTrackStatus True if the track was not assigned to any truth
FalseTrackLength Number of updates in which the track was

unassigned
SwapCount Number of times the track was assigned to a new

truth object

Introduced in R2018b

3 System Objects

3-256

truthMetricsTable
Compare truth to tracks

Syntax
metricsTable = truthMetricsTable(assignmentMetric)

Description
metricsTable = truthMetricsTable(assignmentMetric) returns a table of metrics,
metricsTable, for all truths in the assignmentMetric System object.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

 truthMetricsTable

3-257

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

3 System Objects

3-258

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

 truthMetricsTable

3-259

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
assignmentMetric — Track assignment metrics object
trackAssignmentMetrics System object

Track assignment metrics object, specified as a trackAssignmentMetrics System object.

Output Arguments
metricsTable — Truth metrics table
table

Truth metrics table, returned as a table. Each row of the table represents a truth. The table has these
columns:

TruthID Unique truth identifier
AssignedTrackID Unique identifier of the associated track
DeletionStatus False if the truth was reported in the last update
TotalLength Number of updates this truth was reported
DeletionLength The number of updates in which the track was

following a deleted truth
BreakStatus True when an established truth no longer has

any track assigned with it
BreakCount Number of times this truth entered a broken

state
BreakLength Number of updates in which this truth was in a

broken state

3 System Objects

3-260

InCoverageArea True if this truth object is inside the coverage
area

EstablishmentStatus True if the truth is associated to any track
EstablishmentLength Number of updates before this truth was

associated to any track while inside the coverage
area

Introduced in R2018b

 truthMetricsTable

3-261

trackErrorMetrics

Track error and NEES

Description
The trackErrorMetrics System object provides quantitative comparisons between tracks and
known truth trajectories.

To generate track assignment metrics:

1 Create the trackErrorMetrics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
errorMetrics = trackErrorMetrics
errorMetrics = trackErrorMetrics(Name,Value)

Description

errorMetrics = trackErrorMetrics creates a trackErrorMetrics System object with default
property values.

errorMetrics = trackErrorMetrics(Name,Value) sets properties for the
trackErrorMetrics object using one or more name-value pairs. For example, metrics =
trackErrorMetrics('MotionModel','constvel') creates a trackErrorMetrics object with
a constant velocity motion model. Enclose property names in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

ErrorFunctionFormat — Error function format
'built-in' (default) | 'custom'

Error function format specified as 'built-in' or 'custom'.

3 System Objects

3-262

• 'built-in' – Enable the MotionModel property.

This property is a convenient interface when using tracks reported by any built-in multi-object
tracker, and truths reported by the platformPoses object function of a trackingScenario
object. The default estimation error function assumes tracks and truths are arrays of
structures or arrays of objects.

• 'custom' – Enable custom properties: EstimationErrorLabels, EstimationErrorFcn,
TruthIdentifierFcn, and TrackIdentifierFcns. These properties can be used to construct
error functions for arbitrary tracks and truths input arrays.

MotionModel — Desired platform motion model
'constvel' (default) | 'constacc' | 'constturn'

Desired platform motion model, specified as 'constvel', 'constacc', or 'constturn'. This
property selects the motion model used by the tracks input. The motion model governs the outputs
when the object is executed.

The motion models expect the 'State' field of the tracks to have a column vector as follows:

• 'constvel' - Position is in elements [1 3 5], velocity in elements [2 4 6].
• 'constacc' - Position is in elements [1 4 7], velocity in elements [2 5 8], and acceleration in

elements [3 6 9].
• 'constturn' - Position is in elements [1 3 6], velocity in elements [2 4 7], and yaw rate in

element 5.

The 'StateCovariance' field of the tracks input must have position, velocity, and turn-rate
covariances in the rows and columns corresponding to the position, velocity and turn-rate of the
'State' field of the tracks input.
Dependencies

To enable this property, set the DistanceFunctionFormat property to 'built-in'.

EstimationErrorLabels — Labels for outputs of error estimation function
'posMSE' (default) | array of strings | cell array of character vectors

Labels for outputs of error estimation function, specified as an array of strings or cell array of
character vectors. The number of labels must correspond to the number of outputs of the error
estimation function. Specify the error estimation functions using the EstimationErrorFcn
property.
Example: {'posMSE','velMSE'}
Dependencies

To enable this property, set the ErrorFunctionFormat property to 'custom'.
Data Types: char | string

EstimationErrorFcn — Error estimation function
function handle

Error estimation function, specified as a function handle. The function determines estimation errors
of truths to tracks.

The error estimation function can have multiple scalar outputs and must have the following syntax.

 trackErrorMetrics

3-263

 [out1,out2, ...,outN] = estimationerror(onetrack,onetruth)

The number of outputs must match the number of entries in the labels array specified in the
EstimationErrorLabels property.

onetrack is an element of the tracks array passed in as input trackErrorMetric at object
updates. onetruth is an element of the truths array passed in at object updates. The
trackErrorMetrics object averages each output arithmetically when reporting across tracks or
truths.
Example: @errorFunction
Dependencies

To enable this property, set the ErrorFunctionFormat property to 'custom'.
Data Types: function_handle

TrackIdentifierFcn — Track identifier function
@trackIDFunction (default) | function handle

Track identifier function, specified as a function handle. Specifies the track identifiers for the tracks
input at object update. The track identifiers are unique string or numeric values.

The track identifier function must have the following syntax:

 trackID = trackIDentifier(tracks)

tracks is the same as the tracks array passed as input for trackErrorMetric at object update.
trackID is the same size as tracks. The default identification function handle,
@defaultTrackIdentifier, assumes tracks is an array of structures or objects with a
'TrackID' field name or property.
Dependencies

To enable this property, set the ErrorFunctionFormat property to 'custom'.
Data Types: function_handle

TruthIdentifierFcn — Truth identifier function
@truthIDFunction (default) | function handle

Truth identifier function, specified as a function handle. Specifies the truth identifiers for the truths
input at object update. The truth identifiers are unique string or numeric values.

The truth identifier function must have the following syntax:

 truthID = truthIDentifier(truths)

truths is the same as the truths array passed as input for trackErrorMetric updates. truthID
must have the same size as truths. The default identification function handle,
@defaultTruthIdentifier, assumes truths is an array or structures or objects with a
'PlatformID' field name or property.
Dependencies

To enable this property, set the ErrorFunctionFormat property to 'custom'.
Data Types: function_handle

3 System Objects

3-264

Usage
To estimate errors, call the track error metrics object with arguments, as if it were a function
(described here).

Syntax
[posRMSE,velRMSE,posANEES,velANEES] = errorMetrics(tracks,trackIDs,truths,
truthIDs)
[posRMSE,velRMSE,accRMSE,posANEES,velANEES,accANEES] = errorMetrics(tracks,
trackIDs,truths,truthIDs)
[posRMSE,velRMSE,yawRateRMSE,posANEES,velANEES,yawRateANEES] = errorMetrics(
tracks,trackIDs,truths,truthIDs)

[out1,out2, ... ,outN] = errorMetrics(tracks,trackIDs,truths,truthIDs)

Description

[posRMSE,velRMSE,posANEES,velANEES] = errorMetrics(tracks,trackIDs,truths,
truthIDs) returns the metrics

• posRMSE – Position root mean squared error
• velRMSE – Velocity root mean squared error
• posANEES – Position average normalized-estimation error squared
• velANEES – Velocity average normalized-estimation error squared

for constant velocity motion at the current time step. trackIDs is the set of track identifiers for all
tracks. truthIDs is the set of truth identifiers. tracks are the set of tracks, and truths are the set
of truths. trackIDs and truthIDs are each a vector whose corresponding elements match the track
and truth identifiers found in tracks and truths, respectively.

The RMSE and ANEES values for different states are calculated by averaging the errors of all tracks
at the current time step. For example, the position RMSE value, posRMSE, is defined as:

posRMSE = 1
M ∑

i = 1

M
Δpi

2

where M is the total number of tracks with associated truth trajectories in the current time step, and

Δpi = ptrack, i− ptruth, i

is the position difference between the position of track i, ptrack,i, and the position of the corresponding
truth, ptruth,i, at the current time step. The RMSE values for other states (vel, pos, acc, and
yawRate) are defined similarly.

The position ANEES value, posANEES, is defined as:

posANEES = 1
M ∑

i = 1

M
ΔpiTCp, i

−1Δpi

where Cp,i is the covariance matrix corresponding to the position of track i at the current time step.
The ANEES values for other states (vel, pos, acc, and yawRate) are defined similarly.

 trackErrorMetrics

3-265

To enable this syntax, set the ErrorFunctionFormat property to 'built-in' and the
MotionModel property to 'constvel'.

[posRMSE,velRMSE,accRMSE,posANEES,velANEES,accANEES] = errorMetrics(tracks,
trackIDs,truths,truthIDs) also returns the metrics

• accRMS – Acceleration root mean squared error
• accANEES – acceleration average normalized-estimation error squared

for constant acceleration motion at the current time step.

To enable this syntax, set the ErrorFunctionFormat property to 'built-in' and the
MotionModel property to 'constacc'.

[posRMSE,velRMSE,yawRateRMSE,posANEES,velANEES,yawRateANEES] = errorMetrics(
tracks,trackIDs,truths,truthIDs) also returns the metrics

• yawRateRMSE – yaw rate root mean squared error
• yawRateANEES – yaw rate average normalized-estimation error squared

for constant turn-rate motion at the current time step.

To enable this syntax, set the ErrorFunctionFormat property to 'built-in' and the
MotionModel property to 'constturn'.

[out1,out2, ... ,outN] = errorMetrics(tracks,trackIDs,truths,truthIDs) returns
the user-defined metrics out1, out2, ... , outN.

To enable this syntax, set the ErrorFunctionFormat property to 'custom'. The number of outputs
corresponds to the number of elements listed in the EstimationErrorLabels property, and must
match the number of outputs in the EstimationErrorFcn. The results of the estimation errors are
averaged arithmetically over all track-to-truth assignments.

Tip These usage syntaxes only calculate the RMSE and ANEES values of all tracks with associated
truths at the current time step. To obtain the cumulative RMSE and ANEES values for each track and
truth, use the cumulativeTrackMetrics and cumulativeTruthMetrics object functions,
respectively. To obtain the current RMSE and ANEES values for each track and truth, use the
currentTrackMetrics and currentTruthMetrics object functions, respectively.

Input Arguments

tracks — Track information
array of structures | array of objects

Track information, specified as an array of structures or objects. For built-in trackers such as
trackerGNN or trackerTOMHT, the objectTrack output contains 'State', 'StateCovariance',
and 'TrackID' information.
Data Types: struct

trackIDs — Track identifiers
real-valued vector

3 System Objects

3-266

Track identifiers, specified as a real-valued vector. trackIDs elements match the tracks found in
tracks.

truths — Truth information
array of structures | array of objects

Truth information, specified as an array of structures or objects. When using a trackingScenario,
truth information can be obtained from the platformPoses object function.
Data Types: struct

truthIDs — Truth identifiers
real-valued vector

Truth identifiers, specified as a real-valued vector. truthIDs elements match the truths found in
truths.

Output Arguments

posRMSE — Position root mean squared error
scalar

Position root mean squared error for all tracks associated with truths, returned as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

velRMSE — Velocity root mean squared error
scalar

Velocity root mean squared error for all tracks associated with truths, returned as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

accRMSE — Acceleration root mean squared error
scalar

Acceleration root mean squared error for all tracks associated with truths, returned as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

yawRateRMSE — Yaw rate root mean squared error
scalar

Yaw rate root mean squared error for all tracks associated with truths, returned as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

posANEES — Position average normalized estimation error squared
scalar

 trackErrorMetrics

3-267

Position average normalized estimation error squared for all tracks associated with truths, returned
as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

velANEES — Velocity average normalized estimation error squared
scalar

Velocity average normalized estimation error squared for all tracks associated with truths, returned
as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

accANEES — Acceleration average normalized estimation error squared
scalar

Acceleration average normalized estimation error squared for all tracks associated with truths,
returned as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

yawRateANEES — Yaw rate average normalized estimation error squared
scalar

Yaw rate average normalized estimation error squared for all tracks associated with truths, returned
as a scalar.

Dependencies

To enable this argument, set the ErrorFunctionFormat property to 'built-in'.

out1, out2, outN — Custom error metric outputs
scalar

Custom error metric outputs, returned as scalars. These errors are the output of the error estimation
function specified in the EstimationErrorFcn property.

Dependencies

To enable these arguments, set the ErrorFunctionFormat property to 'custom'.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackErrorMetrics
cumulativeTrackMetrics Cumulative metrics for recent tracks

3 System Objects

3-268

cumulativeTruthMetrics Cumulative metrics for recent truths
currentTrackMetrics Metrics for recent tracks
currentTruthMetrics Metrics for recent truths

Common to All System Objects
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use
clone Create duplicate System object

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount

 trackErrorMetrics

3-269

 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

3 System Objects

3-270

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

 trackErrorMetrics

3-271

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

See Also
System Objects
monostaticRadarSensor | radarSensor | trackAssignmentMetrics | trackOSPAMetric |
trackerGNN | trackerJPDA | trackerPHD | trackerTOMHT

Introduced in R2018b

3 System Objects

3-272

cumulativeTrackMetrics
Cumulative metrics for recent tracks

Syntax
metricsTable = cumulativeTrackMetrics(errorMetrics)

Description
metricsTable = cumulativeTrackMetrics(errorMetrics) returns a table of cumulative
metrics, metricsTable, for every track identifier provided in the most recent update.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

 cumulativeTrackMetrics

3-273

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

3 System Objects

3-274

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

 cumulativeTrackMetrics

3-275

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
errorMetrics — Error metrics object
trackErrorMetrics System object

Error metrics object, specified as a trackErrorMetrics System object.

Output Arguments
metricsTable — Track error metrics
table

Track error metrics, returned as a table.

• When you set the ErrorFunctionFormat property of the input error metrics object to 'built-
in', the table columns depend on the setting of the MotionModel property.

Motion Model Table Columns
'constvel' posRMSE, velRMSE, posANEES, velANEES
'constacc' posRMSE, velRMSE, accRMSE, posANEES,

velANEES, accANEES
'constturn' posRMSE, velRMSE, yawRateRMSE,

posANEES, velANEES, yawRateANEES

RMSE and ANEES denote root mean squared error and average normalized estimation error
squared of a track for the entire tracking scenario time history. For example, the cumulative
position RMSE value for a track is defined as:

posRMSE = 1
N ∑

t = 1

N
Δpt

2

3 System Objects

3-276

where N is the total number of time steps that the track has an associated truth.

Δpt = ptrack, t − ptruth, t

is the difference between the position of the track at time step t, ptrack,t, and the position of the
associated truth at time step t, ptruth,t. The cumulative RMSE values for other states (vel, pos,
acc, and yawRate) are defined similarly. The position ANEES value, posANEES is defined as:

posANEES = 1
N ∑

t = 1

N
ΔptTCp, t

−1Δpt

where Cp,t is the covariance corresponding to the position of the track at time step t. The ANEES
values for other states (vel, pos, acc, and yawRate) are defined similarly.

• When you set the ErrorFunctionFormat property to 'custom', the table contains the
arithmetically averaged values of the custom metrics output from the error function.

Introduced in R2018b

 cumulativeTrackMetrics

3-277

cumulativeTruthMetrics
Cumulative metrics for recent truths

Syntax
metricsTable = cumulativeTruthMetrics(errorMetrics)

Description
metricsTable = cumulativeTruthMetrics(errorMetrics) returns a table of cumulative
metrics, metricsTable, for every truth identifier provided in the most recent update.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

3 System Objects

3-278

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

 cumulativeTruthMetrics

3-279

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

3 System Objects

3-280

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
errorMetrics — Error metrics object
trackErrorMetrics System object

Error metrics object, specified as a trackErrorMetrics System object.

Output Arguments
metricsTable — Truth error metrics
table

Truth error metrics, returned as a table.

• When you set the ErrorFunctionFormat property of the input error metrics object to 'built-
in', the table columns depend on the setting of the MotionModel property.

Motion Model Table Columns
'constvel' posRMSE, velRMSE, posANEES, velANEES
'constacc' posRMSE, velRMSE, accRMSE, posANEES,

velANEES, accANEES
'constturn' posRMSE, velRMSE, yawRateRMSE,

posANEES, velANEES, yawRateANEES

RMSE and ANEES denote root mean squared error and average normalized estimation error
squared of a truth trajectory for the entire tracking scenario time history. Since a truth trajectory
can associate with multiple tracks at a time step, the calculation of cumulative RMSE and ANEES
values is each separated into two steps. For example, in the first step of the position RMSE value
calculation, the function first calculates the RMSE value at a given time step t as:

 cumulativeTruthMetrics

3-281

St = ∑
k = 1

Kt
Δpt, k

2

where Kt is the number of tracks associated with the truth at time step t, and

Δpt, k = ptrack, t, k− ptruth, t

is the position difference between the position of kth associated track and the position of the truth
at time step t. In the second step, the St values of all the time steps (t = 1,2,…,N) are summed and
averaged over the total number of associated tracks (denoted by R) to obtained the cumulative
position RMSE value as:

posRMSE = 1

∑
t = 1

N
Kt

∑
t = 1

N
∑

k = 1

Kt
Δpt, k

2

where the total number of associated tracks, R, is given by

R = ∑
t = 1

N
Kt .

The cumulative RMSE values for other states (vel, pos, acc, and yawRate) are defined similarly.

The calculation of the cumulative position ANEES value, posANEES, for a truth trajectory can also
be separated into two steps. In the first step, the function calculates the ANEES value at a given
time step t as:

Qt = ∑
k = 1

Kt
Δpt, kTCp, t, k

−1 Δpt, k

where Cp,t,k is the covariance corresponding to the position of the kth associated track at time step
t. In the second step, the Qt values for all the time steps (t = 1,2,…,N) are summed and averaged
over the total number of associated tracks (denoted by R) to obtained the cumulative position
ANEES value as:

posANEES = 1

∑
t = 1

N
Kt

∑
t = 1

N
∑

k = 1

Kt
Δpt, kTCp, t, k

−1 Δpt, k

The cumulative ANEES values for other states (vel, pos, acc, and yawRate) are defined
similarly.

• When you set the ErrorFunctionFormat property to 'custom', the table contains the
arithmetically averaged values of the custom metrics output from the error function.

Introduced in R2018b

3 System Objects

3-282

currentTrackMetrics
Metrics for recent tracks

Syntax
metricsTable = currentTrackMetrics(errorMetrics)

Description
metricsTable = currentTrackMetrics(errorMetrics) returns a table of metrics,
metricsTable, for every track identifier provided in the most recent update.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

 currentTrackMetrics

3-283

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

3 System Objects

3-284

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

 currentTrackMetrics

3-285

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
errorMetrics — Error metrics object
trackErrorMetrics System object

Error metrics object, specified as a trackErrorMetrics System object.

Output Arguments
metricsTable — Track error metrics
table

Track error metrics, returned as a table:

• When you set the ErrorFunctionFormat property of the input error metrics object to 'built-
in', the table columns depend on the setting of the MotionModel property.

Motion Model Table Columns
'constvel' posRMSE, velRMSE, posANEES, velANEES
'constacc' posRMSE, velRMSE, accRMSE, posANEES,

velANEES, accANEES
'constturn' posRMSE, velRMSE, yawRateRMSE,

posANEES, velANEES, yawRateANEES

RMSE and ANEES denote root mean squared error and average normalized estimation error
squared of a track at the current time step. For example, the position RMSE and ANEES values for
a track are defined respectively as:

posRMSE = Δpi = ptrack, i− ptruth, i

posANEES = Δpi
TCi

−1Δpi

3 System Objects

3-286

where ptrack, i is the position of track i, ptruth, i is the position of the truth associated to track i, and
Ci is the position covariance of track i at the current time step. Note that the RMSE and ANEES
values are only calculated for one time step using the currentTrackMetrics. The RMSE and
ANEES values for other states (vel, pos, acc, and yawRate) are defined similarly.

• When you set the ErrorFunctionFormat property to 'custom', the table contains the
arithmetically averaged values of the custom metrics output from the error function.

Introduced in R2018b

 currentTrackMetrics

3-287

currentTruthMetrics
Metrics for recent truths

Syntax
metricsTable = currentTruthMetrics(errorMetrics)

Description
metricsTable = currentTruthMetrics(errorMetrics) returns a table of metrics,
metricsTable, for every truth identifier provided in the most recent update.

Examples

Assignment and Error Metrics for Two Tracked Targets

Examine the assignments and errors for a system tracking two targets.

First, load the stored track data.

load trackmetricex tracklog truthlog

Create objects to analyze assignment and error metrics.

tam = trackAssignmentMetrics;
tem = trackErrorMetrics;

Create the output variables.

posRMSE = zeros(numel(tracklog),1);
velRMSE = zeros(numel(tracklog),1);
posANEES = zeros(numel(tracklog),1);
velANEES = zeros(numel(tracklog),1);

Loop over all tracks to:

• Extract the tracks and ground truth at the i th tracker update.
• Analyze and retrieve the current track-to-truth assignment.
• Analyze instantaneous error metrics over all tracks and truths.

for i=1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [trackAM,truthAM] = tam(tracks, truths);
 [trackIDs,truthIDs] = currentAssignment(tam);
 [posRMSE(i),velRMSE(i),posANEES(i),velANEES(i)] = ...
 tem(tracks,trackIDs,truths,truthIDs);
end

Show the track metrics table.

3 System Objects

3-288

trackMetricsTable(tam)

ans=4×15 table
 TrackID AssignedTruthID Surviving TotalLength DeletionStatus DeletionLength DivergenceStatus DivergenceCount DivergenceLength RedundancyStatus RedundancyCount RedundancyLength FalseTrackStatus FalseTrackLength SwapCount
 _______ _______________ _________ ___________ ______________ ______________ ________________ _______________ ________________ ________________ _______________ ________________ ________________ ________________ _________

 1 NaN false 1120 false 0 false 3 3 false 0 0 false 0 0
 2 NaN false 1736 false 0 false 8 88 false 0 0 false 28 3
 6 3 true 1138 false 0 false 4 314 false 1 28 false 0 2
 8 2 true 662 false 0 false 2 29 false 1 169 false 28 0

Show the truth metrics table.

truthMetricsTable(tam)

ans=2×10 table
 TruthID AssociatedTrackID DeletionStatus TotalLength BreakStatus BreakCount BreakLength InCoverageArea EstablishmentStatus EstablishmentLength
 _______ _________________ ______________ ___________ ___________ __________ ___________ ______________ ___________________ ___________________

 2 8 false 2678 false 4 168 true true 56
 3 6 false 2678 false 3 645 true true 84

Plot the RMSE and ANEES error metrics.

subplot(2,2,1)
plot(posRMSE)
title('Position Error')
xlabel('tracker update')
ylabel('RMSE (m)')

subplot(2,2,2)
plot(velRMSE)
title('Velocity Error')
xlabel('tracker update')
ylabel('RMSE (m/s)')

subplot(2,2,3)
plot(posANEES)
title('Position Error')
xlabel('tracker update')
ylabel('ANEES')

subplot(2,2,4)
plot(velANEES)
title('Velocity Error')
xlabel('tracker update')
ylabel('ANEES')

 currentTruthMetrics

3-289

Show the current error metrics for each individual recorded track.

currentTrackMetrics(tem)

ans=2×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 6 44.712 20.988 0.05974 0.31325
 8 129.26 12.739 1.6745 0.2453

Show the current error metrics for each individual recorded truth object.

currentTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 129.26 12.739 1.6745 0.2453
 3 44.712 20.988 0.05974 0.31325

Show the cumulative error metrics for each individual recorded track.

cumulativeTrackMetrics(tem)

3 System Objects

3-290

ans=4×5 table
 TrackID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 1 117.69 43.951 0.58338 0.44127
 2 129.7 42.8 0.81094 0.42509
 6 371.35 87.083 4.5208 1.6952
 8 130.45 53.914 1.0448 0.44813

Show the cumulative error metrics for each individual recorded truth object.

cumulativeTruthMetrics(tem)

ans=2×5 table
 TruthID posRMS velRMS posANEES velANEES
 _______ ______ ______ ________ ________

 2 258.21 65.078 2.2514 0.93359
 3 134.41 48.253 0.96314 0.49183

Input Arguments
errorMetrics — Error metrics object
trackErrorMetrics System object

Error metrics object, specified as a trackErrorMetrics System object.

Output Arguments
metricsTable — Truth error metrics
table

Truth error metrics, returned as a table.

• When you set the ErrorFunctionFormat property of the input error metrics object to 'built-
in', the table columns depend on the setting of the MotionModel property.

Motion model Table Columns
'constvel' posRMSE, velRMSE, posANEES, velANEES.
'constacc' posRMSE, velRMSE, accRMSE, posANEES,

velANEES, accANEES
'constturn' posRMSE, velRMSE, yawRateRMSE,

posANEES, velANEES, yawRateANEES

RMSE and ANEES denote root mean squared error and average normalized estimation error
squared between a truth trajectory and its associated tracks at the current time step. Note that a
truth trajectory can associate with multiple tracks. For example, the position RMSE and ANEES
values for a truth are defined respectively as:

 currentTruthMetrics

3-291

posRMSE = 1
K ∑k = 1

K
Δpk

posANEES = 1
K Δpk

TCk
−1Δpk

where K is the total number of tracks associated with the truth, Ck is the position covariance of
the kth track at the current time step, and

Δpk = ptrack, k− ptruth

is the position error between the kth associated track and the truth. The RMSE and ANEES values
for other states (vel, pos, acc, and yawRate) are defined similarly.

• When you set the ErrorFunctionFormat property to 'custom', the table contains the
arithmetically averaged values of the custom metrics output from the error function.

Introduced in R2018b

3 System Objects

3-292

trackFuser
Single-hypothesis track-to-track fuser

Description
The trackFuser System object fuses tracks generated by tracking sensors or trackers and architect
decentralized tracking systems. trackFuser uses the global nearest neighbor (GNN) algorithm to
maintain a single hypothesis about the objects it tracks. The input tracks are called source or local
tracks, and the output tracks are called central tracks.

To fuse tracks using this object:

1 Create the trackFuser object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
fuser = trackFuser
fuser = trackFuser(Name,Value)

Description

fuser = trackFuser creates a track-to-track fuser that uses the global nearest neighbor (GNN)
algorithm to maintain a single hypothesis about the objects it tracks.

fuser = trackFuser(Name,Value) sets properties for the fuser using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

FuserIndex — Unique index for track fuser
1 (default) | positive integer

Unique index for the fuser, specified as a positive integer. Use this property to distinguish different
fusers in a multiple-fuser environment.

 trackFuser

3-293

Example: 2

MaxNumSources — Maximum number of source configurations
20 (default) | positive integer

Maximum number of source configurations that the fuser can maintain, specified as a positive integer.
Example: 200

SourceConfigurations — Configurations of source systems
cell array of fuserSourceConfiguration objects

Configurations of source systems, specified as a cell array of fuserSourceConfiguration objects.
The default value is a 1-by-N cell array of fuserSourceConfiguration objects, where N is the
value of the MaxNumSources property. You can specify this property during creation as a Name-Value
pair or specify it after creation.
Data Types: object

Assignment — Assignment algorithm
'MatchPairs' (default) | 'Munkres' | 'Jonker-Volgenant' | 'Auction' | 'Custom'

Assignment algorithm, specified as 'MatchPairs', 'Munkres', 'Jonker-Volgenant',
'Auction', or 'Custom'. Munkres is the only assignment algorithm that guarantees an optimal
solution, but it is also the slowest, especially for large numbers of detections and tracks. The other
algorithms do not guarantee an optimal solution but can be faster for problems with 20 or more
tracks and detections. Use'Custom' to define your own assignment function and specify its name in
the CustomAssignmentFcn property.
Data Types: char

CustomAssignmentFcn — Custom assignment function
function handle

Custom assignment function, specified as a function handle. An assignment function must have the
following syntax:

 [assignments,unassignedCentral,unassignedLocal] = f(cost,costNonAssignment)

For an example of assignment function and a description of its arguments, see assignmunkres.

Dependencies

To enable this property, set the Assignment property to 'Custom'.
Data Types: function handle | string | char

AssignmentThreshold — Track-to-track assignment threshold
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Track-to-track assignment threshold, specified as a positive scalar or a 1-by-2 vector of [C1,C2], where
C1 ≤ C2. If specified as a scalar, the specified value, val, is expanded to [val, Inf].

Initially, the fuser executes a coarse estimation for the normalized distance between all the local and
central tracks. The fuser only calculates the accurate normalized distance for the local and central
combinations whose coarse normalized distance is less than C2. Also, the fuser can only assign a local
track to a central track if their accurate normalized distance is less than C1. See the distance

3 System Objects

3-294

function used with tracking filters (trackingCKF and trackingEKF for example) for an explanation
of the distance calculation.

Tips:

• Increase the value of C2 if there are combinations of local and central tracks that should be
calculated for assignment but are not. Decrease it if the calculation takes too much time.

• Increase the value of C1 if there are local tracks that should be assigned to central tracks but are
not. Decrease it if there are local tracks that are assigned to central tracks they should not be
assigned to (too far away).

StateTransitionFcn — State transition function
'constvel' (default) | function handle

State transition function, specified as a function handle. This function calculates the state at time step
k based on the state at time step k–1.

• If HasAdditiveProcessNoise is true, the function must use the following syntax:

x(k) = f(x(k-1),dt)

where:

• x(k) — The (estimated) state at time k, specified as a vector or a matrix. If specified as a
matrix, then each column of the matrix represents one state vector.

• dt — The time step for prediction.
• If HasAdditiveProcessNoise is false, the function must use this syntax:

x(k) = f(x(k-1),w(k-1),dt)

where:

• x(k) — The (estimated) state at time k, specified as a vector or a matrix. If specified as a
matrix, then each column of the matrix represents one state vector.

• w(k) — The process noise at time k.
• dt — The time step for prediction.

Example: @constacc
Data Types: function_handle | char | string

StateTransitionJacobianFcn — Jacobian of state transition function
'' (default) | function handle

Jacobian of the state transition function, specified as a function handle. If not specified, the Jacobian
is numerically computed, which may increase processing time and numerical inaccuracy. If specified,
the function must support one of these two syntaxes:

• If HasAdditiveProcessNoise is true, the function must use this syntax:

Jx(k) = statejacobianfcn(x(k),dt)

where:

• x(k) — The (estimated) state at time k, specified as an M-by-1 vector of real values.

 trackFuser

3-295

• dt — The time step for prediction.
• Jx(k) — The Jacobian of the state transition function with respect to the state, df/dx,

evaluated at x(k). The Jacobian is returned as an M-by-M matrix.
• If HasAdditiveProcessNoise is false, the function must use this syntax:

[Jx(k),Jw(k)] = statejacobianfcn(x(k),w(k),dt)

where:

• x(k) — The (estimated) state at time k, specified as an M-by-1 vector of real values.
• w(k) — The process noise at time k, specified as a W-by-1 vector of real values.
• dt — The time step for prediction.
• Jx(k) — The Jacobian of the state transition function with respect to the state, df/dx,

evaluated at x(k). The Jacobian is returned as an M-by-M matrix.
• Jw(k) — The Jacobian of the state transition function with respect to the process noise,

df/dw, evaluated at x(k) and w(k). The Jacobian is returned as an M-by-W matrix.

Example: @constaccjac
Data Types: function_handle | char | string

ProcessNoise — Process noise covariance
eye(3) (default) | positive real scalar | positive definite matrix

Process noise covariance, specified as a positive real scalar or a positive definite matrix.

• When HasAdditiveProcessNoise is true, specify the process noise covariance as a positive
real scalar or a positive definite M-by-M matrix. M is the dimension of the state vector. When
specified as a scalar, the matrix is a multiple of the M-by-M identity matrix.

• When HasAdditiveProcessNoise is false, specify the process noise covariance as a W-by-W
matrix. W is the dimension of the process noise vector.

Example: [1.0 0.05; 0.05 2]
Data Types: single | double

HasAdditiveProcessNoise — Model additive process noise
true (default) | false

Option to model process noise as additive, specified as true or false. When this property is true,
process noise is added to the state vector. Otherwise, noise is incorporated into the state transition
function.

StateParameters — Parameters of track state reference frame
struct() (default) | structure | structure array

Parameters of the track state reference frame, specified as a structure or a structure array. Use this
property to specify parameters about the fused central tracks that the track fuser outputs. For
example, you can use these parameters to perform a coordinate transformation from a vehicle local
frame to another vehicle local frame or a global frame.

Tunable: Yes
Data Types: struct

3 System Objects

3-296

ConfirmationThreshold — Threshold for central track confirmation
[2 3] (default) | positive integer | 1-by-2 vector of positive integers

Threshold for central track confirmation, specified as a positive integer M, or a 1-by-2 vector of
positive integers [M N] with M ≤ N. A central track is confirmed if it is assigned to local tracks at
least M times in the last N updates. If specified a positive integer M, the confirmation threshold is
expanded to [M,M].
Data Types: single | double

DeletionThreshold — Threshold for central track deletion
[5 5] (default) | positive integer | 1-by-2 vector of positive integers

Threshold for central track deletion, specified as a positive integer P, or a 1-by-2 vector of positive
integers [P R] with P ≤ R. A central track is deleted if the track is not assigned to local tracks at least
P times in the last R updates. If specified a positive integer P, the confirmation threshold is expanded
to [P,P].
Example: [5 6]
Data Types: single | double

FuseConfirmedOnly — Fuse only confirmed local tracks
true (default) | false

Fuse only confirmed local tracks, specified as false or true. Set this property to false if you want
to fuse all local tracks regardless of their confirmation status.
Data Types: logical

FuseCoasted — Fuse coasted local tracks
false (default) | true

Fuse coasted local tracks, specified as true or false. Set this property to true if you want to fuse
coasted local tracks (IsCoasted field or property of the localTracks input is true). Set it to
false if you want to only fuse local tracks that are not coasted.
Example: true
Data Types: logical

StateFusion — State fusion algorithm
'Cross' (default) | 'Intersection' | 'Custom'

State fusion algorithm, specified as:

• 'Cross' — Uses the cross-covariance fusion algorithm
• 'Intersection' — Uses the covariance intersection fusion algorithm
• 'Custom' — Allows you to specify a customized fusion function

Use the StateFusionParameters property to specify additional parameters used by the state
fusion algorithm.
Data Types: char

CustomStateFusionFcn — Custom state fusion function
'' (default) | function handle

 trackFuser

3-297

Custom state fusion function, specified as a function handle. The state fusion function must support
one of the following syntaxes:

[fusedState,fusedCov] = f(trackState,trackCov)
[fusedState,fusedCov] = f(trackState,trackCov,fuseParams)

where:

• trackState is specified as an N-by-M matrix. N is the dimension of the track state, and M is the
number of tracks.

• trackCov is specified as an N-by-N-M matrix. N is the dimension of the track state, and M is the
number of tracks.

• fuseParams is optional parameters defined in the StateFusionParameters property.
• fusedState is returned as an N-by-1 vector.
• fusedCov is returned as an N-by-N matrix.

Dependencies

To enable this property, set the StateFusion property to 'Custom'.
Data Types: function_handle | char | string

StateFusionParameters — Parameters for state fusion function
[] (default)

Parameters for state fusion function. Depending on the choice of StateFusion algorithm, you can
specify StateFusionParameters as:

• If StateFusion is 'Cross', specify it as a scalar in (0,1). See fusexcov for more details.
• If StateFusion is 'Intersection', specify it as 'det' or 'trace'. See fusecovint for more

details.
• If StateFusion is 'Custom', you can specify these parameters in any variable type, as long as

they match the setup of the optional fuseParams input of the custom state fusion function
specified in the CustomStateFusionFcn property.

By default, the property is empty.

NumCentralTracks — Number of central-level tracks
nonnegative integer

This property is read-only.

Number of central tracks currently maintained by the fuser, returned as a nonnegative integer.
Data Types: double

NumConfirmedCentralTracks — Number of confirmed central tracks
nonnegative integer

This property is read-only.

Number of confirmed central tracks currently maintained by the fuser, returned as a nonnegative
integer.
Data Types: double

3 System Objects

3-298

Usage

Syntax
confirmedTracks = fuser(localTracks,tFusion)
[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = fuser(
localTracks,tFusion)

Description

confirmedTracks = fuser(localTracks,tFusion) returns a list of confirmed tracks from a list
of local tracks. Confirmed tracks are predicted to the update time, tFusion.

[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = fuser(
localTracks,tFusion) also returns a list of tentative tracks, a list of all tracks, and the analysis
information.

Input Arguments

localTracks — Local tracks
array of objectTrack objects | array of structures

Local tracks, specified as an array of objectTrack objects, or an array of structures with field
names that match the property names of an objectTrack object. Local tracks are tracks generated
from trackers in a source track system.
Data Types: object | struct

tFusion — Update time
scalar

Update time, specified as a scalar. The fuser predicts all central tracks to this time. Units are in
seconds.
Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

 trackFuser

3-299

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

analysisInformation — Additional information for analyzing track updates
structure

Additional information for analyzing track updates, returned as a structure. The fields of this
structure are:

Field Description
TrackIDsAtStepBeginning Track IDs when the step began
CostMatrix Cost of assignment matrix
Assignments Assignments returned from the assignment

function
UnassignedCentralTracks IDs of unassigned central tracks
UnassignedLocalTracks IDs of unassigned local tracks
NonInitializingLocalTracks IDs of local tracks that were unassigned but were

not used to initialize a central track
InitiatedCentralTrackIDs IDs of central tracks initiated during the step
UpdatedCentralTrackIDs IDs of central tracks updated during the step
DeletedTrackIDs IDs of central tracks deleted during the step
TrackIDsAtStepEnd IDs of central tracks when the step ended

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

3 System Objects

3-300

Specific to trackFuser
predictTrackToTime Predict track state
initializeTrack Initialize new track
deleteTrack Delete existing track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object

Examples

Fuse Tracks from Two Sources Using trackFuser

Define two tracking sources: one internal and one external. The SourceIndex of each source must
be unique.

internalSource = fuserSourceConfiguration(1,'IsInternalSource',true);
externalSource = fuserSourceConfiguration(2,'IsInternalSource',false);

Create a trackFuser with FuserIndex equal to 3. The fuser takes the two sources defined above
and uses the 'Cross' StateFusion model.

fuser = trackFuser('FuserIndex',3, 'MaxNumSources',2, ...
 'SourceConfigurations',{internalSource;externalSource}, ...
 'StateFusion','Cross');

Update the fuser with two tracks from the two sources. Use a 3-D constant velocity state, in which
the states are given in the order of [x; vx; y; vy; z; vz]. The states of the two tracks are the same, but
their covariances are different. For the first track, create a large covariance in the x-axis. For the
second track, create a large covariance in the y-axis.

tracks = [objectTrack('SourceIndex',1,'State',[10;0;0;0;0;0], ...
 'StateCovariance',diag([100,1000,1,10,1,10])); ...
 objectTrack('SourceIndex',2,'State',[10;0;0;0;0;0], ...
 'StateCovariance',diag([1,10,100,1000,1,10]))];

Fuse the track with fusion time equal to 0.

time = 0;
confirmedTracks = fuser(tracks,time);

Obtain the positions and position covariances of the source tracks and confirmed tracks.

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 1 0]; % [x; y; z]
[inputPos,inputCov] = getTrackPositions(tracks,positionSelector);
[outputPos,outputCov] = getTrackPositions(confirmedTracks,positionSelector);

Visualize the results using trackPlotter.

 tPlotter = theaterPlot('XLim',[0, 20],'YLim',[-10, 10],'ZLim',[-10, 10]);
 tPlotter1 = trackPlotter(tPlotter,'DisplayName','Input Tracks','MarkerEdgeColor','blue');

 trackFuser

3-301

 tPlotter2 = trackPlotter(tPlotter,'DisplayName','Fused Tracks','MarkerEdgeColor','green');

 plotTrack(tPlotter1,inputPos,inputCov)
 plotTrack(tPlotter2,outputPos,outputCov)
 title('Cross-covariance fusion')

References
[1] Blackman, S. and Popoli, R., 1999. Design and analysis of modern tracking systems(Book).

Norwood, MA: Artech House, 1999.

[2] Chong, Chee-Yee, Shozo Mori, William H. Barker, and Kuo-Chu Chang. "Architectures and
algorithms for track association and fusion." IEEE Aerospace and Electronic Systems
Magazine 15, no. 1 (2000): 5-13.

[3] Tian, Xin, Yaakov Bar-Shalom, D. Choukroun, Y. Oshman, J. Thienel, and M. Idan. "Track-to-Track
Fusion Architectures-A Review." In book “Advances in Estimation, Navigation, and Spacecraft
Control”. Springer, 2015.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 System Objects

3-302

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• The input tracks must be a struct array instead of an objectTrack object array.
• The track outputs (all three) are each a struct array instead of an objectTrack object array.
• The state parameter structure for all the input source tracks must be in the same format (same
field names and data types) as the state parameter structure of the track fuser.

See Also
objectTrack | trackerGNN | trackerJPDA | trackerPHD | trackerTOMHT

External Websites
“Introduction to Track-To-Track Fusion”

Introduced in R2019b

 trackFuser

3-303

deleteTrack
Delete existing track

Syntax
deleted = delteTrack(obj,trackID)

Description
deleted = delteTrack(obj,trackID) deletes the track specified by trackID in the tracker or
track fuser object, obj.

Examples

Delete track

Create a track using detections in a GNN tracker.

tracker = trackerGNN;
detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
tracker(detection1,0);
tracker(detection2,1)

ans =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 0
 UpdateTime: 1
 Age: 2
 State: [6×1 double]
 StateCovariance: [6×6 double]
 StateParameters: [1×1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: [1 1 0 0 0]
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1×1 struct]

Delete the first track.

deleted1 = deleteTrack(tracker,1)

deleted1 = logical
 1

3 System Objects

3-304

Uncomment the following to delete a nonexistent track. A warning will be issued.

% deleted2 = deleteTrack(tracker,2)

Input Arguments
obj — Tracker or fuser object
trackerTOMHT object | trackerJPDA object | trackerGNN object | trackerPHD object |
trackFuser object

Tracker or fuser object, specified as a trackerTOMHT, trackerJPDA, trackerGNN\, trackerPHD,
or trackFuser object.

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer.
Example: 21

Output Arguments
deleted — Indicate if track was successfully deleted
1 | 0

Indicate if the track was successfully deleted or not, returned as 1 or 0. If the track specified by the
trackID input existed and was successfully deleted, it returns as 1. If the track did not exist, a
warning is issued and it returns as 0.

See Also
trackFuser | trackerGNN | trackerJPDA | trackerPHD | trackerTOMHT

Introduced in R2019b

 deleteTrack

3-305

initializeTrack
Initialize new track

Syntax
trackID = initializeTrack(obj,track)
trackID = initializeTrack(obj,track,filter)

Description
trackID = initializeTrack(obj,track) initializes a new track in the tracker or track fuser
object, obj. The tracker or fuser must be updated at least once before initializing a track. If the track
is initialized successfully, the tracker or fuser assigns the output trackID to the track, sets the
UpdateTime of the track equal to the last step time in the tracker, and synchronizes the data in the
input track to the initialized track.

A warning is issued if the tracker or track fuser already maintains the maximum number of tracks
specified by itsMaxNumTracks property. In this case, the trackID is returned as 0, which indicates a
failure to initialize the track.

Note This syntax doesn't support using the trackingGSF, trackingPF, or trackingIMM filter
object as the internal tracking filter for the tracker or track fuser. Use the second syntax in these
cases.

trackID = initializeTrack(obj,track,filter) initializes a new track in the tracker or track
fuser object, obj, using a specified tracking filter, filter.

Note

• If the tracking filter used in the tracker or track fuser is trackingGSF, trackingPF, or
trackingIMM, you must use this syntax instead of the first syntax.

• This syntax does not support using trackFuser as the obj input.

Examples

Initialize Track

Create a GNN tracker and update the tracker with detections at t = 0 and t = 1second.

tracker = trackerGNN

tracker =
 trackerGNN with properties:

 TrackerIndex: 0

3 System Objects

3-306

 FilterInitializationFcn: 'initcvekf'
 Assignment: 'MatchPairs'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumSensors: 20

 TrackLogic: 'History'
 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 0
 NumConfirmedTracks: 0

detection1 = objectDetection(0,[1;1;1]);
detection2 = objectDetection(1,[1.1;1.2;1.1]);
tracker(detection1,0);
currentTrack = tracker(detection2,1);

As seen from the NumTracks property, the tracker now maintains one track.

tracker

tracker =
 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'MatchPairs'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumSensors: 20

 TrackLogic: 'History'
 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 1
 NumConfirmedTracks: 1

Create a new track using the objectTrack object.

newTrack = objectTrack()

newTrack =
 objectTrack with properties:

 TrackID: 1
 BranchID: 0
 SourceIndex: 1

 initializeTrack

3-307

 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'History'
 TrackLogicState: 1
 IsConfirmed: 1
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Initialize a track in the GNN tracker object using the newly created track.

trackID = initializeTrack(tracker,newTrack)

trackID = uint32
 2

As seen from the NumTracks property, the tracker now maintains two tracks.

tracker

tracker =
 trackerGNN with properties:

 TrackerIndex: 0
 FilterInitializationFcn: 'initcvekf'
 Assignment: 'MatchPairs'
 AssignmentThreshold: [30 Inf]
 MaxNumTracks: 100
 MaxNumSensors: 20

 TrackLogic: 'History'
 ConfirmationThreshold: [2 3]
 DeletionThreshold: [5 5]

 HasCostMatrixInput: false
 HasDetectableTrackIDsInput: false
 StateParameters: [1x1 struct]

 NumTracks: 2
 NumConfirmedTracks: 2

Input Arguments
obj — Tracker or fuser object
trackerTOMHT object | trackerJPDA object | trackerGNN object | trackFuser object

Tracker or fuser object, specified as a trackerTOMHT, trackerJPDA, trackerGNN, or trackFuser
object.

track — New track to be initialized
objectTrack object | structure

3 System Objects

3-308

New track to be initialized, specified as an objectTrack object or a structure. If specified as a
structure, the name, variable type, and data size of the fields of the structure must be the same as the
name, variable type, and data size of the corresponding properties of the objectTrack object.
Data Types: struct | object

filter — Filter object
trackingKF | trackingEKF | trackingUKF | trackingABF | trackingCKF | trackingMSCEKF |
trackingPF | trackingIMM | trackingGSF

Filter object, specified as a trackingKF, trackingEKF, trackingUKF, trackingABF,
trackingCKF, trackingIMM, trackingGSF, trackingPF, or trackingMSCEKF object.

Output Arguments
trackID — Track identifier
nonnegative integer

Track identifier, returned as a nonnegative integer. trackID is returned as 0 if the track is not
initialized successfully.
Example: 2

See Also
trackFuser | trackerGNN | trackerJPDA | trackerTOMHT

Introduced in R2019b

 initializeTrack

3-309

trackOSPAMetric

Optimal subpattern assignment (OSPA) metric

Description
trackOSPAMetric System object computes the optimal subpattern assignment metric between a set
of tracks and the known truths. An OSPA metric contains three components:

• Localization error component — Accounts for state estimation errors between assigned tracks and
truths

• Cardinality error component— Accounts for the number of unassigned tracks and truths
• Labelling error component — Accounts for the error of incorrect assignment

For more details, see “OSPA Metric” on page 3-316 and [2].

To use trackOSPAMetric:

1 Create the trackOSPAMetric object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
OSPAMetric = trackOSPAMetric
OSPAMetric = trackOSPAMetric(Name,Value)

Description

OSPAMetric = trackOSPAMetric creates a trackOSPAMetric System object, OSPAMetric, with
default property values.

OSPAMetric = trackOSPAMetric(Name,Value) sets properties for the trackOSPAMetric
object using one or more name-value pairs. For example, OSPAMetric =
trackOSPAMetric('CutoffDistance',5) creates a trackOSPAMetric object with the cut off
distance equal to 5. Enclose property names in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

3 System Objects

3-310

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

CutoffDistance — Threshold for cutoff distance between track and truth
30 (default) | real positive scalar

Threshold for cutoff distance between track and truth, specified as a real positive scalar. If the
computed distance between a track and the assigned truth is higher than the threshold, the actual
distance incorporated in the metric is reduced to the threshold.
Example: 40
Data Types: single | double

Order — Order of OSPA metric
2 (default) | positive integer

Order of OSPA metric, specified as a positive integer.
Example: 10
Data Types: single | double

LabelingError — Penalty for incorrect assignment
0 (default) | real scalar in [0, CutoffDistance]

Penalty for incorrect assignment of track to truth, specified as a real positive scalar. The function
decides if an assignment is correct based on the provided known assignment input. If the
assignment is not provided as an input, the last known "optimal" assignment is assumed to be
correct.
Example: 5
Data Types: single | double

Distance — Distance type
'posnees' (default) | 'velnees' | 'posabserr' | 'velabserr'

Distance type, specified as 'posnees', 'velnees', 'posabserr', or 'velabserr'. The distance
type specifies the physical quantity used for distance calculations:

• 'posnees' – Normalized estimation error squared (NEES) of track position
• 'velnees' – NEES error of track velocity
• 'posabserr' – Absolute error of track position
• 'velabserr' – Absolute error of track velocity
• 'custom' – Custom distance error

If you specify the Distance property as 'custom', you must also specify the distance function in the
DistanceFcn property.

DistanceFcn — Custom distance function
function handle

Custom distance function, specified as a function handle. The function must support the following
syntax:

d = myCustomFcn(Track,Truth)

 trackOSPAMetric

3-311

where Track is a structure or an object of track information, Truth is a structure or an object of
truth information, and d is the distance between the truth and the track. See objectTrack for an
example on how to organize track information.
Example: @myCustomFcn

Dependencies

To enable this property, set the Distance property to 'custom'.

MotionModel — Desired platform motion model
'constvel' (default) | 'constacc' | 'constturn'

Desired platform motion model, specified as 'constvel', 'constacc', or 'constturn'. This
property selects the motion model used by the tracks input.

The motion models expect the 'State' field of the tracks to have a column vector containing these
values:

• 'constvel' — Position is in elements [1 3 5], and velocity is in elements [2 4 6].
• 'constacc' — Position is in elements [1 4 7], velocity is in elements [2 5 8], and acceleration is

in elements [3 6 9].
• 'constturn' — Position is in elements [1 3 6], velocity is in elements [2 4 7], and yaw rate is in

element 5.

The 'StateCovariance' field of the tracks input must have position, velocity, and turn-rate
covariances in the rows and columns corresponding to the position, velocity, and turn-rate of the
'State' field of the tracks input.

TrackIdentifierFcn — Track identifier function
@defaultTrackIdentifier (default) | function handle

Track identifier function, specified as a function handle. The function extracts track ID from the track
input. The function must support the following syntax:

Trackids = trackIdentifier(Tracks)

where Tracks is an array of structures or objects containing the information of tracks, and
Trackids is a numeric array of the same size as Tracks. For an example of track object, see
objectTrack. For the default identifier function, defaultTrackIdentifier, the track ID must be
contained in Tracks as the value of the TrackID field or property.
Example: @myTrackIdetifier

TruthIdentifierFcn — Truth identifier function
@defaultTruthIdentifier (default) | function handle

Truth identifier function, specified as a function handle. The function extracts truth ID from truth
input. The function must support the following syntax:

TruthIDs = truthIdentifier(Truths)

where Truths is an array of structures or objects containing the information of truths, and
TruthIDs is a numeric array of the same size as Truths. For the use of the default identifier
function, defaultTruthIdentifier, the truth ID must be contained in Truth as a value of the
PlatformID field or property.

3 System Objects

3-312

Example: @myTruthIdetifier

HasAssignmentInput — Enable assignment input
false (default) | true

Enable assignment input, specified as true or false.
Data Types: logical

Usage

Syntax
OSPA = OSPAMetric(tracks,truths)
OSPA = OSPAMetric(tracks,truths,assignment)
[OSPA,localOSPA] = OSPAMetric(___)
[OSPA,localOSPA,cardOSPA] = OSPAMetric(___)
[OSPA,localOSPA,cardOSPA,labelOSPA] = OSPAMetric(___)

Description

OSPA = OSPAMetric(tracks,truths) returns the OSPA metric between the set of tracks and
truths.

OSPA = OSPAMetric(tracks,truths,assignment) allows you to specify the known assignment
between tracks and truths at the current time step. To use this syntax, specify the
HasAssignmentInput property as true.

[OSPA,localOSPA] = OSPAMetric(___) also returns the localization error component of the
OSPA metric. You can use any of the input combinations in the previous syntaxes as the input.

[OSPA,localOSPA,cardOSPA] = OSPAMetric(___) also returns the cardinality error
component of the OSPA metric.

[OSPA,localOSPA,cardOSPA,labelOSPA] = OSPAMetric(___) also returns the labeling error
component of the OSPA metric.

Input Arguments

tracks — Track information
array of structures | array of objects

Track information, specified as an array of structures or objects for noncustomized (built-in) distance
functions. Each structure or object must contain State as a field or property. Additionally, if an
NEES-based distance (posnees or velnees) is specified in the Distance property, each structure
or object must also contain StateCovariance as a field or property. Moreover, if the default track
identifier function is used in the TrackIdentifierFcn property, then each structure or object must
also contain TrackID as a field or property.
Data Types: struct | object

truths — Truth information
array of structures | array of objects

 trackOSPAMetric

3-313

Truth information, specified as an array of structures or objects for noncustomized (built-in) distance
functions. Each structure or object must contain Position and velocity as fields or properties. If
the default truth identifier function is used in the TruthIdentifierFcn property, then each
structure or object must also contain PlatformID as a field or property.
Data Types: struct | object

assignment — Known assignment
N-by-2 matrix of nonnegative integers

Known assignment, specified as an N-by-2 matrix of nonnegative integers. The first column elements
are track IDs, and the second column elements are truth IDs. The IDs in the same row are assigned to
each other. If a track or truth is not assigned, specify 0 as the same row element.
Data Types: single | double

Output Arguments

OSPA — OSPA metric
nonnegative real scalar

OSPA metric, returned as a nonnegative real scalar.
Example: 10.1

localOSPA — Localization error component
nonnegative real scalar

Localization error component, returned as a nonnegative real scalar.
Example: 8.5

cardOSPA — Cardinality error component
nonnegative real scalar

Cardinality error component, returned as a nonnegative real scalar.
Example: 6

labelOSPA — Labeling error component
nonnegative real scalar

Labeling error component, returned as a nonnegative real scalar.
Example: 7.5

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm

3 System Objects

3-314

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
clone Create duplicate System object

Examples

Evaluate Tracking Result Using trackOSPAMetric

Load prerecorded track data and truth data.

load trackmetricex tracklog truthlog

Construct a trackOSPAMetric object.

tom = trackOSPAMetric;

Initialize output variables.

ospa = zeros(numel(tracklog),1);
cardOspa = zeros(numel(tracklog),1);
locOspa = zeros(numel(tracklog),1);

Calculate three OSPA components in a loop.

for i = 1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [ospa(i), locOspa(i), cardOspa(i)] = tom(tracks, truths);
end

Visualize the results.

figure()
plot(ospa,'g');
hold on;
plot(locOspa,'r:');
plot(cardOspa,'b--');
legend('OSPA','Localization OSPA','Cardinality OSPA');

 trackOSPAMetric

3-315

More About
OSPA Metric

At time tk, a list of truths is:

X = [x1, x2, …, xm]
At the same time, a tracker obtains a list of tracks:

Y = [y1, y2, …, yn]
The OSPA metric (used to evaluate the tracking performance based on the truth) is:

OSPA = (dloc
p + dcard

p + dlab
p)

1/p

3 System Objects

3-316

Assuming m ≤ n, the three components (dloc, dcard, and dlab) are calculated as following. The
localization error component dloc is computed as:

dloc = 1
n ∑i = 1

m
dc

p xi, yπ(i)

1/p

where p is the order of the OSPA metric, dc is the cutoff-based distance, and yπ(i) represents the track
assigned to truth xi. The cutoff-based distance dc is defined as:

dc(x, y) = min db(x, y), c
where c is the cutoff distance threshold, and db(x,y) is the base distance between track x and truth y
calculated by a distance function specified by the Distance property. The cutoff based distance dc
takes the smaller value of db and c.

The cardinality error component dcard is:

dcard = n−m
n cp 1/p

The labelling error component dlab is:

dlab = 1
n ∑i = 1

m
αpγ L(xi), L(yπ(i))

1/p

where α is the penalty for incorrect assignment defined by the LabelingError property, L(xi)
represents the truth ID of xi, and L(yπ(i)) represents the track ID of yπ(i). The function γ = 1 if the IDs
of the truth and track pair (L(xi) and L(xi)) agree with the known assignment given by the
assignment input, or agree with the assignment in last update if the known assignment is not given.
Otherwise, γ = 0.

If m > n, simply exchange m and n in the formulation to obtain the OSPA metric.

 trackOSPAMetric

3-317

References
[1] Schuhmacher, B., B. -T. Vo, and B. -N. Vo. "A Consistent Metric for Performance Evaluation of

Multi-Object Filters." IEEE Transactions on Signal Processing, Vol, 56, No, 8, pp. 3447–3457,
2008.

[2] Ristic, B., B. -N. Vo, D. Clark, and B. -T. Vo. "A Metric for Performance Evaluation of Multi-Target
Tracking Algorithms." IEEE Transactions on Signal Processing, Vol, 59, No, 7, pp. 3452–3457,
2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackAssignmentMetrics | trackErrorMetrics

Introduced in R2019b

3 System Objects

3-318

trackGOSPAMetric

Generalized optimal subpattern assignment (GOSPA) metric

Description
trackGOSPAMetric System object computes the generalized optimal subpattern assignment metric
between a set of tracks and the known truths.

For more details, see “GOSPA Metric” on page 3-325 and [1].

To compute the generalized subpattern alignment metric:

1 Create the trackGOSPAMetric object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
GOSPAMetric = trackGOSPAMetric
GOSPAMetric = trackGOSPAMetric(Name,Value)

Description

GOSPAMetric = trackGOSPAMetric creates a trackGOSPAMetric System object with default
property values.

GOSPAMetric = trackGOSPAMetric(Name,Value) sets properties for the trackGOSPAMetric
object using one or more name-value pairs. For example, GOSPAMetric =
trackGOSPAMetric('CutoffDistance',5) creates a trackGOSPAMetric object with the cutoff
distance equal to 5. Enclose property names in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

CutoffDistance — Threshold for cutoff distance between track and truth
30 (default) | real positive scalar

 trackGOSPAMetric

3-319

Threshold for cutoff distance between track and truth, specified as a real positive scalar. A truth is
assigned to a track only if the distance between the track and the known truth is less than this
distance.
Example: 40
Data Types: single | double

Order — Order of GOSPA metric
2 (default) | positive integer

Order of GOSPA metric, specified as a positive integer.
Example: 1
Data Types: single | double

Alpha — Alpha parameter of GOSPA metric
2 (default) | positive scalar in range [0, 2]

Alpha parameter of GOSPA metric, specified as a positive scalar in the range [0, 2].
Example: 1
Data Types: single | double

SwitchingPenalty — Penalty for assignment switching
0 | nonnegative real scalar

Penalty for assignment switching, specified as a nonnegative real scalar.
Example: 1.2

Distance — Distance type
'posnees' (default) | 'velnees' | 'posabserr' | 'velabserr' | 'custom'

Distance type, specified as 'posnees', 'velnees', 'posabserr', 'velabserr', or 'custom'.
This property specifies the physical quantity used for distance calculations:

• 'posnees' – Normalized estimation error squared (NEES) of track position
• 'velnees' – NEES error of track velocity
• 'posabserr' – Absolute error of track position
• 'velabserr' – Absolute error of track velocity
• 'custom' – Custom distance error

If you specify the Distance property as 'custom', you must also specify the distance function in the
DistanceFcn property.

DistanceFcn — Custom distance function
function handle

Custom distance function, specified as a function handle. The function must support this syntax:

d = myCustomFcn(track,truth)

where track is a structure or an object of track information, truth is a structure or an object of
truth information, and d is the distance between the truth and the track. See objectTrack for an
example on how to organize information for estimated tracks and truth tracks.

3 System Objects

3-320

Example: @myCustomFcn
Dependencies

To enable this property, set the Distance property to 'custom'.

MotionModel — Desired platform motion model
'constvel' (default) | 'constacc' | 'constturn'

Desired platform motion model, specified as 'constvel', 'constacc', or 'constturn'. This
property selects the motion model used by the tracks input.

The motion models expect the 'State' field of the tracks input to have a column vector containing
these values:

• 'constvel' — Constant velocity motion model of the form [x;vx;y;vy;z;vz], where x, y, and z are
position coordinates and vx, vy, vz are velocity coordinates.

• 'constacc' — Constant acceleration motion model of the form [x;vx;ax;y;vy;ay;z;vz;az], where x,
y, and z are position coordinates, vx, vy, vz are velocity coordinates, and ax, ay, az are acceleration
coordinates.

• 'constturn' — Constant turn motion model of the form [x;vx;y;vy;theta;z;vz], where x, y, and z
are position coordinates, vx, vy, vz are velocity coordinates, and theta is the yaw rate.

The 'StateCovariance' field of the tracks input must have position, velocity, and turn-rate
covariances in the rows and columns corresponding to the position, velocity, and turn-rate of the
'State' field of the tracks input. 'StateCovariance' is required only if 'posnees' or
'velnees' is selected in the Distance property.

TrackIdentifierFcn — Track identifier function
@defaultTrackIdentifier (default) | function handle

Track identifier function, specified as a function handle. The function extracts track ID from the
tracks input. The function must support the following syntax:

trackids = trackIdentifier(tracks)

where

• tracks is an array of structures or objects containing the information of tracks.
• trackids is a numeric array of the same size as tracks.

For an example of a track object, see objectTrack. If you use the default identifier function,
defaultTrackIdentifier, you must include track ID in tracks as the value of the TrackID field
or property.
Example: @myTrackIdetifier

TruthIdentifierFcn — Truth identifier function
@defaultTruthIdentifier (default) | function handle

Truth identifier function, specified as a function handle. The function extracts truth ID from truths
input. The function must support the following syntax:

truthIDs = truthIdentifier(truths)

where

 trackGOSPAMetric

3-321

• truths is an array of structures or objects containing the information of truths.
• truthIDs is a numeric array of the same size as truths.

If you the use of the default identifier function, defaultTruthIdentifier, you must include the
truth ID in truths as a value of the PlatformID field or property.
Example: @myTruthIdetifier

HasAssignmentInput — Enable assignment input
false (default) | true

Enable assignment input, specified as true or false. This property enables providing the
assignment input at each time step. The computed GOSPA metric uses the input assignment to
compute the localization component.
Data Types: logical

Usage

Syntax
sGOSPA = GOSPAMetric(tracks,truths)
[sGOSPA,GOSPA,switching] = OSPAMetric(tracks,truths)
[___] = GOSPAMetric(tracks,truths,assignment)
[sGOSPA,GOSPA,switching,localization,missTarget,falseTrack] = GOSPAMetric(___
)

Description

sGOSPA = GOSPAMetric(tracks,truths) returns the GOSPA metric between the set of tracks
and truths, including the switching penalty. The value of the switching penalty included in the metric
depends on the SwitchingPenalty property. By default, the metric uses the global nearest
neighbor (GNN) assignments at the current and the previous step to decide if the tracks are
switched.

[sGOSPA,GOSPA,switching] = OSPAMetric(tracks,truths) also returns the GOSPA
component and the switching component.

[___] = GOSPAMetric(tracks,truths,assignment) allows you the specify the current
assignments between tracks and truths used in the metric evaluation. You can return outputs as any
of the previous syntaxes.

To use this syntax, set the HasAssignmentInput property to true.

[sGOSPA,GOSPA,switching,localization,missTarget,falseTrack] = GOSPAMetric(___
) also returns the localization component, missed target component, and the false track component.
You can use any of the input combinations in the previous syntaxes.

To use this syntax, set the value of the Alpha property to 2.

Input Arguments

tracks — Track information
array of structures | array of objects

3 System Objects

3-322

Track information, specified as an array of structures or objects for built-in distance functions. Each
structure or object must contain State as a field or property. Additionally, if a NEES-based distance
(posnees or velnees) is specified in the Distance property, each structure or object must also
contain StateCovariance as a field or property. Moreover, if the default track identifier function is
used in the TrackIdentifierFcn property, then each structure or object must also contain
TrackID as a field or property. See objectTrack for an example of track object.
Data Types: struct | object

truths — Truth information
array of structures | array of objects

Truth information, specified as an array of structures or objects for built-in distance functions. Each
structure or object must contain Position and Velocity as fields or properties. If the default truth
identifier function is used in the TruthIdentifierFcn property, then each structure or object must
also contain PlatformID as a field or property.
Data Types: struct | object

assignment — Known current assignment
N-by-2 matrix of nonnegative integers

Known current assignment, specified as an N-by-2 matrix of nonnegative integers. The first column
elements are track IDs, and the second column elements are truth IDs. The IDs in the same row are
tracks and truths assigned to each other. If a track (or a truth) is not assigned, specify 0 as the same
row element for the truth (or the track).
Data Types: single | double

Output Arguments

sGOSPA — GOSPA metric including switching component
nonnegative real scalar

GOSPA metric including switching component, returned as a nonnegative real scalar.

GOSPA — GOSPA metric
nonnegative real scalar

GOSPA metric, returned as a nonnegative real scalar.

switching — Switching component
nonnegative real scalar

Switching component, returned as a nonnegative real scalar.

localization — Localization component
nonnegative real scalar

Localization component, returned as a nonnegative real scalar.

missTarget — Missed target component
nonnegative real scalar

Missed target component, returned as a nonnegative real scalar.

 trackGOSPAMetric

3-323

falseTrack — False track component
nonnegative real scalar

False track component, returned as a nonnegative real scalar.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
clone Create duplicate System object
isLocked Determine if System object is in use

Examples

Evaluate Tracking Results Using GOSPA Metric

Load prerecorded data.

load trackmetricex tracklog truthlog;

Create a trackGOSPAMetric object and set the SwitchingPenalty to 5.

tgm = trackGOSPAMetric('SwitchingPenalty',5);

Create output variables.

lgospa = zeros(numel(tracklog),1);
gospa = zeros(numel(tracklog),1);
switching = zeros(numel(tracklog),1);
localization = zeros(numel(tracklog),1);
missTarget = zeros(numel(tracklog),1);
falseTracks = zeros(numel(tracklog),1);

After extracting the tracks and ground truths, run the GOSPA metric.

for i = 1:numel(tracklog)
 tracks = tracklog{i};
 truths = truthlog{i};
 [lgospa(i),gospa(i),switching(i),localization(i),missTarget(i),falseTracks(i)] = tgm(tracks,truths);
end

Visualize the results.

plot([lgospa gospa switching localization missTarget falseTracks])
legend('Labeled GOSPA','GOSPA','Switching Component',...
 'Localization Component','Missed Target Component','False Tracks Component')

3 System Objects

3-324

Algorithms
GOSPA Metric

At time tk, a list of truths is:

X = [x1, x2, …, xm]
At time tk, a tracker obtains a list of tracks:

Y = [y1, y2, …, yn]
In general, the GOSPA metric including the switching component (SGOSPA) is:

SGOSPA = GOSPAp + SCp 1/p

 trackGOSPAMetric

3-325

where p is the order of the metric, SC is the switching component, and GOSPA is the basic GOSPA
metric.

Assuming m ≤ n, GOSPA is:

GOSPA = ∑
i = 0

m
dc

p(xi, yπ(i)) + cp

α (n−m)
1/p

where dc is the cutoff-based distance and yπ(i) represents the track assigned to truth xi. The cutoff-
based distance dc is defined as:

dc(x, y) = min db(x, y), c
where c is the cutoff distance threshold, and db(x,y) is the base distance between track x and truth y
calculated by a distance function specified in the Distance property. The cutoff based distance dc is
the smaller value of db and c. α is the alpha parameter defined in the Alpha property.

The switching component SC is:

SC = SP × ns
1/p

where SP is the switching penalty defined by the SwitchingPenalty property and ns is the number
of switches. When a track switches assignment from one truth to another truth, the number of
switching is counted as 1. When a track switches from assigned to unassigned or switches from
unassigned to assigned, the number of switching is counted as 0.5. For example, as shown in the
table, Tracks 1 and 2 both switched to different truths, whereas Track 3 switched from assigned to
unassigned. Therefore, the total number of switching is 2.5.

Track Switching Scenario

Previous Current
Tracks Truths Tracks Truths

1 3 1 7
2 5 2 3
3 7 3 0

When α = 2, the GOSPA metric can reduce to three components:

GOSPA = locp + missp + f alsep 1/p

The localization component (loc) is calculated as:

3 System Objects

3-326

loc = ∑
i = 1

h
db

p(xi, yπ(i))
1/p

where h is the number of nontrivial assignments. A trivial assignment is when a track is assigned to
no truth. The missed target component is calculated as:

miss = c
21/p (nmiss)1/p

where nmiss is the number of missed targets. The false track component is calculated as:

f alse = c
21/p (nf alse)1/p

where nfalse is the number of false tracks.

If m > n, simply exchange m and n in the formulation to obtain the GOSPA metric.

References
[1] Rahmathullash, A. S., A. F. García-Fernández, and L. Svensson. "Generalized Optimal Sub-Pattern

Assignment Metric." 20th International Conference on Information Fusion (Fusion), pp. 1–8,
2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackAssignmentMetrics | trackErrorMetrics | trackOSPAMetric

Introduced in R2020a

 trackGOSPAMetric

3-327

trackerTOMHT

Multi-hypothesis, multi-sensor, multi-object tracker

Description
The trackerTOMHT System object is a multi-hypothesis tracker capable of processing detections of
many targets from multiple sensors. The tracker initializes, confirms, predicts, corrects, and deletes
tracks. Inputs to the tracker are detection reports generated by objectDetection, radarSensor,
monostaticRadarSensor, irSensor, or sonarSensor objects. The tracker estimates the state
vector and state vector covariance matrix for each track. The tracker assigns detections based on a
track-oriented, multi-hypothesis approach. Each detection is assigned to at least one track. If the
detection cannot be assigned to any track, the tracker creates a track.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection already has a known classification (the ObjectClassID
field of the returned track is nonzero), that track is confirmed immediately. When a track is
confirmed, the multi-object tracker considers the track to represent a physical object. If detections
are not assigned to the track within a specifiable number of updates, the track is deleted. For an
overview of how the tracker functions, see “Algorithms” on page 3-339.

To track objects using the multi-hypothesis tracker:

1 Create the trackerTOMHT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tracker = trackerTOMHT
tracker = trackerTOMHT(Name,Value)

Description

tracker = trackerTOMHT creates a trackerTOMHT System object with default property values.

tracker = trackerTOMHT(Name,Value) sets properties for the multi-object tracker using one or
more name-value pairs. For example,
trackerTOMHT('FilterInitializationFcn',@initcvukf,'MaxNumTracks',100) creates a
multi-object tracker that uses a constant-velocity, unscented Kalman filter and allows a maximum of
100 tracks. Enclose each property name in quotes.

3 System Objects

3-328

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

FilterInitializationFcn — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a filter initialization function. The tracker uses a filter initialization function when creating
new tracks.

Sensor Fusion and Tracking Toolbox supplies many initialization functions that you can use to specify
FilterInitializationFcn.

Initialization Function Function Definition
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter
initcvekf Initialize constant-velocity extended Kalman filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.
initcapf Initialize constant-acceleration particle filter.
initctpf Initialize constant-turn-rate particle filter.
initcvpf Initialize constant-velocity particle filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.

 trackerTOMHT

3-329

Initialization Function Function Definition
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity modified spherical

coordinates extended Kalman filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function. The function must have the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by objectDetection. The output
of this function must be a filter object: trackingKF, trackingEKF, trackingUKF, trackingCKF,
trackingPF, trackingMSCEKF, trackingGSF, trackingIMM, or trackingABF.

To guide you in writing this function, you can examine the details of the supplied functions from
within MATLAB. For example:

type initcvekf

Data Types: function_handle | char

MaxNumTracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: single | double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
MaxNumSensors must be greater than or equal to the largest value of SensorIndex found in all the
detections used to update the tracker. SensorIndex is a property of an objectDetection object.
The MaxNumSensors property determines how many sets of ObjectAttributes fields each output
track can have.
Data Types: single | double

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array

3 System Objects

3-330

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

MaxNumHypotheses — Maximum number of hypotheses to maintain
5 (default) | positive integer

Maximum number of hypotheses maintained by the tracks in cases of ambiguity, specified as a
positive integer. Larger values increase the computational load.
Example: 10
Data Types: single | double

MaxNumTrackBranches — Maximum number of track branches per track
3 (default) | positive scalar

Set the maximum number of track branches (hypotheses) allowed for each track. Larger values
increase the computational load.
Data Types: single | double

MaxNumHistoryScans — Maximum number of scans maintained in the branch history
4 (default) | positive integer

Maximum number of scans maintained in the branch history, specified as a positive integer. The
number of track history scans is typically from 2 through 6. Larger values increase the computational
load.
Example: 6
Data Types: single | double

AssignmentThreshold — Detection assignment threshold
30*[0.3 0.7 1 Inf] (default) | positive scalar | 1-by-3 vector of positive values | 1-by-4 vector of
positive values

Detection assignment threshold, specified as a positive scalar, an 1-by-3 vector of non-decreasing
positive values, [C1,C2,C3], or an1-by-4 vector of non-decreasing positive values, [C1,C2,C3,C4]. If
specified as a scalar, the specified value, val, will be expanded to [0.3,0.7,1,Inf]*val. If specified as
[C1,C2,C3], it will be expanded as [C1,C2,C3,Inf].

The thresholds control (1) the assignment of a detection to a track, (2) the creation of a new branch
from a detection, and (3) the creation of a new branch from an unassigned track. The threshold
values must satisfy: C1 <= C2 <= C3<=C4.

• C1 defines a distance such that if a track has an assigned detection with lower distance than C1,
the track is no longer considered unassigned and does not create an unassigned track branch.

• C2 defines a distance that if a detection has been assigned to a track with lower distance than C2,
the detection is no longer considered unassigned and does not create a new track branch.

• C3 defines the maximum distance for assigning a detection to a track.
• C4 defines combinations of track and detection for which an accurate normalized cost calculation

is performed. Initially, the tracker executes a coarse estimation for the normalized distance

 trackerTOMHT

3-331

between all the tracks and detections. The tracker only calculates the accurate normalized
distance for the combinations whose coarse normalized distance is less than C4.

Tips:

• Increase the value of C3 if there are detections that should be assigned to tracks but are not.
Decrease the value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

• Increasing the values C1 and C2 helps control the number of track branches that are created.
However, doing so reduces the number of branches (hypotheses) each track has.

• Increase the value of C4 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too much time.

Data Types: single | double

ConfirmationThreshold — Minimum score required to confirm track
20 (default) | positive scalar

Minimum score required to confirm a track, specified as a positive scalar. Any track with a score
higher than this threshold is confirmed.
Example: 12
Data Types: single | double

DeletionThreshold — Maximum score drop for track deletion
-7 (default) | scalar

The maximum score drop before a track is deleted, specified as a scalar. Any track with a score that
falls by more than this parameter from the maximum score is deleted. Deletion threshold is affected
by the probability of false alarm.
Example: 12
Data Types: single | double

DetectionProbability — Probability of detection used for track score
0.9 (default) | positive scalar between 0 and 1

Probability of detection, specified as a positive scalar between 0 and 1. This property is used to
compute track score.
Example: 0.5
Data Types: single | double

FalseAlarmRate — Probability of false alarm used for track score
1e-6 (default) | scalar

The probability of false alarm, specified as a scalar. This property is used to compute track score.
Example: 1e-5
Data Types: single | double

Beta — Rate of new tracks per unit volume
1 (default) | positive scalar

3 System Objects

3-332

The rate of new tracks per unit volume, specified as a positive scalar. The rate of new tracks is used
in calculating the track score during track initialization.
Example: 2.5
Data Types: single | double

Volume — Volume of sensor measurement bin
1 (default) | positive scalar

The volume of a sensor measurement bin, specified as a positive scalar. For example, if a radar
produces a 4-D measurement, which includes azimuth, elevation, range, and range rate, the 4-D
volume is defined by the radar angular beam width, the range bin width and the range-rate bin width.
Volume is used in calculating the track score when initializing and updating a track.
Example: 1.5
Data Types: single | double

MinBranchProbability — Minimum probability required to keep track
.001 (default) | positive scalar

Minimum probability required to keep a track, specified as a positive scalar less than one. Any track
with lower probability is pruned. Typical values are 0.001 to 0.005.
Example: .003
Data Types: single | double

NScanPruning — N-scan pruning method
'None' (default) | 'Hypothesis'

N-scan pruning method, specified as 'None' or 'Hypothesis'. In N-scan pruning, branches that
belong to the same track are pruned (deleted) if, in the N-scans history, they contradict the most
likely branch for the same track. The most-likely branch is defined in one of two ways:

• 'None' – No N-scan pruning is performed.
• 'Hypothesis' – The chosen branch is in the most likely hypothesis.

Example: 'Hypothesis'

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix, specified as false or true. If true, you can provide an assignment cost matrix
as an input argument when calling the object.
Data Types: logical

HasDetectableBranchIDsInput — Enable input of detectable branch IDs
false (default) | true

Enable the input of detectable branch IDs at each object update, specified as false or true. Set this
property to true if you want to provide a list of detectable branch IDs. This list tells the tracker of all
branches that the sensors are expected to detect and, optionally, the probability of detection for each
branch.
Data Types: logical

 trackerTOMHT

3-333

OutputRepresentation — Track output method
'Tracks' (default) | 'Hypothesis' | 'Clusters'

Track output method, specified as 'Tracks', 'Hypothesis', or 'Clusters'.

• 'Tracks' – Output the centroid of each track based on its track branches.
• 'Hypothesis' – Output branches that are in certain hypotheses. If you choose this option, list

the hypotheses to output using the HypothesesToOutput property.
• 'Clusters' – Output the centroid of each cluster. Similar to 'Tracks' output, but includes all

tracks within a cluster.

Data Types: char

HypothesesToOutput — Indices of hypotheses to output
1 (default) | positive integer | array of positive integers

Indices of hypotheses to output, specified as an array of positive integers. The indices must all be less
than or equal to the maximum number of hypotheses provided by the tracker.

Tunable: Yes
Data Types: single | double

NumTracks — Number of tracks maintained by tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the tracker, returned as a nonnegative integer.
Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, returned as a nonnegative integer. If the IsConfirmed field of an
output track structure is true, the track is confirmed.
Data Types: double

Usage
To process detections and update tracks, call the tracker with arguments, as if it were a function
(described here).

Syntax
confirmedTracks = tracker(detections,time)
confirmedTracks = tracker(detections,time,costMatrix)
confirmedTracks = tracker(___ ,detectableBranchIDs)
[confirmedTracks,tentativeTracks,allTracks] = tracker(___)
[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
)

3 System Objects

3-334

Description

confirmedTracks = tracker(detections,time) returns a list of confirmed tracks that are
updated from a list of detections, detections, at the update time, time. Confirmed tracks are
corrected and predicted to the update time.

confirmedTracks = tracker(detections,time,costMatrix) also specifies a cost matrix,
costMatrix.

To enable this syntax, set the HasCostMatrixInput property to true.

confirmedTracks = tracker(___ ,detectableBranchIDs) also specifies a list of expected
detectable branches, detectableBranchIDs.

To enable this syntax, set the HasDetectableBranchIDsInput property to true.

[confirmedTracks,tentativeTracks,allTracks] = tracker(___) also returns a list of
tentative tracks, tentativeTracks, and a list of all tracks, allTracks.

[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
) also returns information, analysisInformation, useful for track analysis.

Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current update time, time, and
greater than the previous time value used to update the tracker. Also, the Time differences between
different objectDetection objects in the cell array do not need to be equal.

time — Time of update
scalar

Time of update, specified as a scalar. The tracker updates all tracks to this time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the tracker.
Data Types: single | double

costMatrix — Cost matrix
real-valued N-by-M matrix

Cost matrix, specified as a real-valued N-by-M matrix, where N is the number of branches, and M is
the number of current detections. The cost matrix rows must be in the same order as the list of
branches. The columns must be in the same order as the list of detections. Obtain the correct order of
the list of branches using the getBranches object function. Matrix columns correspond to the
detections.

At the first update of the object or when the tracker has no previous tracks, specify the cost matrix to
have a size of [0,numDetections]. Note that the cost must be calculated so that lower costs
indicate a higher likelihood of assigning a detection to a track. To prevent certain detections from
being assigned to certain tracks, set the appropriate cost matrix entry to Inf.

 trackerTOMHT

3-335

Dependencies

To enable this argument, set the HasCostMatrixInput property to true.
Data Types: double | single

detectableBranchIDs — Detectable branch IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable branch IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable
branches are branches that the sensors expect to detect. The first column of the matrix contains a list
of branch IDs of tracks reported in the branchID field of the track output arguments. The second
column contains the detection probability for the branch. Sensors can report detection probability,
but if not reported, detection probabilities are obtained from the DetectionProbability property.

Branches whose identifiers are not included in detectableBranchIDs are considered as
undetectable. The track deletion logic does not count the lack of detection as a 'miss' for branch
deletion purposes.

Dependencies

To enable this input argument, set the HasDetectableBranchIDs property to true.
Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

3 System Objects

3-336

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

analysisInformation — Additional information for analyzing track updates
structure

Additional information for analyzing track updates, returned as a structure. The fields of this
structure are:

Field Description
BranchIDsAtStepBeginning Branch IDs when update began.
CostMatrix Cost of assignment matrix.
Assignments Assignments returned from assignTOMHT.
UnassignedTracks IDs of unassigned branches returned from the

tracker
UnassignedDetections IDs of unassigned detections returned from

trackerTOMHT.
InitialBranchHistory Branch history after branching and before

pruning.
InitialBranchScores Branch scores before pruning.
KeptBranchHistory Branch history after initial pruning.
KeptBranchScores Branch scores after initial pruning.
Clusters Logical array mapping branches to clusters.

Branches belong in the same cluster if they share
detections in their history or belong to the same
track, either directly or through other branches.
Such branches are incompatible.

TrackIncompatibility Branch incompatibility matrix. The (i,j)
element is true if the i-th and j-th branches have
shared detections in their history or belong to the
same track.

GlobalHypotheses Logical matrix mapping branches to global
hypotheses. Compatible branches can belong in
the same hypotheses.

GlobalHypScores Total score of global hypotheses.
PrunedBranches Logical array of branches that the

pruneTrackBranches function determines to be
pruned.

GlobalBranchProbabilities Global probability of each branch existing in the
global hypotheses.

BranchesDeletedByPruning Branches deleted by the tracker.
BranchIDsAtStepEnd Branch IDs when the update ended.

Data Types: struct

 trackerTOMHT

3-337

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackerTOMHT
getTrackFilterProperties Obtain track filter properties
setTrackFilterProperties Set track filter properties
getBranches Lists track branches
predictTrackToTime Predict track state
initializeTrack Initialize new track
deleteTrack Delete existing track
initializeBranch Initialize new track branch
deleteBranch Delete existing track branch

Common to All System Objects
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use
clone Create duplicate System object

Examples

Track Two Objects Using trackerTOMHT

Create the trackerTOMHT System object with a constant-velocity Kalman filter initialization function,
initcvkf.

tracker = trackerTOMHT('FilterInitializationFcn',@initcvkf, ...
 'ConfirmationThreshold',20, ...
 'DeletionThreshold',-7, ...
 'MaxNumHypotheses',10);

Update the tracker with two detections having nonzero ObjectClassID. The detections immediately
create confirmed tracks.

detections = {objectDetection(1,[10;0],'SensorIndex',1, ...
 'ObjectClassID',5,'ObjectAttributes',{struct('ID',1)}); ...
 objectDetection(1,[0;10],'SensorIndex',1, ...
 'ObjectClassID',2,'ObjectAttributes',{struct('ID',2)})};
time = 2;
tracks = tracker(detections,time);

Find and display the positions and velocities.

positionSelector = [1 0 0 0; 0 0 1 0];
velocitySelector = [0 1 0 0; 0 0 0 1];
positions = getTrackPositions(tracks,positionSelector)

positions = 2×2

3 System Objects

3-338

 10.0000 0
 0 10.0000

velocities = getTrackVelocities(tracks,velocitySelector)

velocities = 2×2

 0 0
 0 0

Algorithms
Tracker Logic Flow

When you process detections using the tracker, track creation and management follow these steps.

1 The tracker attempts to assign detections to existing tracks.
2 The track allows for multiple hypotheses about the assignment of detections to tracks.
3 Unassigned detections result in the creation of new tracks.
4 Assignments of detections to tracks create branches for the assigned tracks.
5 Tracks with no assigned detections are coasted (predicted).
6 All track branches are scored. Branches with low initial scores are pruned.
7 Clusters of branches that share detections (incompatible branches) in their history are

generated.
8 Global hypotheses of compatible branches are formulated and scored.
9 Branches are scored based on their existence in the global hypotheses. Low-scored branches are

pruned.
10 Additional pruning is performed based on N-scan history.
11 All tracks are corrected and predicted to the input time.

Assignment Thresholds for Multi-Hypothesis Tracker

Three assignment thresholds, C1 , C2, and C3, control (1) the assignment of a detection to a track, (2)
the creation of a new branch from a detection, and (3) the creation of a new branch from an
unassigned track. The threshold values must satisfy: C1 <= C2 <= C3.

If the cost of an assignment is C = costmatrix(i,j), the following hypotheses are created based
on comparing the cost to the values of the assignment thresholds. Below each comparison, there is a
list of the possible hypotheses.

 trackerTOMHT

3-339

Tips:

• Increase the value of C3 if there are detections that should be assigned to tracks but are not.
Decrease the value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

• Increasing the values C1 and C2 helps control the number of track branches that are created.
However, doing so reduces the number of branches (hypotheses) each track has.

• To allow each track to be unassigned, set C1 = 0.
• To allow each detection to be unassigned, set C2 = 0.

Data Precision

All numeric inputs can be single or double precision, but they all must have the same precision.

3 System Objects

3-340

References
[1] Werthmann, J. R.. "Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In International Society for Optics and Photonics, Vol. 1698, pp.
228-301, 1992.

[2] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House
Radar Library, Boston, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with a multi-object tracker must have properties with the same sizes and

types.
• If you use the ObjectAttributes field within an objectDetection object, you must specify

this field as a cell containing a structure. The structure for all detections must have the same
fields and the values in these fields must always have the same size and type. The form of the
structure cannot change during simulation.

• If ObjectAttributes are contained in the detection, the SensorIndex value of the detection
cannot be greater than 10.

• The first update to the multi-object tracker must contain at least one detection.

See Also
Functions
getTrackPositions | getTrackVelocities

Objects
objectDetection | objectTrack | trackingABF | trackingCKF | trackingEKF | trackingGSF
| trackingIMM | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

System Objects
irSensor | monostaticRadarSensor | radarSensor | sonarSensor | trackerGNN

Introduced in R2018b

 trackerTOMHT

3-341

deleteBranch
Delete existing track branch

Syntax
deleted = delteTrack(tracker,branchID)

Description
deleted = delteTrack(tracker,branchID) deletes the track branch specified by branchID in
the tracker.

Input Arguments
tracker — TOMHT tracker
trackerTOMHT object

TOMHT tracker, specified a trackerTOMHT object.

branchID — Track branch identifier
positive integer

Track branch identifier, specified as a positive integer.
Example: 21

Output Arguments
deleted — Indicate if track branch was successfully deleted
true | false

Indicate if the track branch was successfully deleted or not, returned as true or false. If the track
branch specified by the branchID input existed and was successfully deleted, it returns as true. If
the track branch did not exist, a warning is issued and it returns as false.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackFuser | trackerGNN | trackerJPDA | trackerTOMHT

Introduced in R2020a

3 System Objects

3-342

initializeBranch
Initialize new track branch

Syntax
branchID = initializeTrack(tracker,branch)
branchID = initializeTrack(tracker,branch,filter)

Description
branchID = initializeTrack(tracker,branch) initializes a new track branch in the tracker.
The tracker must be updated at least once before initializing a track branch. If the track is initialized
successfully, the tracker assigns the output branchID to the branch, set the UpdateTime of the
branch equal to the last step time, and synchronizes the data in the input branch to the initialized
branch.

A warning is issued if the tracker already maintains the maximum number of track branches specified
by the MaxNumTrackBranches property of the tracker. In this case, the branchID is returned as
zero, which indicates a failure to initialize the branch.

Note This syntax doesn't support using the trackingGSF, trackingPF, or trackingIMM filter
object as the internal tracking filter for the tracker. Use the second syntax for these cases.

branchID = initializeTrack(tracker,branch,filter) initializes a new track branch in the
tracker using a specified tracking filter, filter.

Note If the tracking filter used in the tracker is trackingGSF, trackingPF, or trackingIMM, you
must use this syntax instead of the first syntax.

Input Arguments
tracker — TOMHT tracker
trackerTOMHT object

TOMHT tracker, specified a trackerTOMHT object.

branch — New track branch to be initialized
objectTrack | structure

New track to be initialized, specified as an objectTrack object or a structure. If specified as a
structure, the name, variable type, and data size of the fields of the structure must be the same as the
name, variable type, and data size of the corresponding properties of the objectTrack object
outputted by the tracker.
Data Types: struct | object

 initializeBranch

3-343

filter — Filter object
trackingKF | trackingEKF | trackingUKF | trackingABF | trackingCKF | trackingMSCEKF |
trackingPF | trackingIMM | trackingGSF

Filter object, specified as a trackingKF, trackingEKF, trackingUKF, trackingABF,
trackingCKF, trackingIMM, trackingGSF, trackingPF, or trackingMSCEKF object.

Output Arguments
branchID — Track branch identifier
nonnegative integer

Track identifier, returned as a nonnegative integer. trackID is returned as 0 if the branch is not
initialized successfully.
Example: 2

See Also
trackerTOMHT

Introduced in R2020a

3 System Objects

3-344

getTrackFilterProperties
Obtain track filter properties

Syntax
filtervalues = getTrackFilterProperties(tracker,branchID,properties)
filtervalues = getTrackFilterProperties(tracker,trackID,properties)

Description
filtervalues = getTrackFilterProperties(tracker,branchID,properties) returns the
values, filtervalues, of tracking filter properties, properties, for the specified branch,
branchID.

This syntax applies when you create the tracker using trackerTOMHT.

filtervalues = getTrackFilterProperties(tracker,trackID,properties) returns the
values, filtervalues, of tracking filter properties, properties, for the specified track, trackID.

This syntax applies when you create the tracker using trackerGNN or trackerJPDA.

Examples

Get Multi-Hypothesis Track Filter Properties

Create a track filter with default properties from one detection. Obtain the values of the
MeasurementNoise and ProcessNoise track filter properties.

tracker = trackerTOMHT;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);
branches = getBranches(tracker);
branchID = branches(1).BranchID;
values = getTrackFilterProperties(tracker, branchID, ...
 'MeasurementNoise', 'ProcessNoise')

values=2×1 cell array
 {3x3 double}
 {3x3 double}

disp(values{1})

 1 0 0
 0 1 0
 0 0 1

 getTrackFilterProperties

3-345

Get Global Nearest-Neighbor Track Filter Properties

Create a track filter from one detection. Assume default properties. Obtain the values of the
MeasurementNoise and ProcessNoise track filter properties.

tracker = trackerGNN;
detection = objectDetection(0,[0;0;0]);
[~,tracks] = tracker(detection,0);
values = getTrackFilterProperties(tracker,tracks.TrackID, ...
 'MeasurementNoise','ProcessNoise')

values=2×1 cell array
 {3x3 double}
 {3x3 double}

disp(values{1})

 1 0 0
 0 1 0
 0 0 1

Input Arguments
tracker — Target tracker
trackerTOMHT object | trackerGNN object

Target tracker, specified as a trackerTOMHT or trackerGNN object.

branchID — Branch identifier
positive integer

Branch identifier, specified as a positive integer. The identifier must be a valid BranchID reported in
the list of branches returned by the getBranches object function.
Example: 21
Dependencies
Data Types: uint32

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer. trackID must be a valid track identifier as reported
from the previous track update.
Example: 21
Data Types: uint32

properties — Filter properties
comma-delimited list of properties

Filter properties, specified as a comma-delimited list of valid tracker properties to obtain. Enclose
each property in single quotes.
Example: 'MeasurementNoise','ProcessNoise'

3 System Objects

3-346

Data Types: char

Output Arguments
filtervalues — Filter property values
cell array

Filter property values, returned as a cell array. Filter values are returned in the same order as the list
of properties.

Introduced in R2018b

 getTrackFilterProperties

3-347

setTrackFilterProperties
Set track filter properties

Syntax
setTrackFilterProperties(tracker,branchID,'Name',Value)
setTrackFilterProperties(tracker,trackID,'Name',Value)

Description
setTrackFilterProperties(tracker,branchID,'Name',Value) sets the values of tracking
filter properties of the tracker, tracker, for the branch specified by, branchID. Use valid Name-
Value pairs to set properties for the branch. You can specify as many Name-Value pairs as you wish.
Property names must match the names of public filter properties. This syntax applies when you create
the tracker using trackerTOMHT.

setTrackFilterProperties(tracker,trackID,'Name',Value) sets the values of tracking
filter properties of the tracker, tracker, for the track, trackID. Use Name-Value pairs to set
properties for the track. You can specify as many Name-Value pairs as you wish. Property names must
match the names of public filter properties. This syntax applies when you create the tracker using
trackerGNN or trackerJPDA.

Examples

Set Multi-Hypothesis Tracking Filter Properties

Create a tracker using trackerTOMHT. Assign values to the MeasurementNoise and
ProcessNoise properties and verify the assignment.

tracker = trackerTOMHT;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);
branches = getBranches(tracker);
branchID = branches(1).BranchID;
setTrackFilterProperties(tracker,branchID,'MeasurementNoise',2,'ProcessNoise',5);
values = getTrackFilterProperties(tracker,branchID,'MeasurementNoise','ProcessNoise');

Show the measurement noise.

disp(values{1})

 2 0 0
 0 2 0
 0 0 2

Show the process noise.

disp(values{2})

3 System Objects

3-348

 5 0 0
 0 5 0
 0 0 5

Set Global Nearest-Neighbor Track Filter Properties

Create a tracker using trackerGNN. Assign values to the MeasurementNoise and ProcessNoise
properties and verify the assignment.

tracker = trackerGNN;
detection = objectDetection(0,[0;0;0]);
[~, tracks] = tracker(detection,0);
setTrackFilterProperties(tracker,1,'MeasurementNoise',2,'ProcessNoise',5);
values = getTrackFilterProperties(tracker,1,'MeasurementNoise','ProcessNoise');

Show the measurement noise.

disp(values{1})

 2 0 0
 0 2 0
 0 0 2

Show the process noise.

disp(values{2})

 5 0 0
 0 5 0
 0 0 5

Input Arguments
tracker — Target tracker
trackerTOMHT object | trackerGNN object

Target tracker, specified as a trackerTOMHT or trackerGNN object.

branchID — Branch identifier
positive integer

Branch identifier, specified as a positive integer. The identifier must be a valid BranchID reported in
the list of branches returned by the getBranches object function.
Example: 21
Data Types: uint32

trackID — Track identifier
positive integer

Track identifier, specified as a positive integer. trackID must be a valid track identifier as reported
from the previous track update.
Example: 21

 setTrackFilterProperties

3-349

Data Types: uint32

Introduced in R2018b

3 System Objects

3-350

getBranches
Lists track branches

Syntax
branches = getBranches(tracker)

Description
branches = getBranches(tracker) returns a list of track branches maintained by the
tracker. The tracker must be updated at least once before calling this object function. Use
isLocked(tracker) to test whether the tracker has been updated.

Examples

Get Multi-Hypothesis Tracker Branches

Create a multi-hypothesis tracker with one detection and obtain its branches.

tracker = trackerTOMHT;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);
branches = getBranches(tracker)

branches =
 objectTrack with properties:

 TrackID: 1
 BranchID: 1
 SourceIndex: 0
 UpdateTime: 0
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Input Arguments
tracker — Target tracker
trackerTOMHT object | trackerGNN object

Target tracker, specified as a trackerTOMHT or trackerGNN object.

 getBranches

3-351

Output Arguments
branches — List of track branches
structure | array of structures

List of track branches, returned as an array of track structure or array of track structures.

Field Description
TrackID Integer that identifies the track.
BranchID Unique integer that identifies the track branch

(hypothesis).
UpdateTime Time to which the track is updated.
Age Number of times the track was updated with

either a hit or a miss.
State Value of state vector at update time.
StateCovariance Uncertainty covariance matrix.
TrackLogic The track logic used. Values are either

'History' or 'Score'.
TrackLogicState The current state of the track logic.

• For 'History' track logic, a 1-by-Q logical
array, where Q is the greater of N or R from
the confirmation and deletion thresholds.

• For 'Score' track logic, a 1-by-2 numerical
array in the form: [currentScore,
maxScore].

IsConfirmed True if the track is assumed to be of a real target.
IsCoasted True if the track has been updated without a

detection (predicted).
ObjectClassID An integer value representing the object

classification. Zero is reserved for 'unknown'.
ObjectAttributes A cell array of cells. Each cell captures the object

attributes reported by the corresponding sensor.

Data Types: struct

Introduced in R2018b

3 System Objects

3-352

predictTracksToTime
Predict track state

Syntax
predictedtracks = predictTracksToTime(obj,trackid,time)
predictedtracks = predictTracksToTime(obj,category,time)
predictedtracks = predictTracksToTime(obj,type,id,time)
predictedtracks = predictTracksToTime(obj,type,category,time)
predictedtracks = predictTracksToTime(___ ,'WithCovariance',tf)

Description
predictedtracks = predictTracksToTime(obj,trackid,time) returns the predicted tracks,
predictedtracks, of the tracker or fuser object, obj, at the specified time, time. Specify the track
identifier, trackid. The tracker or fuser must be updated at least once before calling this object
function. Use isLocked(obj) to test whether the tracker or fuser has been updated.

This syntax applies when you create the obj using trackerGNN, trackerJPDA, trackerPHD, or
trackFuser.

Note This function only outputs the predicted tracks and does not update the internal track states of
the tracker or fuser.

predictedtracks = predictTracksToTime(obj,category,time) returns all predicted tracks
for a specified category, category, of tracked objects.

This syntax applies when you create the obj using trackerGNN, trackerJPDA, trackerPHD, or
trackFuser.

predictedtracks = predictTracksToTime(obj,type,id,time) returns the predicted tracks
or branches, predictedtracks, of the tracker or fuser object, obj, at the specified time, time.
Specify the type, type, of tracked object and the object ID, id. The tracker or fuser must be updated
at least once before calling this object function. Use isLocked(trackObj) to test whether the
tracker or fuser has been updated.

This syntax applies when you create the obj using trackerTOMHT.

predictedtracks = predictTracksToTime(obj,type,category,time) returns all predicted
tracks or branches for a specified category, category, of tracked objects.

This syntax applies when you create the obj using trackerTOMHT.

predictedtracks = predictTracksToTime(___ ,'WithCovariance',tf) also allows you to
specify whether to predict the state covariance of each track or not by setting the tf flag to true or
false. Predicting the covariance slows down the prediction process and increases the computation
cost, but it provides the predicted track state covariance in addition to the predicted state. The
default is false.

 predictTracksToTime

3-353

Examples

Predict Track State

Create a track from a detection and predict its state later on.

tracker = trackerTOMHT;
detection = objectDetection(0,[0;0;0]);
tracker(detection,0);
branches = getBranches(tracker);
predictedtracks = predictTracksToTime(tracker,'branch',1,1)

predictedtracks =
 objectTrack with properties:

 TrackID: 1
 BranchID: 1
 SourceIndex: 0
 UpdateTime: 1
 Age: 1
 State: [6x1 double]
 StateCovariance: [6x6 double]
 StateParameters: [1x1 struct]
 ObjectClassID: 0
 TrackLogic: 'Score'
 TrackLogicState: [13.7102 13.7102]
 IsConfirmed: 0
 IsCoasted: 0
 IsSelfReported: 1
 ObjectAttributes: [1x1 struct]

Input Arguments
obj — Tacker or fuser object
trackerTOMHT object | trackerJPDA object | trackerGNN object | trackerFuser object

Tracker or fuser object, specified as a trackerTOMHT, trackerJPDA object, trackerGNN object, or
trackFuser object.

type — Tracked object type
'track' | 'branch'

Tracked object type, specified as 'track' or 'branch'.

id — Track or branch identifier
positive integer

Track or branch identifier, specified as a positive integer.
Example: 21
Data Types: single | double

3 System Objects

3-354

trackid — Track identifier
positive integer

Track identifier, specified as a positive integer.
Example: 15
Data Types: single | double

time — Prediction time
scalar

Prediction time, specified as a scalar. The states of tracks are predicted to this time. The time must be
greater than the time input to the tracker in the previous track update. Units are in seconds.
Example: 1.0
Data Types: single | double

category — Track categories
'all' | 'confirmed' | 'tentative'

Track categories, specified as 'all', 'confirmed', or 'tentative'. You can choose to predict all
tracks, only confirmed tracks, or only tentative tracks.
Data Types: char

Output Arguments
predictedtracks — List of predicted track or branch states
array of objectTrack objects | array of structures

List of tracks or branches, returned as an array of structures or an array of objectTrack objects. If
the obj input is specified as a trackerGNN, trackerJPDA, or trackFuser object, it is returned as
an array of objectTrack objects in MATLAB, and returned as an array of structures with field
names same as the property names of objectTrack in code generation. If the obj input is specified
as a trackerPHD object, it is returned as an array of structures, in which each structure contains the
following fields:

Field Description
TrackID Unique integer that identifies the track.
SouceIndex Unique identifier the tracker in a multiple tracker

environment. The SourceIndex is exactly the
same with the TrackerIndex.

UpdateTime The time the track was updated.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.

 predictTracksToTime

3-355

Extent Spatial extent estimate of the tracked object,
returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.
IsCoasted trackerPHD does not support the IsCoasted

field. The value is always 0.
ObjectClassID trackerPHD does not support the

ObjectClassID field. The value is always 0.
StateParamaters Parameters about the track state reference frame

specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

Data Types: struct | object

Introduced in R2018b

3 System Objects

3-356

trackerGNN
Multi-sensor, multi-object tracker using GNN assignment

Description
The trackerGNN System object is a tracker capable of processing detections of many targets from
multiple sensors. The tracker uses a global nearest-neighbor (GNN) assignment algorithm. The
tracker initializes, confirms, predicts, corrects, and deletes tracks. Inputs to the tracker are detection
reports generated by objectDetection, radarSensor, monostaticRadarSensor, irSensor, or
sonarSensor objects. The tracker estimates the state vector and state vector covariance matrix for
each track. Each detection is assigned to at most one track. If the detection cannot be assigned to any
track, the tracker initializes a new track.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection already has a known classification (the ObjectClassID
field of the returned track is nonzero), that track is confirmed immediately. When a track is
confirmed, the tracker considers the track to represent a physical object. If detections are not
assigned to the track within a specifiable number of updates, the track is deleted.

To track objects using this object:

1 Create the trackerGNN object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tracker = trackerGNN
tracker = trackerGNN(Name,Value)

Description

tracker = trackerGNN creates a trackerGNN System object with default property values.

tracker = trackerGNN(Name,Value) sets properties for the tracker using one or more name-
value pairs. For example,
trackerGNN('FilterInitializationFcn',@initcvukf,'MaxNumTracks',100) creates a
multi-object tracker that uses a constant-velocity, unscented Kalman filter and allows a maximum of
100 tracks. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

 trackerGNN

3-357

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

FilterInitializationFcn — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a filter initialization function. The tracker uses a filter initialization function when creating
new tracks.

Sensor Fusion and Tracking Toolbox supplies many initialization functions that you can use to specify
FilterInitializationFcn.

Initialization Function Function Definition
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter
initcvekf Initialize constant-velocity extended Kalman filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.
initcapf Initialize constant-acceleration particle filter.
initctpf Initialize constant-turn-rate particle filter.
initcvpf Initialize constant-velocity particle filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.

3 System Objects

3-358

Initialization Function Function Definition
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity modified spherical

coordinates extended Kalman filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function. The function must have the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by objectDetection. The output
of this function must be a filter object: trackingKF, trackingEKF, trackingUKF, trackingCKF,
trackingPF, trackingMSCEKF, trackingGSF, trackingIMM, or trackingABF.

To guide you in writing this function, you can examine the details of the supplied functions from
within MATLAB. For example:

type initcvekf

Data Types: function_handle | char

Assignment — Assignment algorithm
'MatchPairs' (default) | 'Munkres' | 'Jonker-Volgenant' | 'Auction' | 'Custom'

Assignment algorithm, specified as 'MatchPairs', 'Munkres', 'Jonker-Volgenant',
'Auction', or 'Custom'. Munkres is the only assignment algorithm that guarantees an optimal
solution, but it is also the slowest, especially for large numbers of detections and tracks. The other
algorithms do not guarantee an optimal solution but can be faster for problems with 20 or more
tracks and detections. Use'Custom' to define your own assignment function and specify its name in
the CustomAssignmentFcn property.
Example: 'Custom'
Data Types: char

CustomAssignmentFcn — Custom assignment function
character vector

Custom assignment function name, specified as a character string. An assignment function must have
the following syntax:

 [assignment,unTrs,unDets] = f(cost,costNonAssignment)

For an example of an assignment function and a description of its arguments, see assignmunkres.

Dependencies

To enable this property, set the Assignment property to 'Custom'.
Data Types: char

 trackerGNN

3-359

AssignmentThreshold — Detection assignment threshold
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Detection assignment threshold (or gating threshold), specified as a positive scalar or an 1-by-2
vector of [C1,C2], where C1≤C2. If specified as a scalar, the specified value, val, will be expanded to
[val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if their accurate normalized distance is less than C1. See the distance function used with
tracking filters (for example, trackingCKF and trackingEKF) for an explanation of the distance
calculation.

Tips:

• Increase the value of C2 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease it if there are detections that are assigned to tracks they should not be assigned to (too
far away).

TrackLogic — Confirmation and deletion logic type
'History' (default) | 'Score'

Confirmation and deletion logic type, specified as 'History' or 'Score'.

• 'History' – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• 'Score' – Track confirmation and deletion is based on a log-likelihood track score. A high score
means that the track is more likely to be valid. A low score means that the track is more likely to
be a false alarm.

ConfirmationThreshold — Threshold for track confirmation
scalar | 1-by-2 vector

Threshold for track confirmation, specified as a scalar or a 1-by-2 vector. The threshold depends on
the type of track confirmation and deletion logic you set using the TrackLogic property.

• History – Specify the confirmation threshold as 1-by-2 vector [M N]. A track is confirmed if it
receives at least M detections in the last N updates. The default value is [2,3].

• Score – Specify the confirmation threshold as a scalar. A track is confirmed if its score is at least
as high as the confirmation threshold. The default value is 20.

Data Types: single | double

DeletionThreshold — Minimum score required to delete track
[5 5] or -7 (default) | scalar | real-valued 1-by-2 vector of positive values

Minimum score required to delete track, specified as a scalar or a real-valued 1-by-2 vector. The
threshold depends on the type of track confirmation and deletion logic you set using the TrackLogic
property:

3 System Objects

3-360

• History – Specify the confirmation threshold as [P R]. A track is deleted if, in the last R updates,
it was assigned less than P detections.

• Score – A track is deleted if its score decreases by at least the threshold from the maximum track
score.

Example: 3
Data Types: single | double

DetectionProbability — Probability of detection used for track score
0.9 (default) | positive scalar between 0 and 1

Probability of detection, specified as a positive scalar between 0 and 1. This property is used to
compute track score.
Example: 0.5
Data Types: single | double

FalseAlarmRate — Probability of false alarm used for track score
1e-6 (default) | scalar

The probability of false alarm, specified as a scalar. This property is used to compute track score.
Example: 1e-5
Data Types: single | double

Beta — Rate of new tracks per unit volume
1 (default) | positive scalar

The rate of new tracks per unit volume, specified as a positive scalar. The rate of new tracks is used
in calculating the track score during track initialization.
Example: 2.5
Data Types: single | double

Volume — Volume of sensor measurement bin
1 (default) | positive scalar

The volume of a sensor measurement bin, specified as a positive scalar. For example, if a radar
produces a 4-D measurement, which includes azimuth, elevation, range, and range rate, the 4-D
volume is defined by the radar angular beam width, the range bin width and the range-rate bin width.
Volume is used in calculating the track score when initializing and updating a track.
Example: 1.5
Data Types: single | double

MaxNumTracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: single | double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

 trackerGNN

3-361

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
MaxNumSensors must be greater than or equal to the largest value of SensorIndex found in all the
detections used to update the tracker. SensorIndex is a property of an objectDetection object.
The MaxNumSensors property determines how many sets of ObjectAttributes fields each output
track can have.
Data Types: single | double

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

HasDetectableTrackIDsInput — Enable input of detectable track IDs
false (default) | true

Enable the input of detectable track IDs at each object update, specified as false or true. Set this
property to true if you want to provide a list of detectable track IDs. This list tells the tracker of all
tracks that the sensors are expected to detect and, optionally, the probability of detection for each
track.
Data Types: logical

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix, specified as false or true. If true, you can provide an assignment cost matrix
as an input argument when calling the object.
Data Types: logical

NumTracks — Number of tracks maintained by tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the tracker, returned as a nonnegative integer.
Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, returned as a nonnegative integer. If the IsConfirmed field of an
output track structure is true, the track is confirmed.
Data Types: double

3 System Objects

3-362

Usage
To process detections and update tracks, call the tracker with arguments, as if it were a function
(described here).

Syntax
confirmedTracks = tracker(detections,time)
confirmedTracks = tracker(detections,time,costMatrix)
confirmedTracks = tracker(___ ,detectableTrackIDs)
[confirmedTracks,tentativeTracks,allTracks] = tracker(___)
[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
)

Description

confirmedTracks = tracker(detections,time) returns a list of confirmed tracks that are
updated from a list of detections, detections, at the update time, time. Confirmed tracks are
corrected and predicted to the update time.

confirmedTracks = tracker(detections,time,costMatrix) also specifies a cost matrix,
costMatrix.

To enable this syntax, set the HasCostMatrixInput property to true.

confirmedTracks = tracker(___ ,detectableTrackIDs) also specifies a list of expected
detectable tracks, detectableTrackIDs.

To enable this syntax, set the HasDetectableTrackIDsInput property to true.

[confirmedTracks,tentativeTracks,allTracks] = tracker(___) also returns a list of
tentative tracks, tentativeTracks, and a list of all tracks, allTracks.

[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
) also returns information, analysisInformation, which can be used for track analysis.

Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current update time, time, and
greater than the previous time value used to update the tracker. Also, the Time differences between
different objectDetection objects in the cell array do not need to be equal.

time — Time of update
scalar

Time of update, specified as a scalar. The tracker updates all tracks to this time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the tracker.
Data Types: single | double

 trackerGNN

3-363

costMatrix — Cost matrix
real-valued N-by-M matrix

Cost matrix, specified as a real-valued N-by-M matrix, where N is the number of existing tracks, and
M is the number of current detections. The cost matrix rows must be in the same order as the list of
tracks. The columns must be in the same order as the list of detections. Obtain the correct order of
the list of tracks from the third output argument, allTracks, when is the tracker is updated.

At the first update of the object or when the tracker has no previous tracks, specify the cost matrix to
have a size of [0,numDetections]. Note that the cost must be calculated so that lower costs
indicate a higher likelihood of assigning a detection to a track. To prevent certain detections from
being assigned to certain tracks, set the appropriate cost matrix entry to Inf.

Dependencies

To enable this argument, set the HasCostMatrixInput property to true.
Data Types: double | single

detectableTrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The second column contains the detection probability for the track.
The detection probability is either reported by a sensor or, if not reported, obtained from the
DetectionProbability property.

Tracks whose identifiers are not included in detectableTrackIDs are considered as undetectable.
The track deletion logic does not count the lack of detection as a 'missed detection' for track deletion
purposes.

Dependencies

To enable this input argument, set the detectableTrackIDs property to true.
Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

3 System Objects

3-364

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

analysisInformation — Additional information for analyzing track updates
structure

Additional information for analyzing track updates, returned as a structure. The fields of this
structure are:

Field Description
TrackIDsAtStepBeginning Track IDs when step began
CostMatrix Cost of assignment matrix
Assignments Assignments returned from the assignment

function.
UnassignedTracks IDs of unassigned tracks returned from the

tracker
UnassignedDetections IDs of unassigned detections returned from the

tracker
InitiatedTrackIDs IDs of tracks initiated during the step
DeletedTrackIDs IDs of tracks deleted during the step
TrackIDsAtStepEnd Track IDs when the step ended

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackerGNN
getTrackFilterProperties Obtain track filter properties
setTrackFilterProperties Set track filter properties

 trackerGNN

3-365

predictTrackToTime Predict track state
initializeTrack Initialize new track
deleteTrack Delete existing track

Common to All System Objects
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use
clone Create duplicate System object

Examples

Track Two Objects Using trackerGNN

Construct a trackerGNN object with the default 2-D constant-velocity Kalman filter initialization
function, initcvkf.

tracker = trackerGNN('FilterInitializationFcn', @initcvkf, ...
 'ConfirmationThreshold', [4 5], ...
 'DeletionThreshold', 10);

Update the tracker with two detections both having nonzero ObjectClassID. These detections
immediately create confirmed tracks.

detections = {objectDetection(1,[10;0],'SensorIndex',1, ...
 'ObjectClassID',5,'ObjectAttributes',{struct('ID',1)}); ...
 objectDetection(1,[0;10],'SensorIndex',1, ...
 'ObjectClassID',2,'ObjectAttributes',{struct('ID',2)})};
time = 2;
tracks = tracker(detections,time);

Find the positions and velocities.

positionSelector = [1 0 0 0; 0 0 1 0];
velocitySelector = [0 1 0 0; 0 0 0 1];

positions = getTrackPositions(tracks,positionSelector)

positions = 2×2

 10 0
 0 10

velocities = getTrackVelocities(tracks,velocitySelector)

velocities = 2×2

 0 0
 0 0

3 System Objects

3-366

Algorithms
Tracker Logic Flow

When a GNN tracker processes detections, track creation and management follow these steps.

1 The tracker divides detections by originating sensor.
2 For each sensor:

a The tracker calculates the distances from detections to existing tracks and forms a
costMatrix.

b Based on the costs, the tracker performs global nearest neighbor assignment using the
algorithm specified in the Assignment property.

c The assignment algorithm divides the detections and tracks into three groups:

• Assigned one-to-one detection and track pairs
• Unassigned detections
• Unassigned tracks

3 Unassigned detections initialize new tracks. Using the unassigned detection, the tracker
initializes a new track filter specified by the FilterInitializationFcn property. The track
logic for the new track is initialized as well.

The tracker checks if any of the unassigned detections from other sensors can be assigned to the
new track. If so, the tracker updates the new track with the assigned detections from the other
sensors. As a result, these detections no longer initialize new tracks.

4 The pairs of assigned tracks and detections are used to update each track. The track filter is
updated using the correct method provided by the specified tracking filter. Also, the track logic
is updated with a 'hit'. The tracker checks if the track meets the criteria for confirmation. If so,
the tracker confirms the track and sets the IsCoasted property to false.

5 Unassigned tracks are updated with a ‘miss’ and their IsCoasted flag is set to true. The
tracker checks if the track meets the criteria for deletion. If so, the tracker removes the track
from the maintained track list.

6 All tracks are predicted to the latest time value (either the time input if provided, or the latest
mean cluster time stamp).

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House

Radar Library, Boston, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with a multi-object tracker must have properties with the same sizes and

types.

 trackerGNN

3-367

• If you use the ObjectAttributes field within an objectDetection object, you must specify
this field as a cell containing a structure. The structure for all detections must have the same
fields, and the values in these fields must always have the same size and type. The form of the
structure cannot change during simulation.

• If ObjectAttributes are contained in the detection, the SensorIndex value of the detection
cannot be greater than 10.

• The first update to the multi-object tracker must contain at least one detection.

See Also
Functions
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres |
assignsd | clusterTrackBranches | compatibleTrackBranches | fusecovint |
fusecovunion | fusexcov | getTrackPositions | getTrackVelocities |
pruneTrackBranches | triangulateLOS

Objects
objectDetection | objectTrack | trackHistoryLogic | trackScoreLogic | trackingABF |
trackingCKF | trackingEKF | trackingGSF | trackingIMM | trackingKF | trackingMSCEKF |
trackingPF | trackingUKF

System Objects
staticDetectionFuser | trackerJPDA | trackerTOMHT

Topics
“Introduction to Multiple Target Tracking”
“Introduction to Assignment Methods in Tracking Systems”

Introduced in R2018b

3 System Objects

3-368

trackerPHD

Multi-sensor, multi-object PHD tracker

Description
The trackerPHD System object is a tracker capable of processing detections of multiple targets from
multiple sensors. The tracker uses a multi-target probability hypothesis density (PHD) filter to
estimate the states of point targets and extended objects. PHD is a function defined over the state-
space of the tracking system, and its value at a state is defined as the expected number of targets per
unit state-space volume. The PHD is represented by a weighted summation (mixture) of probability
density functions, and peaks in the PHD correspond to possible targets. For an overview of how the
tracker functions, see “Algorithms” on page 3-380.

By default, the trackerPHD can track extended objects using the ggiwphd filter, which models
detections from an extended object as a parse points cloud. You can also use trackerPHD with the
gmphd filters, which tracks point targets and extended objects with designated shapes. Inputs to the
tracker are detection reports generated by objectDetection, radarSensor,
monostaticRadarSensor, irSensor, or sonarSensor objects. The tracker outputs all maintained
tracks and their analysis information.

To track targets using this object:

1 Create the trackerPHD object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tracker = trackerPHD
tracker = trackerPHD(Name,Value)

Description

tracker = trackerPHD creates a trackerPHD System object with default property values.

tracker = trackerPHD(Name,Value) sets properties for the tracker using one or more name-
value pairs. For example, trackerPHD('MaxNumTracks',100) creates a PHD tracker that allows a
maximum of 100 tracks. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

 trackerPHD

3-369

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

SensorConfigurations — Configurations of tracking sensors
cell array of trackingSensorConfiguration objects

Configuration of tracking sensors, specified as a cell array of trackingSensorConfiguration
objects. This property provides the tracking sensor configuration information, such as sensor
detection limits and sensor resolution, to the tracker. Note that there are no default values for the
SensorConfigurations property, and you must specify the SensorConfigurations property
before using the tracker. However, you can update the configuration by setting the
HasSensorConfigurationsInput property to true and specifying the configuration input,
config. If you set the MaxDetsPerObject property of the trackingSensorConfiguration
object to 1, the tracker creates only one partition, such that at most one detection can be assigned to
each target.

PartitioningFcn — Function to partition detections into detection cells
@partitionDetections (default) | function handle | character vector

Function to partition detections into detection cells, specified as a function handle or as a character
vector. When each sensor can report more than one detection per object, a partition function is
required. The partition function reports all possible partitions of the detections from a sensor. In each
partition, the detections are separated into mutually exclusive detection cells, assuming that each
detection cell belongs to one extended object.

You can also specify your own detections partition function. For guidance in writing this function, you
can examine the details of the default partitioning function, partitionDetections, using the type
command as:

type partitionDetections

Example: @myfunction or 'myfunction'
Data Types: function_handle | char

BirthRate — Birth rate of new targets in the density
1e-3 (default) | positive real scalar

Birth rate of new targets in the density, specified as a scalar. Birth rate indicates the expected
number of targets added in the density per unit time. The birth density is created by using the
FilterInitializationFcn of the trackingSensorConfiguration used with the tracker. In
general, the tracker adds components to the density function in two ways:

3 System Objects

3-370

1 Predictive birth density – density initialized by FilterInitializationFcn function when
called with no inputs.

2 Adaptive birth density – density initialized by FilterInitializationFcn function when called
with detections inputs. The detections are chosen by the tracker based on their log-likelihood of
association with the current estimates of the targets.

Note that the value for the BirthRate property represents the summation of both predictive birth
density and adaptive birth density for each time step.
Example: 0.01
Data Types: single | double

DeathRate — Death rate of components in the density
1e-6 (default) | positive real scalar

Death rate of components in the density, specified as a scalar. Death rate indicates the rate at which a
component vanishes in the density after one time step. Death rate relates to the survival probability
(Ps) of a component between successive time steps by

Ps = 1− DeathRate ΔT
where ΔT is the time step.
Example: 1e-4
Data Types: single | double

AssignmentThreshold — Threshold of selecting detections for component initialization
25 (default) | real positive scalar

Threshold of selecting detections for component initialization, specified as a positive scalar. During
correction, the tracker calculates the likelihood of association between existing tracks and detection
cells. If the association likelihood (given by negative log-likelihood) of a detection cell to all existing
tracks is higher than the threshold (which means the detection cell has low likelihood of association
to existing tracks), the detection cell is used to initialize new components in the adaptive birth
density.
Example: 18.1
Data Types: single | double

ExtractionThreshold — Threshold for initializing tentative track
0.5 (default) | real positive scalar

Threshold for initializing a tentative track, specified as a scalar. If the weight of a component is
higher than the threshold specified by the ExtractionThreshold property, the component is
labeled as a 'Tentative' track and given a TrackID.
Example: 0.45
Data Types: single | double

ConfirmationThreshold — Threshold for track confirmation
0.8 (default) | real positive scalar

 trackerPHD

3-371

Threshold for track confirmation, specified as a scalar. In a trackerPHD object, a track can have
multiple components sharing the same TrackID. If the weight summation of a tentative track's
components is higher than the threshold specified by the ConfirmationThreshold property, the
track's status is marked as 'Confirmed'.
Example: 0.85
Data Types: single | double

DeletionThreshold — Threshold for component deletion
1e-3 (default) | real positive scalar

Threshold for component deletion, specified as a scalar. In the PHD tracker, if the weight of a
component is lower than the value specified by the DeletionThreshold property, the component is
deleted.
Example: 0.01
Data Types: single | double

MergingThreshold — Threshold for components merging
25 (default) | real positive scalar

Threshold for components merging, specified as a real positive scalar. In the PHD tracker, if the
Kullback-Leibler distance between components with the same TrackID is smaller than the value
specified by the MergingThreshold property, then these components are merged into one
component. The merged weight of the new component is equal to the summation of the weights of the
pre-merged components. Moreover, if the merged weight is higher than the first threshold specified
in the LabelingThresholds property, the merged weight is truncated to the first threshold. Note
that components with TrackID equal to 0 can also be merged with each other.
Example: 30
Data Types: single | double

LabelingThresholds — Thresholds for label management
[1.1 1 0.8] (default) | 1-by-3 vector of positive values

Labeling thresholds, specified as an 1-by-3 vector of decreasing positive values, [C1, C2, C3]. Based on
the LabelingThresholds property, the tracker manages components in the density using these
rules:

1 The weight of any component that is higher than the first threshold C1 is reduced to C1.
2 For all components with the same TrackID, if the largest weight among these components is

greater than C2, then the component with the largest weight is preserved to retain the TrackID,
while all other components are deleted.

3 For all components with the same TrackID, if the ratio of the largest weight to the weight
summation of all these components is greater than C3, then the component with the largest
weight is preserved to retain the TrackID, while all other components are deleted.

4 If neither condition 2 nor condition 3 is satisfied, then the component with the largest weight
retains the TrackID, while the labels of all other components are set to 0. When this occurs, it
essentially means that some components may represent other objects. This treatment keeps the
possibility for these unreserved components to be extracted again in the future.

Data Types: single | double

3 System Objects

3-372

HasSensorConfigurationsInput — Enable updating sensor configurations with time
false (default) | true

Enable updating sensor configurations with time, specified as false or true. Set this property to
true if you want the configurations of the sensor updated with time. Also, when this property is set
to true, the tracker must be called with the configuration input, config, as shown in the usage
syntax.
Data Types: logical

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

NumTracks — Number of tracks maintained by tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the tracker, returned as a nonnegative integer.
Data Types: double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, returned as a nonnegative integer. If the IsConfirmed field of an
output track structure is true, the track is confirmed.
Data Types: double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
MaxNumSensors must be greater than or equal to the largest value of SensorIndex found in all the
detections used to update the tracker. SensorIndex is a property of an objectDetection object.
Data Types: single | double

MaxNumTracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: single | double

 trackerPHD

3-373

Usage
To process detections and update tracks, call the tracker with arguments, as if it were a function
(described here).

Syntax
confirmedTracks = tracker(detections,time)
confirmedTracks = tracker(detections,config,time)
[confirmedTracks,tentativeTracks,allTracks] = tracker(___)
[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
)

Description

confirmedTracks = tracker(detections,time) returns a list of confirmed tracks that are
updated from a list of detections, detections, at the update time, time. Confirmed tracks are
corrected and predicted to the update time.

confirmedTracks = tracker(detections,config,time) also specifies a sensor configuration
input, config. Use this syntax when the configurations of sensors are changing with time. To enable
this syntax, set the HasSensorConfigurationsInput property to true.

[confirmedTracks,tentativeTracks,allTracks] = tracker(___) also returns a list of
tentative tracks, tentativeTracks, and a list of all tracks, allTracks. You can use this output
syntax with any of the previous input syntaxes.

[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
) also returns the analysis information, analysisInformation, which can be used for track
analysis. You can use this output syntax with any of the previous input syntaxes.

Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current update time, time, and
greater than the previous time value used to update the tracker. Also, the Time differences between
different objectDetection objects in the cell array do not need to be equal.

time — Time of update
scalar

Time of update, specified as a scalar. The tracker updates all tracks to this time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the tracker.
Data Types: single | double

config — Sensor configurations
array of structs | cell array of structs | cell array of trackingSensorConfiguration objects

3 System Objects

3-374

Sensor configurations, specified as an array of structs, a cell array of structs, or a cell array of
trackingSensorConfiguration objects. If you specify the value using an array of structs or a cell
array of structs, you must include SensorIndex as a field for each struct. The other optional fields in
each struct must have the same name as one of the properties of the
trackingSensorConfiguration object. Note that you only need to specify sensor configurations
that need to be updated. For example, if you only want to update the IsValidTime property for the
fifth sensor, provide the value for config as struct('SensorIndex',5,'IsValidTime',false).

Dependencies

To enable this argument, set the HasSensorConfigurationsInput property to true.

Output Arguments

confirmedTracks — Confirmed tracks
structure | array of structures

Confirmed tracks updated to the current time, returned as a structure or an array of structures. Each
structure corresponds to a track. A track is confirmed if the weight summation of its components is
above the threshold specified by the ConfirmationThreshold property. If a track is confirmed, the
IsConfirmed field of the structure is true. The fields of the confirmed tracks structure are defined
in “Track Structure” on page 3-379.
Data Types: struct

tentativeTracks — Tentative tracks
structure | array of structures

Tentative tracks, returned as a structure or an array of structures. Each structure corresponds to a
track. A track is tentative if the weight summation of its components is above the threshold specified
by the ExtractionThreshold property, but below the threshold specified by the
ConfirmationThreshold property. In that case, the IsConfirmed field of the structure is false.
The fields of the structure are defined in “Track Structure” on page 3-379.
Data Types: struct

allTracks — All tracks
structure | array of structures

All tracks, returned as a structure or an array of structures. Each structure corresponds to a track.
The set of all tracks consists of confirmed and tentative tracks. The fields of the structure are defined
in “Track Structure” on page 3-379.
Data Types: struct

analysisInformation — Additional information for analyzing track updates
structure

Additional information for analyzing track updates, returned as a structure. The fields of this
structure are:

Field Description
CorrectionOrder The order in which sensors are used for state

estimate correction, returned as a row vector of
SensorIndex. For example, [1 3 2 4].

 trackerPHD

3-375

TrackIDsAtStepBeginning Track IDs when step began.
DeletedTrackIDs IDs of tracks deleted during the step.
TrackIDsAtStepEnd Track IDs when the step ended.
SensorAnalysisInfo Cell array of sensor analysis information.

The SensorAnalysisInfo field can include multiple sensor information reports. Each report is a
structure containing:

Field Description
SensorIndex Sensor index.
DetectionCells Detection cells, returned as a logical matrix. Each

column of the matrix denotes a detection cell. In
each column, if the ith element is 1, then the ith
detection belongs to the detection cell denoted by
that column.

DetectionLikelihoods The association likelihoods between components
in the density function and detection cells,
returned as an N-by-P matrix. N is the number of
components in the density function, and P is the
number of detection cells.

IsBirthCells Indicates if the detection cells listed in
DetectionCells give birth to new tracks,
returned as a 1-by-P logical vector, where P is the
number of detection cells.

NumPartitions Number of partitions.
DetectionProbability Probability of existing tracks being detected by

the sensor, specified as a 1-by-N row vector,
where N is the number of components in the
density function.

LabelsBeforeCorrection Labels of components in the density function
before correction, return as a 1-by-Mb row vector.
Mb is the number of components maintained in
the tracker before correction. Each element of
the vector is a TrackID. For example, [1 1 2 0 0].
Note that multiple components can share the
same TrackID.

LabelsAfterCorrection Labels of components in the density function
after correction, returned as a 1-by-Ma row
vector. Ma is the number of components
maintained in the tracker after correction. Each
element of the vector is a TrackID. For example,
[1 1 1 2 2 0 0]. Note that multiple components
can share the same TrackID.

3 System Objects

3-376

WeightsBeforeCorrection Weights of components in the density function
before correction, returned as a 1-by-Mb row
vector. Mb is the number of components
maintained in the tracker before correction. Each
element of the vector is the weight of the
corresponding component given in
LabelsBeforeCorrection. For example, [0.1
0.5 0.7 0.3 0.2].

WeightsAfterCorrection Weights of components in the density function
after correction, returned as a 1-by-Ma row
vector. Ma is the number of components
maintained in the tracker after correction. Each
element of the vector is the weight of the
corresponding component given in
LabelsAfterCorrection. For example, [0.1 0.4
0.2 0.6 0.3 0.2 0.2].

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackerPHD
predictTracksToTime Predict track state
deleteTrack Delete existing track
initializeTrack Initialize new track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
isLocked Determine if System object is in use
clone Create duplicate System object
reset Reset internal states of System object

Examples

Track Two Objects Using trackerPHD

Set up the sensor configuration, create a PHD tracker, and feed the tracker with detections.

 % Create sensor configuration. Specify clutter density of the sensor and
 % set the IsValidTime property to true.
 configuration = trackingSensorConfiguration(1);
 configuration.ClutterDensity = 1e-7;
 configuration.IsValidTime = true;

 trackerPHD

3-377

 % Create a PHD tracker.
 tracker = trackerPHD('SensorConfigurations',configuration);

 % Create detections near points [5;-5;0] and [-5;5;0] at t=0, and
 % update the tracker with these detections.
 detections = cell(20,1);
 for i = 1:10
 detections{i} = objectDetection(0,[5;-5;0] + 0.2*randn(3,1));
 end
 for j = 11:20
 detections{j} = objectDetection(0,[-5;5;0] + 0.2*randn(3,1));
 end

 tracker(detections,0);

Update the tracker again after 0.1 seconds by assuming that targets move at a constant velocity of
[1;2;0] unit per second.

 dT = 0.1;
 for i = 1:20
 detections{i}.Time = detections{i}.Time + dT;
 detections{i}.Measurement = detections{i}.Measurement + [1;2;0]*dT;
 end
 [confTracks,tentTracks,allTracks] = tracker(detections,dT);

Visualize detections and confirmed tracks.

 % Obtain measurements from detections.
 d = [detections{:}];
 measurements = [d.Measurement];

 % Extract positions of confirmed tracking using getTrackPositions function.
 % Note that we used the default sensor configuration
 % FilterInitializationFcn, initcvggiwphd, which uses a constant velocity
 % model and defines the states as [x;vx;y;vy;z;vy].
 positionSelector = [1 0 0 0 0 0;0 0 1 0 0 0;0 0 0 0 1 0];
 positions = getTrackPositions(confTracks,positionSelector);

 figure()
 plot(measurements(1,:),measurements(2,:),'x','MarkerSize',5,'MarkerEdgeColor','b');
 hold on;
 plot(positions(1,1),positions(1,2),'v','MarkerSize',5,'MarkerEdgeColor','r');
 hold on;
 plot(positions(2,1),positions(2,2),'^','MarkerSize',5,'MarkerEdgeColor','r');
 legend('Detections','Track 1','Track 2')
 xlabel('x')
 ylabel('y')

3 System Objects

3-378

More About
Track Structure

Track information is returned as an array of structures having the following fields:

Field Description
TrackID Unique integer that identifies the track.
SouceIndex Unique identifier of the tracker in a multiple

tracker environment. The SourceIndex is
exactly the same with the TrackerIndex.

UpdateTime The time the track was updated.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
Extent Spatial extent estimate of the tracked object,

returned as a d-by-d matrix, where d is the
dimension of the object. This field is only
returned when the tracking filter is specified as a
ggiwphd filter.

 trackerPHD

3-379

MeasurementRate Expected number of detections from the tracked
object. This field is only returned when the
tracking filter is specified as a ggiwphd filter.

IsConfirmed True if the track is assumed to be of a real target.
IsCoasted trackerPHD does not support the IsCoasted

field. The value is always 0.
ObjectClassID trackerPHD does not support the

ObjectClassID field. The value is always 0.
StateParamaters Parameters about the track state reference frame

specified in the StateParameters property of
the PHD tracker.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

Algorithms
Tracker Logic Flow

trackerPHD adopts an iterated-corrector approach to update the probability hypothesis density by
processing detection information from multiple sensors sequentially. The workflow of trackerPHD
follows these steps:

1 The tracker sorts sensors according to their detection reporting time and determines the order of
correction accordingly.

2 The tracker considers two separate densities: current density and birth density. The current
density is the density of targets propagated from the previous time step. The birth density is the
density of targets expected to be born in the current time step.

3 For each sensor:

a The tracker predicts the current density to sensor time-stamp using the survival probability
calculated from DeathRate and the elapsed time from the last prediction.

b The tracker adds new components to the birth density using the
FilterInitializationFcn with no inputs. This corresponds to the predictive birth
density.

c The tracker creates partitions of the detections from the current sensor using the function
specified by the PartitioningFcn property. Each partition is a possible segmentation of
detections into detection cells for each object. If the SensorConfiguration specifies the
MaxNumDetsPerObject as 1, the tracker generates only 1 partition, in which each
detection is a standalone cell.

d Each detection cell is evaluated against the current density, and a log-likelihood value is
computed for each detection cell.

e Using the log-likelihood values, the tracker calculates the probability of each partition.
f The tracker corrects the current density using each detection cell.
g For detection cells with high negative log-likelihood (greater than AssignmentThreshold),

the tracker adds new components to the birth density using FilterInitializationFcn.
This corresponds to the adaptive birth density.

3 System Objects

3-380

4 After correcting the current density with each sensor, the tracker adds the birth density to the
current density. The tracker makes sure that number of possible targets in the birth density is
equal to BirthRate×dT, where dT is the time step.

5 The current density is then predicted to the current update time.

Probability Hypothesis Density

Probability hypothesis density (PHD) is a function defined over the state-space of the tracking system,
and its value at a state is defined as the expected number of targets per unit state-space volume. The
PHD is usually approximated by a mixture of components, and each component corresponds to an
estimate of the state. The commonly used approximations of PHD are Gaussian mixture, SMC
mixture, GGIW mixture, and GIW mixture. Currently, trackerPHD implements the GGIW mixture
representation by ggiwphd, which can be used to track extended objects.

To understand PHD, take the Gaussian mixture as an example. The Gaussian mixture can be
represented by

D(x) = ∑
i = 1

M
wiN(x mi, Pi)

where M is the total number of components, N(x|mi,Pi) is a normal distribution with mean mi and
covariance Pi, and wi is the weight of the ith component. The weight wi denotes the number (can be
fractional) of targets represented by the ith component. Integration of D(x) over a state-space region
results in the expected number of targets in that region. Integrating D(x) over the whole state space
results in the total expected number of targets (∑ wi), since the integration of a normal distribution
over the whole state space is 1. The x coordinates of the peaks (local maximums) of D(x) represent
the most likely states of targets.

For example, the following figure illustrates a PHD function given by D(x) = N(x|−4,2) + 0.5N(x|
3,0.4) + 0.5N(x|4,0.4). The weight summation of these components is 2, which means that 2 targets
probably exist. From the peaks of D(x), the possible positions of these targets are at x = −4, x = 3,
and x = 4. Notice that the last two components are very close to each other, which means that these
two components can possibly be attributed to one object.

 trackerPHD

3-381

References
[1] Granstorm, K., C. Lundquiest, and O. Orguner. " Extended target tracking using a Gaussian-

mixture PHD filter." IEEE Transactions on Aerospace and Electronic Systems. Vol. 48,
Number 4, 2012, pp. 3268-3286.

[2] Granstorm, K., and O. Orguner." A PHD filter for tracking multiple extended targets using random
matrices." IEEE Transactions on Signal Processing. Vol. 60, Number 11, 2012, pp. 5657-5671.

[3] Granstorm, K., and A. Natale, P. Braca, G. Ludeno, and F. Serafino."Gamma Gaussian inverse
Wishart probability hypothesis density for extended target tracking using X-band marine
radar data." IEEE Transactions on Geoscience and Remote Sensing. Vol. 53, Number 12,
2015, pp. 6617-6631.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections must have properties with the same sizes and types.

3 System Objects

3-382

See Also
Functions
getTrackPositions | getTrackVelocities | partitionDetections | predictTracksToTime

Objects
objectDetection | trackingSensorConfiguration

System Objects
staticDetectionFuser | trackerGNN | trackerJPDA | trackerTOMHT

Introduced in R2019a

 trackerPHD

3-383

initializeTrack
Initialize new track

Syntax
trackID = initializeTrack(tracker,track)
trackID = initializeTrack(tracker,track,filter)

Description
trackID = initializeTrack(tracker,track) initializes a new track in the PHD tracker.
The tracker must be updated at least once before initializing a track. If the track is initialized
successfully, the tracker or fuser assigns the output trackID to the track, set the UpdateTime of the
track equal to the last step time in the tracker, and synchronizes the data in the input track to the
initialized track.

A warning is issued if the tracker or track fuser already maintains the maximum number of tracks
specified by the MaxNumTracks property of the PHD tracker. In this case, the trackID is returned as
0, which indicates a failure to initialize the track.

Note You can only use this syntax if the internal probability hypothesis density filter of the PHD
tracker is gmphd. If the internal filter is ggiwphd, use the second syntax.

trackID = initializeTrack(tracker,track,filter) initializes a new track in the PHD
tracker using a specified probability hypothesis density filter, filter.

Note

• If the internal probability hypothesis density filter used in the tracker is a ggiwphd filter, you must
use this syntax instead of the first syntax.

Examples

Initialize a Track in trackerPHD

Create a PHD tracker after setting up the tracking sensor configuration. Update the tracker with ten
detections. The tracker maintains one track.

configuration = trackingSensorConfiguration(1);
configuration.ClutterDensity = 1e-7;
configuration.IsValidTime = true;
tracker = trackerPHD('SensorConfigurations',configuration);

dt = 0.1;
for i = 1:10
 detections = objectDetection(i*dt,[5;-5;0] + 0.2*randn(3,1));

3 System Objects

3-384

 tracker(detections,i*dt);
end

As seen from the NumTracks property, the tracker now maintains one track.

tracker

tracker =
 trackerPHD with properties:

 TrackerIndex: 0
 SensorConfigurations: {[1×1 trackingSensorConfiguration]}
 PartitioningFcn: 'partitionDetections'
 MaxNumSensors: 20
 MaxNumTracks: 1000

 AssignmentThreshold: 25
 BirthRate: 1.0000e-03
 DeathRate: 1.0000e-06

 ExtractionThreshold: 0.5000
 ConfirmationThreshold: 0.8000
 DeletionThreshold: 1.0000e-03
 MergingThreshold: 25
 LabelingThresholds: [1.1000 1 0.8000]

 StateParameters: [1×1 struct]
 HasSensorConfigurationsInput: false
 NumTracks: 1
 NumConfirmedTracks: 1

Create a new track using the objectTrack object.

newTrack = objectTrack();

Initialize a track in the PHD tracker using the newly created track.

trackID = initializeTrack(tracker,newTrack,ggiwphd)

trackID = uint32
 2

As seen from the NumTracks property, the tracker now maintains two tracks.

tracker

tracker =
 trackerPHD with properties:

 TrackerIndex: 0
 SensorConfigurations: {[1×1 trackingSensorConfiguration]}
 PartitioningFcn: 'partitionDetections'
 MaxNumSensors: 20
 MaxNumTracks: 1000

 AssignmentThreshold: 25
 BirthRate: 1.0000e-03
 DeathRate: 1.0000e-06

 initializeTrack

3-385

 ExtractionThreshold: 0.5000
 ConfirmationThreshold: 0.8000
 DeletionThreshold: 1.0000e-03
 MergingThreshold: 25
 LabelingThresholds: [1.1000 1 0.8000]

 StateParameters: [1×1 struct]
 HasSensorConfigurationsInput: false
 NumTracks: 2
 NumConfirmedTracks: 2

Input Arguments
tracker — PHD tracker
trackerPHD object

Probability hypothesis density tracker, specified as a trackerPHD object.

track — New track to be initialized
objectTrack object | structure

New track to be initialized, specified as an objectTrack object or a structure. If specified as a
structure, the name, variable type, and data size of the fields of the structure must be the same as the
name, variable type, and data size of the corresponding properties of the objectTrack object.
Data Types: struct | object

filter — Probability hypothesis density filter
gmphd | ggiwphd

Probability hypothesis density filter, specified as a gmphd or ggiwphd object.

Output Arguments
trackID — Track identifier
nonnegative integer

Track identifier, returned as a nonnegative integer. trackID is returned as 0 if the track is not
initialized successfully.
Example: 2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trackerPHD

3 System Objects

3-386

Introduced in R2019b

 initializeTrack

3-387

trackerJPDA

Joint probabilistic data association tracker

Description
The trackerJPDA System object is a tracker capable of processing detections of multiple targets
from multiple sensors. The tracker uses joint probabilistic data association to assign detections to
each track. The tracker applies a soft assignment where multiple detections can contribute to each
track. The tracker initializes, confirms, corrects, predicts (performs coasting), and deletes tracks.
Inputs to the tracker are detection reports generated by objectDetection, radarSensor,
monostaticRadarSensor, irSensor, or sonarSensor objects. The tracker estimates the state
vector and state estimate error covariance matrix for each track. Each detection is assigned to at
least one track. If the detection cannot be assigned to any existing track, the tracker creates a new
track.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed (see the ConfirmationThreshold property). If the detection already
has a known classification (i.e., the ObjectClassID field of the returned track is nonzero), that
corresponding track is confirmed immediately. When a track is confirmed, the tracker considers the
track to represent a physical object. If detections are not assigned to the track within a specifiable
number of updates, the track is deleted.

To track targets using this object:

1 Create the trackerJPDA object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tracker = trackerJPDA
tracker = trackerJPDA(Name,Value)

Description

tracker = trackerJPDA creates a trackerJPDA System object with default property values.

tracker = trackerJPDA(Name,Value) sets properties for the tracker using one or more name-
value pairs. For example,
trackerJPDA('FilterInitializationFcn',@initcvukf,'MaxNumTracks',100) creates a
multi-object tracker that uses a constant-velocity, unscented Kalman filter and allows a maximum of
100 tracks. Enclose each property name in quotes.

3 System Objects

3-388

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

TrackerIndex — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This property is used as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a track fuser.
Example: 1

FilterInitializationFcn — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a valid filter initialization function. The tracker uses a filter initialization function when
creating new tracks.

Sensor Fusion and Tracking Toolbox supplies many initialization functions that you can use to specify
FilterInitializationFcn for a trackerJPDA object.

Initialization Function Function Definition
initcvkf Initialize constant-velocity linear Kalman filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter
initcvekf Initialize constant-velocity extended Kalman filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.

 trackerJPDA

3-389

Initialization Function Function Definition
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity extended Kalman filter

in modified spherical coordinates.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function using the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by objectDetection. The output
of this function must be a filter object: trackingKF, trackingEKF, trackingUKF, trackingCKF,
trackingGSF, trackingIMM, trackingMSCEKF, or trackingABF.

For guidance in writing this function, use the type command to examine the details of built-in
MATLAB functions. For example:

type initcvekf

Note trackerJPDA does not accept all filter initialization functions in Sensor Fusion and Tracking
Toolbox. The full list of filter initialization functions available in Sensor Fusion and Tracking Toolbox
are given in the Initialization section of “Estimation Filters”.

Data Types: function_handle | char

EventGenerationFcn — Feasible joint events generation function
@jpdaEvents (default) | function handle | character vector

Feasible joint events generation function, specified as a function handle or as a character vector
containing the name of a feasible joint events generation function. A generation function generates
feasible joint event matrices from admissible events (usually given by a validation matrix) of a
tracking scenario. A validation matrix is a binary matrix listing all possible detections-to-track
associations. For details, see jpadEvents.

You can also write your own generation function. The function must have the following syntax:

FJE = myfunction(ValidationMatrix)

The input and out of this function must exactly follow the formats used in jpdaEvents. For guidance
in writing this function, use the type command to examine the details of jpdaEvents:

type jpdaEvents

Example: @myfunction or 'myfunction'
Data Types: function_handle | char

3 System Objects

3-390

MaxNumTracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the tracker can maintain, specified as a positive integer.
Data Types: single | double

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
MaxNumSensors must be greater than or equal to the largest value of SensorIndex found in all the
detections used to update the tracker. SensorIndex is a property of an objectDetection object.
The MaxNumSensors property determines how many sets of ObjectAttributes each track can
have.
Data Types: single | double

StateParameters — Parameters of the track state reference frame
struct([]) (default) | struct | struct array

Parameters of the track state reference frame, specified as a struct or a struct array. Use this
property to define the track state reference frame and how to transform the track from the tracker
(called source) coordinate system to the fuser coordinate system.

This property is tunable.
Data Types: struct

AssignmentThreshold — Detection assignment threshold
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Detection assignment threshold (or gating threshold), specified as a positive scalar or 1-by-2 vector of
[C1,C2], where C1 ≤ C2. If specified as a scalar, the specified value, val, is expanded to [val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if the accurate normalized distance between them is less than C1. See the distance function
used with tracking filters (such as trackingCKF and trackingEKF) for explanation of the distance
calculation.

Tips:

• Increase the value of C2 if there are track and detection combinations that should be calculated
for assignment but are not. Decrease this value if cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease this value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

DetectionProbability — Probability of detection
0.9 (default) | scalar in the range [0,1]

Probability of detection, specified as a scalar in the range [0,1]. This property is used in calculations
of the marginal posterior probabilities of association and the probability of track existence when
initializing and updating a track.

 trackerJPDA

3-391

Example: 0.85
Data Types: single | double

InitializationThreshold — Threshold to initialize a track
0 (default) | scalar in the range [0,1]

The probability threshold to initialize a new track, specified as a scalar in the range [0,1]. If the
probabilities of associating a detection with any of the existing tracks are all smaller than
InitializationThreshold, the detection will be used to initialize a new track. This allows
detections that are within the validation gate of a track but have an association probability lower than
the initialization threshold to spawn a new track.
Example: 0.1
Data Types: single | double

TrackLogic — Track confirmation and deletion logic type
'History' (default) | 'Integrated'

Confirmation and deletion logic type, specified as:

• 'History' – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• 'Integrated' – Track confirmation and deletion is based on the probability of track existence,
which is integrated in the assignment function.

ConfirmationThreshold — Threshold for track confirmation
scalar | 1-by-2 vector

Threshold for track confirmation, specified as a scalar or a 1-by-2 vector. The threshold depends on
the type of track confirmation and deletion logic you set with the TrackLogic property:

• 'History' – Specify the confirmation threshold as 1-by-2 vector [M N]. A track is confirmed if it
recorded at least M hits in the last N updates. The trackerJPDA registers a hit on a track’s
history logic according to the HitMissThrehold. The default value is [2 3].

• 'Integrated' – Specify the confirmation threshold as a scalar. A track is confirmed if its
probability of existence is greater than or equal to the confirmation threshold. The default value is
0.95.

Data Types: single | double

DeletionThreshold — Threshold for track deletion
scalar | real-valued 1-by-2 vector

Threshold for track deletion, specified as a scalar or a real-valued 1-by-2 vector. The threshold
depends on the type of track confirmation and deletion logic you set with the TrackLogic property:

• 'History' – Specify the confirmation threshold as [P R]. A track is deleted if it recorded at least
P misses in the last R updates. The trackerJPDA will register a miss on a track’s history logic
according to the HitMissThrehold property. The default value is [5,5].

• 'Integrated' – Specify the deletion threshold as a scalar. A track is deleted if its probability of
existence drops below the threshold. The default value is 0.1.

Example: 0.2 or [5,6]

3 System Objects

3-392

Data Types: single | double

HitMissThreshold — Threshold for registering hit or miss
0.2 (default) | scalar in the range [0,1]

Threshold for registering a hit or miss, specified as a scalar in the range [0,1]. The track history logic
will register a miss and the track will be coasted if the sum of the marginal probabilities of
assignments is below the HitMissThreshold. Otherwise, the track history logic will register a hit.
Example: 0.3
Dependencies

To enable this argument, set the TrackLogic property to 'History'.
Data Types: single | double

ClutterDensity — Spatial density of clutter measurements
1e-6 (default) | positive scalar

Spatial density of clutter measurements, specified as a positive scalar. The clutter density describes
the expected number of false positive detections per unit volume. It is used as the parameter of a
Poisson clutter model. When TrackLogic is set to 'Integrated', ClutterDensity is also used in
calculating the initial probability of track existence.
Example: 1e-5
Data Types: single | double

NewTargetDensity — Spatial density of new targets
1e-5 (default) | positive scalar

Spatial density of new targets, specified as a positive scalar. The new target density describes the
expected number of new tracks per unit volume in the measurement space. It is used in calculating
the probability of track existence during track initialization.
Example: 1e-3
Dependencies

To enable this argument, set the TrackLogic property to 'Integrated'.
Data Types: single | double

DeathRate — Time rate of target deaths
0.01 (default) | scalar in the range [0,1]

Time rate of target deaths, specified as a scalar in the range [0,1]. DeathRate describes the
probability with which true targets disappear. It is related to the propagation of the probability of
track existence (PTE) :

PTE(t + δt) = 1− DeathRate δtPTE(t)
where δt is the time interval since the previous update time t.
Dependencies

To enable this argument, set the TrackLogic property to 'Integrated'.

 trackerJPDA

3-393

Data Types: single | double

InitialExistenceProbability — Initial probability of track existence
0.9 (default) | scalar in the range [0,1]

This property is read-only.

Initial probability of track existence, specified as a scalar in the range [0,1] and calculated as
InitialExistenceProbability = NewTargetDensity*DetectionProbability/
(ClutterDensity + NewTargetDensity*DetectionProbability).

Dependencies

To enable this property, set the TrackLogic property to 'Integrated'. When the TrackLogic
property is set to 'History', this property is not available.
Data Types: single | double

HasCostMatrixInput — Enable cost matrix input
false (default) | true

Enable a cost matrix, specified as false or true. If true, you can provide an assignment cost matrix
as an input argument when calling the object.
Data Types: logical

HasDetectableTrackIDsInput — Enable input of detectable track IDs
false (default) | true

Enable the input of detectable track IDs at each object update, specified as false or true. Set this
property to true if you want to provide a list of detectable track IDs. This list informs the tracker of
all tracks that the sensors are expected to detect and, optionally, the probability of detection for each
track.
Data Types: logical

NumTracks — Number of tracks maintained by tracker
nonnegative integer

This property is read-only.

Number of tracks maintained by the tracker, returned as a nonnegative integer.
Data Types: single | double

NumConfirmedTracks — Number of confirmed tracks
nonnegative integer

This property is read-only.

Number of confirmed tracks, returned as a nonnegative integer. If the IsConfirmed field of an
output track structure is true, the track is confirmed.
Data Types: single | double

TimeTolerance — Absolute time tolerance between detections
1e-5 (default) | positive scalar

3 System Objects

3-394

Absolute time tolerance between detections for the same sensor, specified as a positive scalar. Ideally,
trackerJPDA expects detections from a sensor to have identical time stamps. However, if the time
stamps differences between detections of a sensor are within the margin specified by
TimeTolerance, these detections will be used to update the track estimate based on the average
time of these detections.
Data Types: double

Usage
To process detections and update tracks, call the tracker with arguments, as if it were a function
(described here).

Syntax
confirmedTracks = tracker(detections,time)
confirmedTracks = tracker(detections,time,costMatrix)
confirmedTracks = tracker(___ ,detectableTrackIDs)
[confirmedTracks,tentativeTracks,allTracks] = tracker(___)
[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
)

Description

confirmedTracks = tracker(detections,time) returns a list of confirmed tracks that are
updated from a list of detections at the update time. Confirmed tracks are corrected and predicted to
the update time, time.

confirmedTracks = tracker(detections,time,costMatrix) also specifies a cost matrix.

To enable this syntax, set the HasCostMatrixInput property to true.

confirmedTracks = tracker(___ ,detectableTrackIDs) also specifies a list of expected
detectable tracks given by detectableTrackIDs. This argument can be used with any of the
previous input syntaxes.

To enable this syntax, set the HasDetectableTrackIDsInput property to true.

[confirmedTracks,tentativeTracks,allTracks] = tracker(___) also returns a list of
tentative tracks and a list of all tracks. You can use any of the input arguments in the previous
syntaxes.

[confirmedTracks,tentativeTracks,allTracks,analysisInformation] = tracker(___
) also returns analysis information that can be used for track analysis. You can use any of the input
arguments in the previous syntaxes.

Input Arguments

detections — Detection list
cell array of objectDetection objects

Detection list, specified as a cell array of objectDetection objects. The Time property value of
each objectDetection object must be less than or equal to the current update time, time, and

 trackerJPDA

3-395

greater than the previous time value used to update the tracker. Also, the Time differences between
different objectDetection objects in the cell array do not need to be equal.

time — Time of update
scalar

Time of update, specified as a scalar. The tracker updates all tracks to this time. Units are in seconds.

time must be greater than or equal to the largest Time property value of the objectDetection
objects in the input detections list. time must increase in value with each update to the tracker.
Data Types: single | double

costMatrix — Cost matrix
real-valued M-by-N matrix

Cost matrix, specified as a real-valued M-by-N matrix, where M is the number of existing tracks in the
previous update, and N is the number of current detections. The cost matrix rows must be in the
same order as the list of tracks, and the columns must be in the same order as the list of detections.
Obtain the correct order of the list of tracks from the third output argument, allTracks, when the
tracker is updated.

At the first update of the tracker or when the tracker has no previous tracks, specify the cost matrix
to be empty with a size of [0,numDetections]. Note that the cost must be given so that lower costs
indicate a higher likelihood of assigning a detection to a track. To prevent certain detections from
being assigned to certain tracks, you can set the appropriate cost matrix entry to Inf.

Dependencies

To enable this argument, set the HasCostMatrixInput property to true.
Data Types: double | single

detectableTrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column allows you to add the detection
probability for each track.

Tracks whose identifiers are not included in detectableTrackIDs are considered undetectable. In
this case, the track deletion logic does not count the lack of detection for that track as a missed
detection for track deletion purposes.

Dependencies

To enable this input argument, set the detectableTrackIDs property to true.
Data Types: single | double

Output Arguments

confirmedTracks — Confirmed tracks
array of objectTrack objects | array of structures

3 System Objects

3-396

Confirmed tracks, returned as an array of objectTrack objects in MATLAB, and returned as an
array of structures in code generation. In code generation, the field names of the returned structure
are same with the property names of objectTrack.

A track is confirmed if it satisfies the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is true.
Data Types: struct | object

tentativeTracks — Tentative tracks
array of objectTrack objects | array of structures

Tentative tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array
of structures in code generation. In code generation, the field names of the returned structure are
same with the property names of objectTrack.

A track is tentative if it does not satisfy the confirmation threshold specified in the
ConfirmationThreshold property. In that case, the IsConfirmed property of the object or field of
the structure is false.
Data Types: struct | object

allTracks — All tracks
array of objectTrack objects | array of structures

All tracks, returned as an array of objectTrack objects in MATLAB, and returned as an array of
structures in code generation. In code generation, the field names of the returned structure are same
with the property names of objectTrack. All tracks consists of confirmed and tentative tracks.
Data Types: struct | object

analysisInformation — Additional information for analyzing track updates
structure

Additional information for analyzing track updates, returned as a structure. The fields of this
structure are:

Field Description
TrackIDsAtStepBeginning Track IDs when step began.
CostMatrix Cost matrix for assignment.
Clusters Cell array of cluster reports.
InitiatedTrackIDs IDs of tracks initiated during the step.
DeletedTrackIDs IDs of tracks deleted during the step.
TrackIDsAtStepEnd Track IDs when the step ended.

The Clusters field can include multiple cluster reports. Each cluster report is a structure
containing:

Field Description
DetectionIndices Indices of clustered detections.

 trackerJPDA

3-397

TrackIDs Track IDs of clustered tracks.
ValidationMatrix Validation matrix of the cluster. See jpadEvents

for more details.
SensorIndex Index of the originating sensor of the clustered

detections.
TimeStamp Mean time stamp of clustered detections.
MarginalProbabilities Matrix of marginal posterior joint association

probabilities.

Data Types: struct

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackerJPDA
predictTracksToTime Predict track state
getTrackFilterProperties Obtain track filter properties
setTrackFilterProperties Set track filter properties
initializeTrack Initialize new track
deleteTrack Delete existing track

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
isLocked Determine if System object is in use
clone Create duplicate System object
reset Reset internal states of System object

Examples

Track Two Objects Using trackerJPDA

Construct a trackerJPDA object with a default constant velocity Extended Kalman Filter and 'History'
track logic. Set AssignmentThreshold to 100 to allow tracks to be jointly associated.

tracker = trackerJPDA('TrackLogic','History', 'AssignmentThreshold',100,...
 'ConfirmationThreshold', [4 5], ...
 'DeletionThreshold', [10 10]);

Specify the true initial positions and velocities of the two objects.

pos_true = [0 0 ; 40 -40 ; 0 0];
V_true = 5*[cosd(-30) cosd(30) ; sind(-30) sind(30) ;0 0];

Create a theater plot to visualize tracks and detections.

3 System Objects

3-398

tp = theaterPlot('XLimits',[-1 150],'YLimits',[-50 50]);
trackP = trackPlotter(tp,'DisplayName','Tracks','MarkerFaceColor','g','HistoryDepth',0);
detectionP = detectionPlotter(tp,'DisplayName','Detections','MarkerFaceColor','r');

To obtain the position and velocity, create position and velocity selectors.

positionSelector = [1 0 0 0 0 0; 0 0 1 0 0 0; 0 0 0 0 0 0]; % [x, y, 0]
velocitySelector = [0 1 0 0 0 0; 0 0 0 1 0 0; 0 0 0 0 0 0]; % [vx, vy, 0]

Update the tracker with detections, display cost and marginal probability of association information,
and visualize tracks with detections.

dt = 0.2;
for time = 0:dt:30
 % Update the true positions of objects.
 pos_true = pos_true + V_true*dt;

 % Create detections of the two objects with noise.
 detection(1) = objectDetection(time,pos_true(:,1)+1*randn(3,1));
 detection(2) = objectDetection(time,pos_true(:,2)+1*randn(3,1));

 % Step the tracker through time with the detections.
 [confirmed,tentative,alltracks,info] = tracker(detection,time);

 % Extract position, velocity and label info.
 [pos,cov] = getTrackPositions(confirmed,positionSelector);
 vel = getTrackVelocities(confirmed,velocitySelector);
 meas = cat(2,detection.Measurement);

 trackerJPDA

3-399

 measCov = cat(3,detection.MeasurementNoise);

 % Update the plot if there are any tracks.
 if numel(confirmed)>0
 labels = arrayfun(@(x)num2str([x.TrackID]),confirmed,'UniformOutput',false);
 trackP.plotTrack(pos,vel,cov,labels);
 end
 detectionP.plotDetection(meas',measCov);
 drawnow;

 % Display the cost and marginal probability of distribution every eight
 % seconds.
 if time>0 && mod(time,8) == 0
 disp(['At time t = ' num2str(time) ' seconds,']);
 disp('The cost of assignment was: ')
 disp(info.CostMatrix);
 disp(['Number of clusters: ' num2str(numel(info.Clusters))]);
 if numel(info.Clusters) == 1

 disp('The two tracks were in the same cluster.')
 disp('Marginal probabilities of association:')
 disp(info.Clusters{1}.MarginalProbabilities)
 end
 disp('-----------------------------')
 end
end

At time t = 8 seconds,
The cost of assignment was:
 1.0e+03 *

 0.0020 1.1523
 1.2277 0.0053

Number of clusters: 2

At time t = 16 seconds,
The cost of assignment was:
 1.3968 4.5123
 2.0747 1.9558

Number of clusters: 1
The two tracks were in the same cluster.
Marginal probabilities of association:
 0.8344 0.1656
 0.1656 0.8344
 0.0000 0.0000

At time t = 24 seconds,
The cost of assignment was:
 1.0e+03 *

 0.0018 1.2962
 1.2664 0.0013

3 System Objects

3-400

Number of clusters: 2

Algorithms
Tracker Logic Flow

When a JPDA tracker processes detections, track creation and management follow these steps.

1 The tracker divides detections into multiple groups by originating sensor.
2 For each sensor:

a The tracker calculates the distances from detections to existing tracks and forms a
costMatrix.

b The tracker creates a validation matrix based on the assignment threshold (or gate
threshold) of the existing tracks. A validation matrix is a binary matrix listing all possible
detections-to-track associations. For details, see “Feasible Joint Events” on page 3-402.

c Tracks and detections are then separated into clusters. A cluster can contain one track or
multiple tracks if these tracks share common detections within their validation gates. A
validation gate is a spatial boundary, in which the predicted detection of the track has a high
likelihood to fall. For details, see “Feasible Joint Events” on page 3-402.

3 Update all clusters following the order of the mean detection time stamp within the cluster. For
each cluster, the tracker:

 trackerJPDA

3-401

a Generates all feasible joint events. For details, see jpdaEvents.
b Calculates the posterior probability of each joint event.
c Calculates the marginal probability of each individual detection-track pair in the cluster.
d Reports weak detections. Weak detections are the detections that are within the validation

gate of at least one track, but have probability association to all tracks less than the
IntitializationThreshold.

e Updates tracks in the cluster using correctjpda.
4 Unassigned detections (these are not in any cluster) and weak detections spawn new tracks.
5 The tracker checks all tracks for deletion. Tracks are deleted based on the number of scans

without association using 'History' logic or based on their probability of existence
using'Integrated' track logic.

6 All tracks are predicted to the latest time value (either the time input if provided, or the latest
mean cluster time stamp).

Feasible Joint Events

In the typical workflow for a tracking system, the tracker needs to determine if a detection can be
associated with any of the existing tracks. If the tracker only maintains one track, the assignment can
be done by evaluating the validation gate around the predicted measurement and deciding if the
measurement falls within the validation gate. In the measurement space, the validation gate is a
spatial boundary, such as a 2-D ellipse or a 3-D ellipsoid, centered at the predicted measurement. The
validation gate is defined using the probability information (state estimation and covariance, for
example) of the existing track, such that the correct or ideal detections have high likelihood (97%
probability, for example) of falling within this validation gate.

However, if a tracker maintains multiple tracks, the data association process becomes more
complicated, because one detection can fall within the validation gates of multiple tracks. For
example, in the following figure, tracks T1 and T2 are actively maintained in the tracker, and each of
them has its own validation gate. Since the detection D2 is in the intersection of the validation gates
of both T1 and T2, the two tracks (T1 and T2) are connected and form a cluster. A cluster is a set of
connected tracks and their associated detections.

To represent the association relationship in a cluster, the validation matrix is commonly used. Each
row of the validation matrix corresponds to a detection while each column corresponds to a track. To
account for the eventuality of each detection being clutter, a first column is added and usually
referred to as "Track 0" or T0. If detection Di is inside the validation gate of track Dj, then the (j, i+1)
entry of the validation matrix is 1. Otherwise, it is zero. For the cluster shown in the figure, the
validation matrix Ω is

3 System Objects

3-402

Ω =
1 1 0
1 1 1
1 0 1

Note that all the elements in the first column of Ω are 1, because any detection can be clutter or false
alarm. One important step in the logic of joint probabilistic data association (JPDA) is to obtain all the
feasible independent joint events in a cluster. Two assumptions for the feasible joint events are:

• A detection cannot be emitted by more than one track.
• A track cannot be detected more than once by the sensor during a single scan.

Based on these two assumptions, feasible joint events (FJEs) can be formulated. Each FJE is mapped
to an FJE matrix Ωp from the initial validation matrix Ω. For example, with the validation matrix Ω,
eight FJE matrices can be obtained:

Ω1 =
1 0 0
1 0 0
1 0 0

, Ω2 =
0 1 0
1 0 0
1 0 0

, Ω3 =
1 0 0
0 1 0
1 0 0

, Ω4 =
1 0 0
0 0 1
1 0 0

Ω5 =
0 1 0
0 0 1
1 0 0

, Ω6 =
1 0 0
1 0 0
0 0 1

, Ω7 =
0 1 0
1 0 0
0 0 1

, Ω8 =
1 0 0
0 1 0
0 0 1

As a direct consequence of the two assumptions, the Ωp matrices have exactly one "1" value per row.
Also, except for the first column which maps to clutter, there can be at most one "1" per column.
When the number of connected tracks grows in a cluster, the number of FJE increases rapidly. The
jpdaEvents function uses an efficient depth-first search algorithm to generate all the feasible joint
event matrices.

References
[1] Fortmann, T., Y. Bar-Shalom, and M. Scheffe. "Sonar Tracking of Multiple Targets Using Joint

Probabilistic Data Association." IEEE Journal of Ocean Engineering. Vol. 8, Number 3, 1983,
pp. 173-184.

[2] Musicki, D., and R. Evans. "Joint Integrated Probabilistic Data Association: JIPDA." IEEE
transactions on Aerospace and Electronic Systems . Vol. 40, Number 3, 2004, pp 1093-1099.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• All the detections used with a multi-object tracker must have properties with the same sizes and

types.
• If you use the ObjectAttributes field within an objectDetection object, you must specify

this field as a cell containing a structure. The structure for all detections must have the same
fields, and the values in these fields must always have the same size and type. The form of the
structure cannot change during simulation.

 trackerJPDA

3-403

• If ObjectAttributes are contained in the detection, the SensorIndex value of the detection
cannot be greater than 10.

• The first update to the multi-object tracker must contain at least one detection.

See Also
Functions
correctjpda | getTrackPositions | getTrackVelocities | jpdaEvents |
predictTracksToTime

Objects
objectDetection | objectTrack | trackHistoryLogic | trackingABF | trackingCKF |
trackingEKF | trackingIMM | trackingKF | trackingUKF

System Objects
staticDetectionFuser | trackerGNN | trackerTOMHT

Introduced in R2019a

3 System Objects

3-404

poseTrajectory

Pose trajectory generator

Description
poseTrajectory System object creates a trajectory starting from an initial pose. Execute the object
to obtain the pose at each time step.

The object supports single and double data types for property values. If the value for a name-value
pair is a single, then all of the properties and outputs from the object are converted to the single data
type. Otherwise, the double data type is used. Data types cannot be changed after the object has been
created.

To obtain trajectory points:

1 Create the poseTrajectory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
trajectory = poseTrajectory()
trajectory = poseTrajectory(Name,Value)

Description

trajectory = poseTrajectory() creates a pose trajectory object with default property values.

trajectory = poseTrajectory(Name,Value) sets properties using one or more name-value
pairs. For example, traj = poseTrajectory('SampleRate',2,'Position',[100 500
2000]) creates a pose trajectory that reports trajectory values every ½ second and has an initial
position of (100,500,2000) meters in the scenario coordinate system. Enclose each property name in
quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

 poseTrajectory

3-405

SampleRate — Sampling frequency of trajectory
100 (default) | positive scalar

Sample rate of trajectory, specified as a positive scalar. This property is tunable. Units are in hertz.
Data Types: single

Position — Initial position of platform in scenario frame
[0 0 0] (default) | 1-by-3 real-valued vector

Initial position of platform in the scenario frame, specified as a 1-by-3 real-valued vector. This
property is tunable. Units are in meters.
Example: [100 500 2000]
Data Types: single | double

Velocity — Initial velocity of platform in scenario frame
[0 0 0] (default) | 1-by-3 real-valued vector

Initial velocity of platform in the scenario frame, specified as a 1-by-3 real-valued vector. This
property is tunable. Units are in meters per second.
Example: [100 500 2000]
Data Types: single | double

Acceleration — Acceleration of platform in body frame
[0 0 0] (default) | 1-by-3 real-valued vector

Acceleration of platform in the body frame, specified as a 1-by-3 real-valued vector. This property is
tunable. Units are in meters per second squared.
Example: [1 0.50 0.12]
Data Types: single

AngularVelocity — Angular velocity of platform in body frame
[0 0 0] (default) | 1-by-3 real-valued vector

Angular velocity of platform in the body frame, specified as a 1-by-3 real-valued vector. This property
is tunable. Units are in radians per second.
Data Types: double

Usage

Syntax
[pos,orient,vel,acc,angvel] = trajectory()

Description

[pos,orient,vel,acc,angvel] = trajectory() returns the pose of a platform at its current
trajectory point.

• pos – current position

3 System Objects

3-406

• orient – orientation
• vel – velocity
• acc – acceleration
• angvel – angular velocity

Output Arguments

pos — position of platform in scenario frame
1-by-3 real-valued vector

Position of platform in scenario coordinates, returned as a 1-by-3 real-valued vector. Units are in
meters.

orient — Orientation of platform in scenario coordinates
quaternion | 3-by-3 real-valued orthogonal matrix

Orientation of body frame, returned as a quaternion or 3-by-3 real-valued orthogonal matrix. The
orientation rotates the scenario frame into the body frame. Units are dimensionless.
Data Types: single | double

vel — Velocity of platform in scenario frame
1-by-3 real-valued vector

Velocity of platform in scenario frame, returned as a 1-by-3 real-valued vector. Units are in meters per
second.

acc — Acceleration of platform in body frame
1-by-3 real-valued vector

Acceleration of platform in body frame, returned as a 1-by-3 real-valued vector. Units are in meters
per second squared.
Data Types: single | double

angvel — Angular velocity in body frame
[0 0 0] (default) | 1-by-3 real-valued vector

Angular velocity of body frame, returned as a 1-by-3 real-valued vector. Units are in radians per
second.
Data Types: double | single

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Examples

 poseTrajectory

3-407

Create Circular Trajectory

Create a trajectory that follows a circle. Set the number of trajectory points to 500. To follow a
circular trajectory, the platform must accelerate.

N = 500;
fs = 1;

Set the initial conditions for the object motion. Place the object on the x-axis 100 meters from the
origin in scenario coordinates. Set the velocity of the body to 2.5 m/s along the y-axis.

r = 100;
speed = 2.5;
initPos = [r,0,0];
velBody = [0,speed,0];

Orient the body along the direction of motion. Apply an acceleration orthogonal to the body in the xy-
plane. Acceleration is always in the body frame. Rotate the body as it moves by an angular rotation
rate equal to the rotation rate around the origin.

accmag = speed^2/r;
initialYaw = deg2rad(90);
initPos = [r,0,0];
velBody = [0,speed,0];
accBody = [0,accmag,0];
initAtt = quaternion([initialYaw, 0, 0],'euler','ZYX', 'frame');
traj = kinematicTrajectory('SampleRate',fs,'Position',initPos, ...
 'Velocity',velBody,'Orientation',initAtt);

pos = zeros(N, 3);
for i = 1:N
 pos(i,:) = traj(accBody,[0 0 speed/r]);
end

Plot the trajectory.

plot3(pos(:,1), pos(:,2), pos(:,3))
grid
axis equal

3 System Objects

3-408

See Also
System Objects

Introduced in R2018b

 poseTrajectory

3-409

imuSensor

IMU simulation model

Description
The imuSensor System object models receiving data from an inertial measurement unit (IMU).

To model an IMU:

1 Create the imuSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
IMU = imuSensor
IMU = imuSensor('accel-gyro')
IMU = imuSensor('accel-mag')
IMU = imuSensor('accel-gyro-mag')
IMU = imuSensor(___ ,'ReferenceFrame',RF)
IMU = imuSensor(___ ,Name,Value)

Description

IMU = imuSensor returns a System object, IMU, that computes an inertial measurement unit
reading based on an inertial input signal. IMU has an ideal accelerometer and gyroscope.

IMU = imuSensor('accel-gyro') returns an imuSensor System object with an ideal
accelerometer and gyroscope. imuSensor and imuSensor('accel-gyro') are equivalent creation
syntaxes.

IMU = imuSensor('accel-mag') returns an imuSensor System object with an ideal
accelerometer and magnetometer.

IMU = imuSensor('accel-gyro-mag') returns an imuSensor System object with an ideal
accelerometer, gyroscope, and magnetometer.

IMU = imuSensor(___ ,'ReferenceFrame',RF) returns an imuSensor System object that
computes an inertial measurement unit reading relative to the reference frame RF. Specify RF as
'NED' (North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

IMU = imuSensor(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values. This syntax can be used in combination with any of the
previous input arguments.

3 System Objects

3-410

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

IMUType — Type of inertial measurement unit
'accel-gyro' (default) | 'accel-mag' | 'accel-gyro-mag'

Type of inertial measurement unit, specified as a 'accel-gyro', 'accel-mag', or 'accel-gyro-
mag'.

The type of inertial measurement unit specifies which sensor readings to model:

• 'accel-gyro' –– Accelerometer and gyroscope
• 'accel-mag' –– Accelerometer and magnetometer
• 'accel-gyro-mag' –– Accelerometer, gyroscope, and magnetometer

You can specify IMUType as a value-only argument during creation or as a Name,Value pair.
Data Types: char | string

SampleRate — Sample rate of sensor (Hz)
100 (default) | positive scalar

Sample rate of the sensor model in Hz, specified as a positive scalar.
Data Types: single | double

Temperature — Temperature of IMU (oC)
25 (default) | real scalar

Operating temperature of the IMU in degrees Celsius, specified as a real scalar.

When the object calculates temperature scale factors and environmental drift noises, 25 oC is used as
the nominal temperature.

Tunable: Yes
Data Types: single | double

MagneticField — Magnetic field vector in local navigation coordinate system (μT)
[27.5550 -2.4169 -16.0849] (default) | real scalar

Magnetic field vector in microtesla, specified as a three-element row vector in the local navigation
coordinate system.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.

Tunable: Yes
Data Types: single | double

 imuSensor

3-411

Accelerometer — Accelerometer sensor parameters
accelparams object (default)

Accelerometer sensor parameters, specified by an accelparams object.

Tunable: Yes

Gyroscope — Gyroscope sensor parameters
gyroparams object (default)

Gyroscope sensor parameters, specified by a gyroparams object.

Tunable: Yes

Magnetometer — Magnetometer sensor parameters
magparams object (default)

Magnetometer sensor parameters, specified by a magparams object.

Tunable: Yes

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a real, nonnegative
integer scalar.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
[accelReadings,gyroReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings] = IMU(acc,angVel,orientation)

[accelReadings,magReadings] = IMU(acc,angVel)
[accelReadings,magReadings] = IMU(acc,angVel,orientation)

3 System Objects

3-412

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel)
[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,orientation)

Description

[accelReadings,gyroReadings] = IMU(acc,angVel) generates accelerometer and gyroscope
readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,gyroReadings] = IMU(acc,angVel,orientation) generates accelerometer
and gyroscope readings from the acceleration, angular velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro' or 'accel-gyro-mag'.

[accelReadings,magReadings] = IMU(acc,angVel) generates accelerometer and
magnetometer readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.

[accelReadings,magReadings] = IMU(acc,angVel,orientation) generates accelerometer
and magnetometer readings from the acceleration, angular velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-mag'.

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel) generates accelerometer,
gyroscope, and magnetometer readings from the acceleration and angular velocity inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

[accelReadings,gyroReadings,magReadings] = IMU(acc,angVel,orientation)
generates accelerometer, gyroscope, and magnetometer readings from the acceleration, angular
velocity, and orientation inputs.

This syntax is only valid if IMUType is set to 'accel-gyro-mag'.

Input Arguments

acc — Acceleration of IMU in local navigation coordinate system (m/s2)
N-by-3 matrix

Acceleration of the IMU in the local navigation coordinate system, specified as a real, finite N-by-3
array in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

angVel — Angular velocity of IMU in local navigation coordinate system (rad/s)
N-by-3 matrix

Angular velocity of the IMU in the local navigation coordinate system, specified as a real, finite N-
by-3 array in radians per second. N is the number of samples in the current frame.
Data Types: single | double

orientation — Orientation of IMU in local navigation coordinate system
N-element quaternion column vector | 3-by-3-by-N-element rotation matrix

 imuSensor

3-413

Orientation of the IMU with respect to the local navigation coordinate system, specified as a
quaternion N-element column vector or a 3-by-3-by-N rotation matrix. Each quaternion or
rotation matrix represents a frame rotation from the local navigation coordinate system to the
current IMU sensor body coordinate system. N is the number of samples in the current frame.
Data Types: single | double | quaternion

Output Arguments

accelReadings — Accelerometer measurement of IMU in sensor body coordinate system
(m/s2)
N-by-3 matrix

Accelerometer measurement of the IMU in the sensor body coordinate system, specified as a real,
finite N-by-3 array in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

gyroReadings — Gyroscope measurement of IMU in sensor body coordinate system (rad/s)
N-by-3 matrix

Gyroscope measurement of the IMU in the sensor body coordinate system, specified as a real, finite
N-by-3 array in radians per second. N is the number of samples in the current frame.
Data Types: single | double

magReadings — Magnetometer measurement of IMU in sensor body coordinate system (μT)
N-by-3 matrix (default)

Magnetometer measurement of the IMU in the sensor body coordinate system, specified as a real,
finite N-by-3 array in microtelsa. N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to imuSensor
loadparams Load sensor parameters from JSON file

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

3 System Objects

3-414

Create Default imuSensor System object

The imuSensor System object™ enables you to model the data received from an inertial
measurement unit consisting of a combination of gyroscope, accelerometer, and magnetometer.

Create a default imuSensor object.

IMU = imuSensor

IMU =
 imuSensor with properties:

 IMUType: 'accel-gyro'
 SampleRate: 100
 Temperature: 25
 Accelerometer: [1x1 accelparams]
 Gyroscope: [1x1 gyroparams]
 RandomStream: 'Global stream'

The imuSensor object, IMU, contains an idealized gyroscope and accelerometer. Use dot notation to
view properties of the gyroscope.

IMU.Gyroscope

ans =
 gyroparams with properties:

 MeasurementRange: Inf rad/s
 Resolution: 0 (rad/s)/LSB
 ConstantBias: [0 0 0] rad/s
 AxesMisalignment: [0 0 0] %

 NoiseDensity: [0 0 0] (rad/s)/√Hz
 BiasInstability: [0 0 0] rad/s
 RandomWalk: [0 0 0] (rad/s)*√Hz

 TemperatureBias: [0 0 0] (rad/s)/°C
 TemperatureScaleFactor: [0 0 0] %/°C
 AccelerationBias: [0 0 0] (rad/s)/(m/s²)

Sensor properties are defined by corresponding parameter objects. For example, the gyroscope
model used by the imuSensor is defined by an instance of the gyroparams class. You can modify
properties of the gyroscope model using dot notation. Set the gyroscope measurement range to 4.3
rad/s.

IMU.Gyroscope.MeasurementRange = 4.3;

You can also set sensor properties to preset parameter objects. Create an accelparams object to
mimic specific hardware, and then set the IMU Accelerometer property to the accelparams
object. Display the Accelerometer property to verify the properties are correctly set.

SpecSheet1 = accelparams(...
 'MeasurementRange',19.62, ...
 'Resolution',0.00059875, ...
 'ConstantBias',0.4905, ...
 'AxesMisalignment',2, ...

 imuSensor

3-415

 'NoiseDensity',0.003924, ...
 'BiasInstability',0, ...
 'TemperatureBias', [0.34335 0.34335 0.5886], ...
 'TemperatureScaleFactor', 0.02);

IMU.Accelerometer = SpecSheet1;

IMU.Accelerometer

ans =
 accelparams with properties:

 MeasurementRange: 19.62 m/s²
 Resolution: 0.00059875 (m/s²)/LSB
 ConstantBias: [0.4905 0.4905 0.4905] m/s²
 AxesMisalignment: [2 2 2] %

 NoiseDensity: [0.003924 0.003924 0.003924] (m/s²)/√Hz
 BiasInstability: [0 0 0] m/s²
 RandomWalk: [0 0 0] (m/s²)*√Hz

 TemperatureBias: [0.34335 0.34335 0.5886] (m/s²)/°C
 TemperatureScaleFactor: [0.02 0.02 0.02] %/°C

Generate Ideal IMU Data from Stationary Input

Use the imuSensor System object™ to model receiving data from a stationary ideal IMU containing
an accelerometer, gyroscope, and magnetometer.

Create an ideal IMU sensor model that contains an accelerometer, gyroscope, and magnetometer.

IMU = imuSensor('accel-gyro-mag')

IMU =
 imuSensor with properties:

 IMUType: 'accel-gyro-mag'
 SampleRate: 100
 Temperature: 25
 MagneticField: [27.5550 -2.4169 -16.0849]
 Accelerometer: [1x1 accelparams]
 Gyroscope: [1x1 gyroparams]
 Magnetometer: [1x1 magparams]
 RandomStream: 'Global stream'

Define the ground-truth, underlying motion of the IMU you are modeling. The acceleration and
angular velocity are defined relative to the local NED coordinate system.

numSamples = 1000;
acceleration = zeros(numSamples,3);
angularVelocity = zeros(numSamples,3);

Call IMU with the ground-truth acceleration and angular velocity. The object outputs accelerometer
readings, gyroscope readings, and magnetometer readings, as modeled by the properties of the

3 System Objects

3-416

imuSensor System object. The accelerometer readings, gyroscope readings, and magnetometer
readings are relative to the IMU sensor body coordinate system.

[accelReading,gyroReading,magReading] = IMU(acceleration,angularVelocity);

Plot the accelerometer readings, gyroscope readings, and magnetometer readings.

t = (0:(numSamples-1))/IMU.SampleRate;
subplot(3,1,1)
plot(t,accelReading)
legend('X-axis','Y-axis','Z-axis')
title('Accelerometer Readings')
ylabel('Acceleration (m/s^2)')

subplot(3,1,2)
plot(t,gyroReading)
legend('X-axis','Y-axis','Z-axis')
title('Gyroscope Readings')
ylabel('Angular Velocity (rad/s)')

subplot(3,1,3)
plot(t,magReading)
legend('X-axis','Y-axis','Z-axis')
title('Magnetometer Readings')
xlabel('Time (s)')
ylabel('Magnetic Field (uT)')

 imuSensor

3-417

Orientation is not specified and the ground-truth motion is stationary, so the IMU sensor body
coordinate system and the local NED coordinate system overlap for the entire simulation.

• Accelerometer readings: The z-axis of the sensor body corresponds to the Down-axis. The 9.8
m/s^2 acceleration along the z-axis is due to gravity.

• Gyroscope readings: The gyroscope readings are zero along each axis, as expected.
• Magnetometer readings: Because the sensor body coordinate system is aligned with the local NED

coordinate system, the magnetometer readings correspond to the MagneticField property of
imuSensor. The MagneticField property is defined in the local NED coordinate system.

Model Rotating Six-Axis IMU Data

Use imuSensor to model data obtained from a rotating IMU containing an ideal accelerometer and
an ideal magnetometer. Use kinematicTrajectory to define the ground-truth motion. Fuse the
imuSensor model output using the ecompass function to determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds, and then
another 360 degrees in two seconds. Use kinematicTrajectory to output the orientation,
acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

Create an imuSensor object with an ideal accelerometer and an ideal magnetometer. Call IMU with
the ground-truth acceleration, angular velocity, and orientation to output accelerometer readings and
magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')

3 System Objects

3-418

ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')

The accelerometer readings indicate that the platform has no translation. The magnetometer
readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to estimate the
orientation over time. The ecompass function returns orientation in quaternion format. Convert
orientation to Euler angles and plot the results. The orientation plot indicates that the platform
rotates about the z-axis only.

orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')

 imuSensor

3-419

Model Rotating Six-Axis IMU Data with Noise

Use imuSensor to model data obtained from a rotating IMU containing a realistic accelerometer and
a realistic magnetometer. Use kinematicTrajectory to define the ground-truth motion. Fuse the
imuSensor model output using the ecompass function to determine orientation over time.

Define the ground-truth motion for a platform that rotates 360 degrees in four seconds, and then
another 360 degrees in two seconds. Use kinematicTrajectory to output the orientation,
acceleration, and angular velocity in the NED coordinate system.

fs = 100;
firstLoopNumSamples = fs*4;
secondLoopNumSamples = fs*2;
totalNumSamples = firstLoopNumSamples + secondLoopNumSamples;

traj = kinematicTrajectory('SampleRate',fs);

accBody = zeros(totalNumSamples,3);
angVelBody = zeros(totalNumSamples,3);
angVelBody(1:firstLoopNumSamples,3) = (2*pi)/4;
angVelBody(firstLoopNumSamples+1:end,3) = (2*pi)/2;

[~,orientationNED,~,accNED,angVelNED] = traj(accBody,angVelBody);

3 System Objects

3-420

Create an imuSensor object with a realistic accelerometer and a realistic magnetometer. Call IMU
with the ground-truth acceleration, angular velocity, and orientation to output accelerometer
readings and magnetometer readings. Plot the results.

IMU = imuSensor('accel-mag','SampleRate',fs);

IMU.Accelerometer = accelparams(...
 'MeasurementRange',19.62, ... % m/s^2
 'Resolution',0.0023936, ... % m/s^2 / LSB
 'TemperatureScaleFactor',0.008, ... % % / degree C
 'ConstantBias',0.1962, ... % m/s^2
 'TemperatureBias',0.0014715, ... % m/s^2 / degree C
 'NoiseDensity',0.0012361); % m/s^2 / Hz^(1/2)

IMU.Magnetometer = magparams(...
 'MeasurementRange',1200, ... % uT
 'Resolution',0.1, ... % uT / LSB
 'TemperatureScaleFactor',0.1, ... % % / degree C
 'ConstantBias',1, ... % uT
 'TemperatureBias',[0.8 0.8 2.4], ... % uT / degree C
 'NoiseDensity',[0.6 0.6 0.9]/sqrt(100)); % uT / Hz^(1/2)

[accelReadings,magReadings] = IMU(accNED,angVelNED,orientationNED);

figure(1)
t = (0:(totalNumSamples-1))/fs;
subplot(2,1,1)
plot(t,accelReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Acceleration (m/s^2)')
title('Accelerometer Readings')

subplot(2,1,2)
plot(t,magReadings)
legend('X-axis','Y-axis','Z-axis')
ylabel('Magnetic Field (\muT)')
xlabel('Time (s)')
title('Magnetometer Readings')

 imuSensor

3-421

The accelerometer readings indicate that the platform has no translation. The magnetometer
readings indicate that the platform is rotating around the z-axis.

Feed the accelerometer and magnetometer readings into the ecompass function to estimate the
orientation over time. The ecompass function returns orientation in quaternion format. Convert
orientation to Euler angles and plot the results. The orientation plot indicates that the platform
rotates about the z-axis only.

orientation = ecompass(accelReadings,magReadings);

orientationEuler = eulerd(orientation,'ZYX','frame');

figure(2)
plot(t,orientationEuler)
legend('Z-axis','Y-axis','X-axis')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation')

3 System Objects

3-422

%

Model Tilt Using Gyroscope and Accelerometer Readings

Model a tilting IMU that contains an accelerometer and gyroscope using the imuSensor System
object™. Use ideal and realistic models to compare the results of orientation tracking using the
imufilter System object.

Load a struct describing ground-truth motion and a sample rate. The motion struct describes
sequential rotations:

1 yaw: 120 degrees over two seconds
2 pitch: 60 degrees over one second
3 roll: 30 degrees over one-half second
4 roll: -30 degrees over one-half second
5 pitch: -60 degrees over one second
6 yaw: -120 degrees over two seconds

In the last stage, the motion struct combines the 1st, 2nd, and 3rd rotations into a single-axis
rotation. The acceleration, angular velocity, and orientation are defined in the local NED coordinate
system.

 imuSensor

3-423

load y120p60r30.mat motion fs
accNED = motion.Acceleration;
angVelNED = motion.AngularVelocity;
orientationNED = motion.Orientation;

numSamples = size(motion.Orientation,1);
t = (0:(numSamples-1)).'/fs;

Create an ideal IMU sensor object and a default IMU filter object.

IMU = imuSensor('accel-gyro','SampleRate',fs);

aFilter = imufilter('SampleRate',fs);

In a loop:

1 Simulate IMU output by feeding the ground-truth motion to the IMU sensor object.
2 Filter the IMU output using the default IMU filter object.

orientation = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 orientation(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

Plot the orientation over time.

figure(1)
plot(t,eulerd(orientation,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Ideal IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

3 System Objects

3-424

Modify properties of your imuSensor to model real-world sensors. Run the loop again and plot the
orientation estimate over time.

IMU.Accelerometer = accelparams(...
 'MeasurementRange',19.62, ...
 'Resolution',0.00059875, ...
 'ConstantBias',0.4905, ...
 'AxesMisalignment',2, ...
 'NoiseDensity',0.003924, ...
 'BiasInstability',0, ...
 'TemperatureBias', [0.34335 0.34335 0.5886], ...
 'TemperatureScaleFactor',0.02);
IMU.Gyroscope = gyroparams(...
 'MeasurementRange',4.3633, ...
 'Resolution',0.00013323, ...
 'AxesMisalignment',2, ...
 'NoiseDensity',8.7266e-05, ...
 'TemperatureBias',0.34907, ...
 'TemperatureScaleFactor',0.02, ...
 'AccelerationBias',0.00017809, ...
 'ConstantBias',[0.3491,0.5,0]);

orientationDefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples

 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 imuSensor

3-425

 orientationDefault(i) = aFilter(accelBody,gyroBody);

end
release(aFilter)

figure(2)
plot(t,eulerd(orientationDefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Default IMU Filter')
legend('Z-axis','Y-axis','X-axis')

The ability of the imufilter to track the ground-truth data is significantly reduced when modeling a
realistic IMU. To improve performance, modify properties of your imufilter object. These values
were determined empirically. Run the loop again and plot the orientation estimate over time.

aFilter.GyroscopeNoise = 7.6154e-7;
aFilter.AccelerometerNoise = 0.0015398;
aFilter.GyroscopeDriftNoise = 3.0462e-12;
aFilter.LinearAccelerationNoise = 0.00096236;
aFilter.InitialProcessNoise = aFilter.InitialProcessNoise*10;

orientationNondefault = zeros(numSamples,1,'quaternion');
for i = 1:numSamples
 [accelBody,gyroBody] = IMU(accNED(i,:),angVelNED(i,:),orientationNED(i,:));

 orientationNondefault(i) = aFilter(accelBody,gyroBody);

3 System Objects

3-426

end
release(aFilter)

figure(3)
plot(t,eulerd(orientationNondefault,'ZYX','frame'))
xlabel('Time (s)')
ylabel('Rotation (degrees)')
title('Orientation Estimation -- Realistic IMU Data, Nondefault IMU Filter')
legend('Z-axis','Y-axis','X-axis')

To quantify the improved performance of the modified imufilter, plot the quaternion distance
between the ground-truth motion and the orientation as returned by the imufilter with default and
nondefault properties.

qDistDefault = rad2deg(dist(orientationNED,orientationDefault));
qDistNondefault = rad2deg(dist(orientationNED,orientationNondefault));

figure(4)
plot(t,[qDistDefault,qDistNondefault])
title('Quaternion Distance from True Orientation')
legend('Realistic IMU Data, Default IMU Filter', ...
 'Realistic IMU Data, Nondefault IMU Filter')
xlabel('Time (s)')
ylabel('Quaternion Distance (degrees)')

 imuSensor

3-427

Algorithms
Accelerometer

The accelerometer model uses the ground-truth orientation and acceleration inputs and the
imuSensor and accelparams properties to model accelerometer readings.

3 System Objects

3-428

Obtain Total Acceleration

To obtain the total acceleration (totalAcc), the acceleration is preprocessed by negating and adding
the gravity constant vector (g= [0; 0; 9.8] m/s2) as:

totalAcc = − acceleration + g

Convert to Sensor Frame

Then the total acceleration is converted from the local navigation frame to the sensor frame using:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

 imuSensor

3-429

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of accelparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of accelparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of accelparams, and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an accelparams property.
Elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of accelparams, SampleRate is a property of imuSensor, and h2
is a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

3 System Objects

3-430

where Temperature is a property of imuSensor, and TemperatureBias is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

accelReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of accelparams.

Gyroscope

The gyroscope model uses the ground-truth orientation, acceleration, and angular velocity inputs,
and the imuSensor and gyroparams properties to model accelerometer readings.

 imuSensor

3-431

Convert to Sensor Frame

The ground-truth angular velocity is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation angularVelocity T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth angular velocity in the sensor frame, a, passes through the bulk model, which adds
axes misalignment and bias:

3 System Objects

3-432

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of gyroparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of gyroparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of gyroparams and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an gyroparams property. The
elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of gyroparams, SampleRate is a property of imuSensor, and h2 is
a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

 imuSensor

3-433

where Temperature is a property of imuSensor, and TemperatureBias is a property of gyroparams.
The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
gyroparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

gyroReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of gyroparams.

Magnetometer

The magnetometer model uses the ground-truth orientation and acceleration inputs, and the
imuSensor and magparams properties to model magnetometer readings.

3 System Objects

3-434

Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

 imuSensor

3-435

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of magparams, and α1, α2, and α3 are given by the first, second, and
third elements of the AxesMisalignment property of magparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of magparams and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an magparams property. The
elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of magparams, SampleRate is a property of imuSensor, and h2 is a
filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

3 System Objects

3-436

where Temperature is a property of imuSensor, and TemperatureBias is a property of magparams.
The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
magparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

magReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of magparams.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Classes
accelparams | gyroparams | magparams

System Objects
gpsSensor | insSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2018b

 imuSensor

3-437

loadparams
Load sensor parameters from JSON file

Syntax
loadparams(sensor,file,PN)

Description
loadparams(sensor,file,PN) configures the imuSensor object, sensor, to match the
parameters in the PN part of a JSON file, File.

Examples

Load Pre-defined Parameters in imuSensor

Create an imuSensor system object.

s = imuSensor;

Load a JSON file.

fn = fullfile(matlabroot,'toolbox','shared',...
 'positioning','positioningdata','generic.json');

Here is a screen shot of the JSON file with some parts collapsed.

3 System Objects

3-438

Configure the object as a 6-axis sensor.

loadparams(s,fn,'GenericLowCost6Axis')
s

s =
 imuSensor with properties:

 IMUType: 'accel-gyro'
 SampleRate: 100
 Temperature: 25
 Accelerometer: [1×1 accelparams]
 Gyroscope: [1×1 gyroparams]
 RandomStream: 'Global stream'

Configure the object as a 9-axis sensor.

loadparams(s,fn,'GenericLowCost9Axis')
s

s =
 imuSensor with properties:

 IMUType: 'accel-gyro-mag'
 SampleRate: 100
 Temperature: 25
 MagneticField: [27.5550 -2.4169 -16.0849]
 Accelerometer: [1×1 accelparams]
 Gyroscope: [1×1 gyroparams]
 Magnetometer: [1×1 magparams]
 RandomStream: 'Global stream'

Input Arguments
sensor — IMU sensor
imuSensor object

IMU sensor, specified as an imuSensor system object.

file — JSON file
.json file

JavaScript Object Notation (JSON) format file, specified as a .json file.

PN — Part name
string

Part name in a JSON file, specified as a string.

See Also
imuSensor

 loadparams

3-439

Introduced in R2020a

3 System Objects

3-440

trackBranchHistory

Track-oriented MHT branching and branch history

Description
The trackBranchHistory System object is a track-oriented, multi-hypothesis tracking (MHT)
branch history manager. The object maintains a history of track branches (hypotheses) that are based
on the results of an assignment algorithm, such as the algorithm used by the assignTOMHT function.
Given the most recent scan of a set of sensors, the assignment algorithm results include:

• The assignments of sensor detections to specific track branches
• The unassigned track branches
• The unassigned detections

The trackBranchHistory object creates, updates, and deletes track branches as needed and
maintains the track branch history for a specified number of scans. Each track and branch stored in
the object has a unique ID. To view a table of track branches for the current history, use the
getHistory function. To compute branch clusters and incompatible branches, specify the track
branch history as an input to the clusterTrackBranches function.

To create a branch history manager and update the branch history:

1 Create the trackBranchHistory object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
branchHistoryMgr = trackBranchHistory
branchHistoryMgr = trackBranchHistory(Name,Value)

Description

branchHistoryMgr = trackBranchHistory creates a trackBranchHistory System object,
branchHistoryMgr, with default property values.

branchHistoryMgr = trackBranchHistory(Name,Value) sets properties for the
trackBranchHistory object by using one or more name-value pairs. For example,
branchHistoryMgr =
trackBranchHistory('MaxNumTracks',250,'MaxNumTrackBranches',5) creates a
trackBranchHistory object that can maintain a maximum of 250 tracks and 5 track branches per
track. Enclose property names in quotes. Specified property values can be any numeric data type, but
they must all be of the same data type.

 trackBranchHistory

3-441

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

MaxNumSensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors, specified as a positive integer.

MaxNumHistoryScans — Maximum number of scans maintained in branch history
4 (default) | positive integer

Maximum number of scans maintained in the branch history, specified as a positive integer. Typical
values are from 2 to 6. Higher values increase the computational load.

MaxNumTracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the branch history manager can maintain, specified as a positive
integer.

MaxNumTrackBranches — Maximum number of branches per track
3 (default) | positive integer

Maximum number of branches per track that the branch history manager can maintain, specified as a
positive integer.

Usage

Syntax
history = branchHistoryMgr(assignments,unassignedTracks,unassignedDetections,
originatingSensor)

Description

history = branchHistoryMgr(assignments,unassignedTracks,unassignedDetections,
originatingSensor) returns the branch history based on the results of an assignment algorithm.
Specify the assignments of detections to branches, the lists of unassigned tracks and unassigned
detections, and the IDs of the sensors from which the detections originated. The inputs can be of any
numeric data type.

The assignTOMHT function returns assignment results as uint32 values, but the inputs to
branchHistoryMgr can be of any numeric data type.

3 System Objects

3-442

Input Arguments

assignments — Assignment of track branches to detections
P-by-2 matrix of integers

Assignment of track branches to detections, specified as a P-by-2 matrix of integers, where P is the
number of assignments. The first column lists the track branch indices. The second column lists the
detection indices. The same branch can be assigned to multiple detections. The same detection can
be assigned to multiple branches.

For example, if assignments = [1 1; 1 2; 2 1; 2 2], the rows of assignments specify these
assignments:

• [1 1] — Branch 1 was assigned to detection 1.
• [1 2] — Branch 1 was assigned to detection 2.
• [2 1] — Branch 2 was assigned to detection 1.
• [2 2] — Branch 2 was assigned to detection 2.

unassignedTracks — Indices of unassigned track branches
Q-by-1 vector of integers

Indices of unassigned track branches, specified as a Q-by-1 vector of integers, where Q is the number
of unassigned track branches. Each element of unassignedTracks must correspond to the indices
of a track branch currently stored in the trackBranchHistory System object.

unassignedDetections — Indices of unassigned detections
R-by-1 vector of integers

Indices of unassigned detections, specified as an R-by-1 vector of integers, where R is the number of
unassigned detections. Each unassigned detection results in a new track branch.

originatingSensor — Indices of sensors from which each detection originated
1-by-L vector of integers

Indices of sensors from which each detection originated, specified as a 1-by-L vector of integers,
where L is the number of detections. The ith element of originatingSensor corresponds to the
SensorIndex property value of objectDetection object i.

Output Arguments

history — Branch history
matrix of integers

Branch history, returned as a matrix of integers.

Each row of history represents a unique track branch. history has 3+(D×S) columns, where D is
the number of maintained scans (the history depth) and S is the maximum number of maintained
sensors. The first three columns represent the following information about each track branch:

• TrackID — ID of the track that is associated with the branch. Track branches that are assumed to
have originated from the same target have the same track ID. If a branch originates from an
unassigned detection, that branch gets a new track ID.

• ParentID — ID of the parent branch, that is, the branch from which the current branch
originated. Branches that were created from the same parent have the same ParentID. A

 trackBranchHistory

3-443

ParentID of 0 indicates a new track. These tracks are created from hypotheses corresponding to
unassigned detections.

• BranchID — Unique ID of track branch. Every branch created from an unassigned detection or
assignment gets a new branch ID.

The remaining D×S columns contain the IDs of the detections assigned to each branch. A branch can
be assigned to at most one detection per scan and per sensor. The table shows the organization of
these columns with sample detections. N is the number of scans. A value of 0 means that the sensor
at that scan does not have a detection assigned to it.

Scan N Scan N – 1 . . . Scan N – D
Senso
r – 1

Senso
r – 2

. . . Senso
r – S

Senso
r – 1

Senso
r – 2

. . . Senso
r – S

. . . Senso
r – 1

Senso
r – 2

. . . Senso
r – S

1 0 ... 0 1 2 ... 0 ... 0 0 ... 0

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to trackBranchHistory
getHistory Get branch history of maintained tracks

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Branch Tracks Based on Assignment Results

Apply the results of an assignment algorithm to a track-oriented, multi-hypothesis tracking (MHT)
branch history manager. View the resulting track branches (hypotheses).

Create the MHT branch history manager, which is a trackBranchHistory System object™. Set the
object to maintain a history of four sensors and two scans.

branchHistoryMgr = trackBranchHistory('MaxNumSensors',4,'MaxNumHistoryScans',2)

branchHistoryMgr =
 trackBranchHistory with properties:

 MaxNumSensors: 4
 MaxNumHistoryScans: 2
 MaxNumTracks: 200
 MaxNumTrackBranches: 3

3 System Objects

3-444

Update the branch history. Because the first update has no previous branches, the branch history
manager contains only unassigned detections.

emptyAssignment = zeros(0,2,'uint32');
emptyUnassignment = zeros(0,1,'uint32');
unassignedDetections = uint32([1;2;3]);
originatingSensor = [1 1 2];
history = branchHistoryMgr(emptyAssignment,emptyUnassignment, ...
 unassignedDetections,originatingSensor);

View the current branch history by using the getHistory function. Each detection is assigned to a
separate track.

getHistory(branchHistoryMgr)

ans=3×5 table
 TrackID ParentID BranchID Scan2 Scan1
 Sensor1 Sensor2 Sensor3 Sensor4 Sensor1 Sensor2 Sensor3 Sensor4
 _______ ________ ________ __ __

 1 0 1 1 0 0 0 0 0 0 0
 2 0 2 2 0 0 0 0 0 0 0
 3 0 3 0 3 0 0 0 0 0 0

Specify multiple branch assignments and multiple unassigned track branches and detections.

• Assign branch 1 to detections 1 and 2.
• Assign branch 2 to detections 1 and 2.
• Consider track branches 1 and 3 unassigned.
• Consider detections 1, 2, and 3 unassigned.

assignments = uint32([1 1; 1 2; 2 1; 2 2]);
unassignedTracks = uint32([1;3]);
unassignedDetections = uint32([1;2;3]);

Update the branch history manager with the assignments and unassigned tracks and detections.

history = branchHistoryMgr(assignments,unassignedTracks, ...
 unassignedDetections,originatingSensor);

View the updated branch history.

getHistory(branchHistoryMgr)

ans=9×5 table
 TrackID ParentID BranchID Scan2 Scan1
 Sensor1 Sensor2 Sensor3 Sensor4 Sensor1 Sensor2 Sensor3 Sensor4
 _______ ________ ________ __ __

 1 1 1 0 0 0 0 1 0 0 0
 3 3 3 0 0 0 0 0 3 0 0
 4 0 4 1 0 0 0 0 0 0 0
 5 0 5 2 0 0 0 0 0 0 0
 6 0 6 0 3 0 0 0 0 0 0
 1 1 7 1 0 0 0 1 0 0 0
 1 1 8 2 0 0 0 1 0 0 0

 trackBranchHistory

3-445

 2 2 9 1 0 0 0 2 0 0 0
 2 2 10 2 0 0 0 2 0 0 0

Inspect the branch history.

• The most recent scan is Scan 2. The previous scan is Scan 1, which was Scan 2 in the previous
assignment update. The history has shifted one scan to the right.

• Branches 1 and 3 are the branches for the unassigned tracks.
• Branch 2 is no longer in the history because it was not considered to be unassigned. Its

assignment to detections 1 and 2 created branches 9 and 10.
• Branches 4–6 are branches created for the unassigned detections.
• Branches 7–10 are branches created for the track assignments.

References
[1] Werthmann, John R. "A Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In Proceedings of SPIE Vol. 1698, Signal and Processing of Small
Targets. 1992, pp. 288–300. doi: 10.1117/12.139379.

See Also
Functions
assignTOMHT | clusterTrackBranches

System Objects
trackerTOMHT

Introduced in R2018b

3 System Objects

3-446

getHistory
Get branch history of maintained tracks

Syntax
history = getHistory(branchHistoryMgr)
history = getHistory(branchHistoryMgr,format)

Description
history = getHistory(branchHistoryMgr) returns a table containing the track branch history
maintained by the input trackBranchHistory System object, branchHistoryMgr.

history = getHistory(branchHistoryMgr,format) returns the branch history in the specified
format: 'table' or 'matrix'.

Examples

Branch Tracks Based on Assignment Results

Apply the results of an assignment algorithm to a track-oriented, multi-hypothesis tracking (MHT)
branch history manager. View the resulting track branches (hypotheses).

Create the MHT branch history manager, which is a trackBranchHistory System object™. Set the
object to maintain a history of four sensors and two scans.

branchHistoryMgr = trackBranchHistory('MaxNumSensors',4,'MaxNumHistoryScans',2)

branchHistoryMgr =
 trackBranchHistory with properties:

 MaxNumSensors: 4
 MaxNumHistoryScans: 2
 MaxNumTracks: 200
 MaxNumTrackBranches: 3

Update the branch history. Because the first update has no previous branches, the branch history
manager contains only unassigned detections.

emptyAssignment = zeros(0,2,'uint32');
emptyUnassignment = zeros(0,1,'uint32');
unassignedDetections = uint32([1;2;3]);
originatingSensor = [1 1 2];
history = branchHistoryMgr(emptyAssignment,emptyUnassignment, ...
 unassignedDetections,originatingSensor);

View the current branch history by using the getHistory function. Each detection is assigned to a
separate track.

getHistory(branchHistoryMgr)

 getHistory

3-447

ans=3×5 table
 TrackID ParentID BranchID Scan2 Scan1
 Sensor1 Sensor2 Sensor3 Sensor4 Sensor1 Sensor2 Sensor3 Sensor4
 _______ ________ ________ __ __

 1 0 1 1 0 0 0 0 0 0 0
 2 0 2 2 0 0 0 0 0 0 0
 3 0 3 0 3 0 0 0 0 0 0

Specify multiple branch assignments and multiple unassigned track branches and detections.

• Assign branch 1 to detections 1 and 2.
• Assign branch 2 to detections 1 and 2.
• Consider track branches 1 and 3 unassigned.
• Consider detections 1, 2, and 3 unassigned.

assignments = uint32([1 1; 1 2; 2 1; 2 2]);
unassignedTracks = uint32([1;3]);
unassignedDetections = uint32([1;2;3]);

Update the branch history manager with the assignments and unassigned tracks and detections.

history = branchHistoryMgr(assignments,unassignedTracks, ...
 unassignedDetections,originatingSensor);

View the updated branch history.

getHistory(branchHistoryMgr)

ans=9×5 table
 TrackID ParentID BranchID Scan2 Scan1
 Sensor1 Sensor2 Sensor3 Sensor4 Sensor1 Sensor2 Sensor3 Sensor4
 _______ ________ ________ __ __

 1 1 1 0 0 0 0 1 0 0 0
 3 3 3 0 0 0 0 0 3 0 0
 4 0 4 1 0 0 0 0 0 0 0
 5 0 5 2 0 0 0 0 0 0 0
 6 0 6 0 3 0 0 0 0 0 0
 1 1 7 1 0 0 0 1 0 0 0
 1 1 8 2 0 0 0 1 0 0 0
 2 2 9 1 0 0 0 2 0 0 0
 2 2 10 2 0 0 0 2 0 0 0

Inspect the branch history.

• The most recent scan is Scan 2. The previous scan is Scan 1, which was Scan 2 in the previous
assignment update. The history has shifted one scan to the right.

• Branches 1 and 3 are the branches for the unassigned tracks.
• Branch 2 is no longer in the history because it was not considered to be unassigned. Its

assignment to detections 1 and 2 created branches 9 and 10.
• Branches 4–6 are branches created for the unassigned detections.
• Branches 7–10 are branches created for the track assignments.

3 System Objects

3-448

Input Arguments
branchHistoryMgr — Input branch history manager
trackBranchHistory System object

Input branch history manager, specified as a trackBranchHistory System object.

format — Format of output branch history
'table' (default) | 'matrix'

Format of the output branch history, specified as one of the following:

• 'table' (default) — Return branch history in a table.
• 'matrix' — Return branch history in a matrix. This output is equivalent to the output returned

when calling the trackBranchHistory System object.

Output Arguments
history — Branch history
table of integers | matrix of integers

Branch history, returned as a table of integers or as a matrix of integers.

Each row of history represents a unique track branch. history has 3+(D×S) columns, where D is
the number of maintained scans (the history depth) and S is the maximum number of maintained
sensors. The first three columns represent the following information about each track branch:

• TrackID — ID of the track that is associated with the branch. Track branches that are assumed to
have originated from the same target have the same track ID. If a branch originates from an
unassigned detection, that branch gets a new track ID.

• ParentID — ID of the parent branch, that is, the branch from which the current branch
originated. Branches that were created from the same parent have the same ParentID. A
ParentID of 0 indicates a new track. These tracks are created from hypotheses corresponding to
unassigned detections.

• BranchID — Unique ID of track branch. Every branch created from an unassigned detection or
assignment gets a new branch ID.

The remaining D×S columns contain the IDs of the detections assigned to each branch. A branch can
be assigned to at most one detection per scan and per sensor. The table shows the organization of
these columns with sample detections. N is the number of scans. A value of 0 means that the sensor
at that scan does not have a detection assigned to it.

Scan N Scan N – 1 . . . Scan N – D
Senso
r – 1

Senso
r – 2

. . . Senso
r – S

Senso
r – 1

Senso
r – 2

. . . Senso
r – S

. . . Senso
r – 1

Senso
r – 2

. . . Senso
r – S

1 0 ... 0 1 2 ... 0 ... 0 0 ... 0

See Also
trackBranchHistory

 getHistory

3-449

Introduced in R2018b

3 System Objects

3-450

staticDetectionFuser
Static fusion of synchronous sensor detections

Description
staticDetectionFuser System object creates a static detection fuser object to fuse angle-only
sensor detections.

To obtain the fuser:

1 Create the staticDetectionFuser object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
fuser = staticDetectionFuser()
fuser = staticDetectionFuser(Name,Value)

Description

fuser = staticDetectionFuser() creates a default three-sensor static detection fuser object to
fuse angle-only sensor detections.

fuser = staticDetectionFuser(Name,Value) sets properties using one or more name-value
pairs. For example, fuser =
staticDetectionFuser('FalseAlarmRate',1e-6,'MaxNumSensors',12) creates a fuser that
has a maximum of 12 sensors and a false alarm rate of 1e-6. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

FuserSensorIndex — Sensor index of composite detections
1 (default) | positive integer

Sensor index of the composite detections reported by the fuser, specified as a positive integer. This
index becomes the SensorIndex of objectDetection objects returned by the fuser.

 staticDetectionFuser

3-451

Example: 5
Data Types: double

MeasurementFusionFcn — Function for fusing multiple sensor detections
'triangulateLOS' (default) | char | string | function handle

Function for fusing multiple sensor detections, specified as a character vector, string, or function
handle. The function fuses multiple detections into one and returns the fused measurement and
measurement noise. Any fusing function combines at most one detection from each sensor. The syntax
of the measurement fuser function is:

[fusedMeasurement,fusedMeasurementNoise] = MeasurementFusionFcn(detections)

where the input and output functions arguments are

• detections – cell array of objectDetection measurements.
• fusedMeasurement – an N-by-1 vector of fused measurements.
• fusedMeasurementNoise – an N-by-N matrix of fused measurements noise.

The value of N depends on the MeasurementFormat property.

MeasurementFormat Property N
'Position' 1, 2, and 3
'Velocity 1, 2, and 3
'PositionAndVelocity 2, 4, and 6
'Custom' Any

Data Types: char | string | function_handle

MeasurementFormat — Format of the fused measurement
'Position' (default) | 'Velocity' | 'PositionAndVelocity' | 'Custom'

Format of the fused measurement, specified as 'Position', 'Velocity',
'PositionAndVelocity', or 'Custom'. The formats are

• 'Position' – the fused measurement is the position of the target in the global coordinate frame.
• 'Velocity' – the fused measurement is the velocity of the target in the global coordinate frame.
• 'PositionAndVelocity' – the fused measurement is the position and velocity of the target in

the global coordinate frame defined according to the format [x;vx;y;vy;z;vz].
• 'Custom' – custom fused measurement. To enable this format, specify a function using the

MeasurementFcn.

Example: 'PositionAndVelocity'

MeasurementFcn — Custom measurement function
char | string | function handle

Custom measurement function, specified as a character vector, string, or function handle. Specify the
function that transforms fused measurements into sensor measurements. The function must have the
following signature:

sensorMeas = MeasurementFcn(fusedMeas,measParameters)

3 System Objects

3-452

Dependencies

To enable this property, set the MeasurementFormat property to 'Custom'.
Data Types: char | string | function_handle

MaxNumSensors — Maximum number of sensors in surveillance region
3 (default) | positive integer greater than one

Maximum number of sensors in surveillance region, specified as a positive integer greater than one.
Data Types: double

Volume — Volume of sensor detection bin
1e-2 (default) | positive scalar | N-length vector of positive scalars

Volume of sensors detection bins, specified as a positive scalar or N-length vector of positive scalars.
N is the number of sensors. If specified as a scalar, each sensor is assigned the same volume. If a
sensor produces an angle-only measurement, for example, azimuth and elevation, the volume is
defined as the solid angle subtended by one bin.
Data Types: double

DetectionProbability — Probabilities of a target detection
0.9 (default) | positive scalar | N-length vector of positive scalars

Probability of detection of a target by each sensor, specified as a scalar or N-length vector of positive
scalars in the range (0,1). N is the number of sensors. If specified as a scalar, each sensor is assigned
the same detection probability. The probability of detection is used in calculating the cost of fusing a
"one" (target was detected) or "zero" (target was not detected) detections from each sensor.
Example: 0.99
Data Types: double

FalseAlarmRate — Rate of false positives generated by sensors
1e-6 (default) | positive scalar | N-length vector of positive scalars

Rate at which false positives are reported by sensor in each bin, specified as a scalar or N-length
vector of positive scalars. N is the number of sensors. If specified as a scalar, each sensor is assigned
the same false alarm rate. The false alarm rate is used to calculate the likelihood of clutter in the
detections reported by each sensor.
Example: 1e-5
Data Types: double

UseParallel — Option to use parallel computing resources
false (default) | true

Option to use parallel computing resources, specified as false or true. The
staticDetectionFuser calculates the cost of fusing detections from each sensor as an n-D
assignment problem. The fuser spends most of the time in computing the cost matrix for the
assignment problem. If Parallel Computing Toolbox is installed, this option lets the fuser use the
parallel pool of workers to compute the cost matrix.
Data Types: logical

 staticDetectionFuser

3-453

TimeTolerance — Absolute tolerance between timestamps of detections
1e-6 (default) | nonnegative scalar

Absolute tolerance between timestamps of detections, specified as a nonnegative scalar. The
staticDetectionFuser assumes that sensors are synchronous. This property defines the allowed
tolerance value between detection time-stamps to still be considered synchronous.
Example: 1e-3
Data Types: double

Usage

Syntax
compositeDets = fuser(dets)
[compositeDets,analysisInfo] = fuser(dets)

Description

compositeDets = fuser(dets) returns the fused detections, compositeDets, of input
detections, dets.

[compositeDets,analysisInfo] = fuser(dets) also returns analysis information,
analysisInfo.

Input Arguments

dets — Pre-fused detections
cell array of objectDetection objects

Pre-fused detections, specified as a cell array of objectDetection objects.

Output Arguments

compositeDets — Fused detections
cell array of objectDetection objects

Pre-fused detections, returned as a cell array of objectDetection objects.

analysisInfo — Analysis information
structure

Analysis information, returned as a structure. The fields of the structure are:

• CostMatrix – N-dimensional cost matrix providing the cost of association of detections, where N
is the number of sensors. The cost is the negative log-likelihood of the association and can be
interpreted as the negative score of the track that will be generated by the fused measurement.

• Assignments – A P-by-N list of assignments, where P is the number of composite detections.
• FalseAlarms – A Q-by-1 list of indices of detections declared as false alarms by association.

Data Types: struct

3 System Objects

3-454

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isLocked Determine if System object is in use
clone Create duplicate System object

Examples

Fuse Detections from ESM Sensors

Fuse angle-only detections from three ESM sensors.

Load stored detections from the sensors.

load('angleOnlyDetectionFusion.mat','detections');

Visualize angle-only detections for plotting the direction vector.

rPlot = 5000;
plotData = zeros(3,numel(detections)*3);
for i = 1:numel(detections)
 az = detections{i}.Measurement(1);
 el = detections{i}.Measurement(2);
 [xt,yt,zt] = sph2cart(deg2rad(az),deg2rad(el),rPlot);
 % The sensor is co-located at platform center, therefore use
 % the position from the second measurement parameter
 originPos = detections{i}.MeasurementParameters(2).OriginPosition;
 positionData(:,i) = originPos(:);
 plotData(:,3*i-2) = [xt;yt;zt] + originPos(:);
 plotData(:,3*i-1) = originPos(:);
 plotData(:,3*i) = [NaN;NaN;NaN];
end
plot3(plotData(1,:),plotData(2,:),plotData(3,:),'r-')
hold on
plot3(positionData(1,:),positionData(2,:),positionData(3,:),'o','MarkerSize',12,'MarkerFaceColor','g')

 staticDetectionFuser

3-455

Create a staticDetectionFuser to fuse angle-only detections using the measurement fusion
function triangulateLOS.

fuser = staticDetectionFuser('MeasurementFusionFcn','triangulateLOS','MaxNumSensors',3)

fuser =
 staticDetectionFuser with properties:

 FusedSensorIndex: 1
 MeasurementFusionFcn: 'triangulateLOS'
 MeasurementFormat: 'Position'

 MaxNumSensors: 3
 Volume: [3x1 double]
 DetectionProbability: [3x1 double]
 FalseAlarmRate: [3x1 double]

 TimeTolerance: 1.0000e-06
 UseParallel: false

Create the fused detections and obtain the analysis information.

[fusedDetections, analysisInfo] = fuser(detections);
fusedPositions = zeros(3,numel(fusedDetections));
for i = 1:numel(fusedDetections)
 fusedPositions(:,i) = fusedDetections{i}.Measurement;
end

3 System Objects

3-456

plot3(fusedPositions(1,:),fusedPositions(2,:),fusedPositions(3,:),'ko', ...
 'MarkerSize',12, 'MarkerFaceColor','k')
legend('Angle-only Detections','Sensor Positions','Fused Target Measurements')
title('Angle-only Detection Fusion')
xlabel('x [m]')
ylabel('y [m]')
view(2)

Use the analysisInfo output to check the assignments.

analysisInfo.Assignments

ans = 6x3 uint32 matrix

 0 10 14
 1 6 11
 2 7 12
 3 8 13
 4 9 0
 5 0 15

Algorithms
Detection Fusion Workflow

The static detection fuser:

 staticDetectionFuser

3-457

• Calculates the cost of fusing or matching detections from each sensor to one another.
• Solves a 2-D or S-D assignment problem, where S is the number of sensors, to associate or match

detections from one sensor to others.
• Fuses the measurement and measurement covariance of the associated detection n-tuples to

generate a list of composite or fused detections.
• Declares unassigned detections from each sensor as false alarms.

The staticDetectionFuser assumes that all sensors are synchronous and generate detections
simultaneously. The staticDetectionFuser also assumes that the sensors share a common
surveillance region. Associating n detections from m sensors indicates m - n missed detections or
false alarms.

References
[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. Tracking and data fusion. Storrs, CT, USA::

YBS publishing, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
triangulateLOS

Objects
objectDetection

System Objects
irSensor | monostaticRadarSensor | radarSensor | sonarSensor

Introduced in R2018b

3 System Objects

3-458

timescope
Display time-domain signals

Description
The timescope object displays signals in the time domain.

Scope features:

• “Data Cursors” — Measure signal values using vertical and horizontal cursors.
• “Signal Statistics” — Display the maximum, minimum, peak-to-peak difference, mean, median, and

RMS values of a selected signal.
• “Peak Finder” — Find maxima, showing the x-axis values at which they occur.

Use “Object Functions” on page 3-466 to show, hide, and determine visibility of the scope window.

 timescope

3-459

Creation

Syntax
scope = timescope
scope = timescope(Name,Value)

Description

scope = timescope returns a timescope object, scope. This object displays real- and complex-
valued floating and fixed-point signals in the time domain.

scope = timescope(Name,Value) returns a timescope object with properties set to the
specified value. Specify properties and their values in quotes, separated by commas. You can specify
name-value pair arguments in any order.

Properties
Most properties can be changed from the timescope UI.

Frequently Used

SampleRate — Sample rate of inputs
1 (default) | finite numeric scalar

Sampling rate of the input signal, in hertz, specified as a finite numeric scalar.

The inverse of the sample rate determines the x-axis (time axis) spacing between points in the
displayed signal. When the value of NumInputPorts is greater than 1, the object uses the same
sample rate for all inputs.

You can set this property only when creating the object.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Sample Rate.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanSource — Source of time span
'auto' (default) | 'property'

Source of the time span for frame-based input signals, specified as one of the following:

• 'property' – The object derives the x-axis limits from the TimeDisplayOffset and TimeSpan
properties.

• 'auto' – The x-axis limits are derived from the TimeDisplayOffset property, SampleRate
property, and the number of rows in each input signal (FrameSize in the equations below). The
limits are calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + max(1/SampleRate.*FrameSize)

3 System Objects

3-460

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Time Span.
Data Types: char | string

TimeSpan — Time span
10 (default) | positive scalar

Time span, in seconds, specified as a positive, numeric scalar value. The time-axis limits are
calculated as:

• Minimum time-axis limit = TimeDisplayOffset
• Maximum time-axis limit = TimeDisplayOffset + TimeSpan

Dependencies

To enable this property, set TimeSpanSource to 'property'.

UI Use

On the Scope tab, click Settings. Under Data and Axes, edit Time Span.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeSpanOverrunAction — Data overrun behavior
'scroll' (default) | 'wrap'

Specify how the scope displays new data beyond the visible time span as either:

• 'scroll' — In this mode, the scope scrolls old data to the left to make room for new data on the
right of the scope display. This mode is beneficial for debugging and monitoring time-varying
signals.

• 'wrap' — In this mode, the scope adds data to the left of the plot after overrunning the right of
the plot.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Overrun Action.
Data Types: char | string

PlotType — Type of plot
'line' (default) | 'stairs'

Type of plot, specified as either:

• 'line' — Line graph, similar to the line or plot function.
• 'stairs' — Stair-step graph, similar to the stairs function. Stair-step graphs are useful for

drawing time history graphs of digitally sampled data.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Plot Type.
Data Types: char | string

 timescope

3-461

AxesScaling — Axes scaling mode
'onceatstop' (default) | 'auto' | 'manual' | 'updates'

When this property is set to:

• 'onceatstop' –– The limits are updated once at the end of the simulation (when release is
called).

• 'auto' –– The scope attempts to always keep the data in the display while minimizing the number
of updates to the axes limits.

• 'manual' –– The scope takes no action unless specified by the user.
• 'updates' –– The scope scales the axes once and only once after 100 updates to the

visualization.

You can set this property only when creating the object.

Tunable: Yes
Data Types: char | string

Advanced

LayoutDimensions — Display layout grid dimensions
[1,1] (default) | [numberOfRows, numberOfColumns]

Specify the layout grid dimensions as a two-element vector: [numberOfRows,numberOfColumns].
The grid can have a maximum of 4 rows and 4 columns.
Example: scope.LayoutDimensions = [2,4]

UI Use

On the Scope tab, click Display Grid () and select a specific number of rows and columns from
the grid.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeUnits — Units of x-axis
'seconds' (default) | 'none'

Specify the units used to describe the x-axis (time axis). You can select one of the following options:

• 'seconds' — In this mode, the scope always displays the units on the x-axis as seconds. The
scope shows the word Time(s) on the x-axis.

• 'none' — In this mode, the scope does not display any units on the x-axis. The scope only shows
the word Time on the x-axis.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Time Units.
Data Types: char | string

TimeDisplayOffset — Offset x-axis limits
0 (default) | scalar

3 System Objects

3-462

Specify, in seconds, how far to move the data on the x-axis. The signal value does not change, only the
limits displayed on the x-axis change.

If you specify this property as a scalar, then that value is the time display offset for all channels.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Time Offset.

TimeAxisLabels — Time-axis labels
'all' (default) | 'bottom | 'none'

Time-axis labels, specified as:

• 'all' — Time-axis labels appear in all displays.
• 'bottom — Time-axis labels appear in the bottom display of each column.
• 'none' — No labels appear in any display.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Time Labels.
Data Types: char | string

MaximizeAxes — Maximize axes control
'auto' (default) | 'on' | 'off'

Specify whether to display the scope in the maximized-axes mode. In this mode, the axes are
expanded to fit into the entire display. To conserve space, labels do not appear in each display.
Instead, the tick-marks and their values appear on top of the plotted data. You can select one of the
following options:

• 'auto' — The axes appear maximized in all displays only if the Title and YLabel properties are
empty for every display. If you enter any value in any display for either of these properties, the
axes are not maximized.

• 'on' — The axes appear maximized in all displays. Any values entered into the Title and
YLabel properties are hidden.

• 'off' — None of the axes appear maximized.

UI Use

On the scope window, click on to maximize axes, hiding all labels and insetting the axes values.
Data Types: char | string

BufferLength — Buffer length
50000 (default) | positive integer

Specify the length of the buffer used for each input signal as a positive integer.

You can set this property only when creating the object.

UI Use

On the Scope tab, click Settings. Under Data and Axes, set Buffer Length.

 timescope

3-463

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Visualization

Name — Window name
'Time Scope' (default) | character vector | string scalar

Specify the name of the scope as a character vector or string scalar. This name appears as the title of
the scope's figure window. To specify a title of a scope plot, use the Title property.
Data Types: char | string

Position — Window position
screen center (default) | [left bottom width height]

Scope window position in pixels, specified by the size and location of the scope window as a four-
element vector of the form [left bottom width height]. You can place the scope window in a
specific position on your screen by modifying the values of this property.

By default, the window appears in the center of your screen with a width of 410 pixels and height of
300 pixels. The exact values of the position depend on your screen resolution.

ChannelNames — Channel names
empty cell array (default) | cell array of character vectors

Specify the input channel names as a cell array of character vectors. The channel names appear in
the legend, and on the Measurements tab under Select Channel. If you do not specify names, the
channels are labeled as Channel 1, Channel 2, etc.

Dependency

To enable this property, set ShowLegend to true.
Data Types: char

ActiveDisplay — Active display for setting properties
1 (default) | integer

Active display used to set properties, specified by the integer display number. The number of a
display corresponds to the display's row-wise placement index. Setting this property controls which
display is used for the following properties: YLimits, YLabel, ShowLegend, ShowGrid, Title, and
PlotAsMagnitudePhase.

UI Use

On the Scope tab, click Settings. Under Display and Labels, set Active Display.

Title — Display title
'' (default) | character vector | string scalar

Specify the display title as a character vector or a string scalar.

Dependency

When you set this property, ActiveDisplay controls the display that is updated.

3 System Objects

3-464

UI Use

On the Scope tab, click Settings. Under Display and Labels, set Title.
Data Types: char | string

YLabel — y-axis label
'Amplitude' (default) | character vector | string scalar

Specify the text for the scope to display to the left of the y-axis.

Dependencies

This property applies only when PlotAsMagnitudePhase is false. When
PlotAsMagnitudePhase is true, the two y-axis labels are read-only values "Magnitude" and
"Phase", for the magnitude plot and the phase plot, respectively.

When you set this property, ActiveDisplay controls the display that is updated.

UI Use

On the Scope tab, click Settings. Under Display and Labels, set YLabel.
Data Types: char | string

YLimits — y-axis limits
[-10,10] (default) | [ymin, ymax]

Specify the y-axis limits as a two-element numeric vector, [ymin, ymax].

• If PlotAsMagnitudePhase is false, the default is [-10,10].
• If PlotAsMagnitudePhase is true, the default is [0,10]. This property specifies the y-axis

limits of only the magnitude plot. The y-axis limits of the phase plot are always [-180,180]

Dependency

When you set this property, ActiveDisplay controls the display that is updated.

UI Use

On the Scope tab, click Settings. Under Display and Labels, set Y-Axis Limits.

ShowLegend — Show legend
false (default) | true

To show a legend with the input names, set this property to true.

From the legend, you can control which signals are visible. In the scope legend, click a signal name to
hide the signal in the scope. To show the signal, click the signal name again.

UI Use

On the Scope tab, click Settings. Under Display and Labels, select Show Legend.
Data Types: logical

ShowGrid — Grid visibility
false (default) | true

 timescope

3-465

Set this property to true to show grid lines on the plot.

UI Use

On the Scope tab, click Settings. Under Display and Labels, select Show Grid.

PlotAsMagnitudePhase — Plot signal as magnitude and phase
false (default) | true

Plot signal as magnitude and phased, specified as either:

• true – The scope plots the magnitude and phase of the input signal on two separate axes within
the same active display.

• false – The scope plots the real and imaginary parts of the input signal on two separate axes
within the same active display.

This property is useful for complex-valued input signals. Turning on this property affects the phase
for real-valued input signals. When the amplitude of the input signal is nonnegative, the phase is 0
degrees. When the amplitude of the input signal is negative, the phase is 180 degrees.

UI Use

On the Scope tab, click Settings. Under Display and Labels, select Magnitude Phase Plot.

Object Functions
To use an object function, specify the object as the first input argument.
hide Hide scope window
show Display scope window
isVisible Determine visibility of scope
generateScript Generate MATLAB script to create scope with current settings
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

View Sine Wave on Time Scope

Create a time-domain sinusoidal signal. Display the signal by calling the time scope object.

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope('SampleRate', 8e3,...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1);
scope(xin)

3 System Objects

3-466

Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

See Also
Functions
generateScript | hide | isVisible | show

Topics
“Configure Time Scope MATLAB Object”

Introduced in R2020a

 timescope

3-467

generateScript
Generate MATLAB script to create scope with current settings

Syntax
generateScript(scope)

Description
generateScript(scope) generates a MATLAB script that can re-create a timescope object with
the current settings in the scope.

Examples
Generate Script from timescope

Generate MATLAB script after making changes to the timescope object in the scope window.

Note The script only generates commands for settings that are available from the command line,
applicable to the current visualization, and changed from the default value.

1 Create a timescope object.

scope = timescope;
show(scope)

2 Set options in the Time Scope. For this example, on the Scope tab, click Settings. Under
Display and Labels, select Show Legend and Magnitude Phase Plot. Set the Title as well.

3 System Objects

3-468

3 Generate a script to recreate the timescope with the same modified settings. Either select
Generate Script from the Scope tab, or enter:

generateScript(scope);

A new editor window opens with code to regenerate the same scope.
% Creation Code for 'timescope'.
% Generated by Time Scope on 8-Nov-2019 13:51:54 -0500.

timeScope = timescope('Position',[2286 355 800 500], ...
 'Title','My Time Scope', ...
 'ShowLegend',true, ...
 'PlotAsMagnitudePhase',true);

Input Arguments
scope — object
timescope object

Object whose settings you want to recreate with a script.

See Also
Functions
hide | isVisible | show

 generateScript

3-469

Objects
timescope

Introduced in R2020a

3 System Objects

3-470

hide
Hide scope window

Syntax
hide(scope)

Description
hide(scope) hides the scope window.

Examples

View Sine Wave on Time Scope

Create a time-domain sinusoidal signal. Display the signal by calling the time scope object.

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope('SampleRate', 8e3,...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1);
scope(xin)

Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

Input Arguments
scope — Scope object
timescope object

 hide

3-471

Scope object whose window you want to hide, specified as a timescope object.
Example: myScope = timescope; hide(myScope)

See Also
Functions
generateScript | isVisible | show

Objects
timescope

Introduced in R2020a

3 System Objects

3-472

isVisible
Determine visibility of scope

Syntax
visibility = isVisible(scope)

Description
visibility = isVisible(scope) returns the visibility of the scope as logical, with 1 (true) for
visible.

Examples

View Sine Wave on Time Scope

Create a time-domain sinusoidal signal. Display the signal by calling the time scope object.

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope('SampleRate', 8e3,...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1);
scope(xin)

Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

 isVisible

3-473

Input Arguments
scope — Scope object
timescope object

Scope object whose visibility you want to query.
Example: myScope = timescope; visibility = isVisible(myScope)

Output Arguments
visibility — Scope visibility
1 | 0

If the scope window is open, the isVisible function returns 1 (true). Otherwise, the function
returns 0 (false).

See Also
Functions
generateScript | hide | show

Objects
timescope

Introduced in R2020a

3 System Objects

3-474

show
Display scope window

Syntax
show(scope)

Description
show(scope) shows the scope window.

Examples

View Sine Wave on Time Scope

Create a time-domain sinusoidal signal. Display the signal by calling the time scope object.

Create a sinusoidal signal with two tones, one at 0.3 kHz and the other at 3 kHz.

t = (0:1000)'/8e3;
xin = sin(2*pi*0.3e3*t)+sin(2*pi*3e3*t);

Create a timescope object and view the sinusoidal signal by calling the time scope object scope.

scope = timescope('SampleRate', 8e3,...
 'TimeSpanSource', 'property', ...
 'TimeSpan', 0.1);
scope(xin)

Run release to allow changes to property values and input characteristics. The scope automatically
scales the axes.

release(scope);

Hide the scope window.

if(isVisible(scope))
 hide(scope)
end

Show the scope window.

if(~isVisible(scope))
 show(scope)
end

Input Arguments
scope — Scope object
timescope object

 show

3-475

Scope object whose window you want to show, specified as a timescope object.
Example: myScope = timescope; show(myScope)

See Also
Functions
generateScript | hide | isVisible

Objects
timescope

Introduced in R2020a

3 System Objects

3-476

Blocks

4

AHRS
Orientation from accelerometer, gyroscope, and magnetometer readings
Library: Navigation Toolbox / Multisensor Positioning / Navigation

Filters
Sensor Fusion and Tracking Toolbox / Multisensor
Positioning / Navigation Filters

Description
The AHRS Simulink® block fuses accelerometer, magnetometer, and gyroscope sensor data to
estimate device orientation.

Ports
Input

Accel — Accelerometer readings in sensor body coordinate system (m/s2)
N-by-3 matrix of real scalar

Accelerometer readings in the sensor body coordinate system in m/s2, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of Accel represent the [x y z]
measurements, respectively.
Data Types: single | double

Gyro — Gyroscope readings in sensor body coordinate system (rad/s)
N-by-3 matrix of real scalar

Gyroscope readings in the sensor body coordinate system in rad/s, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of Gyro represent the [x y z]
measurements, respectively.
Data Types: single | double

Mag — Magnetometer readings in sensor body coordinate system (µT)
N-by-3 matrix of real scalar

Magnetometer readings in the sensor body coordinate system in µT, specified as an N-by-3 matrix of
real scalars. N is the number of samples, and the three columns of magReadings represent the [x y
z] measurements, respectively.
Data Types: single | double

Output

Orientation — Orientation of sensor body frame relative to navigation frame
M-by-4 array of scalar | 3-by-3-by-M-element rotation matrix

Orientation of the sensor body frame relative to the navigation frame, return as an M-by-4 array of
scalars or a 3-by-3-by-M array of rotation matrices. Each row the of the N-by-4 array is assumed to be

4 Blocks

4-2

the four elements of a quaternion. The number of input samples, N, and the Decimation Factor
parameter determine the output size M.
Data Types: single | double

Angular Velocity — Angular velocity in sensor body coordinate system (rad/s)
M-by-3 array of real scalar (default)

Angular velocity with gyroscope bias removed in the sensor body coordinate system in rad/s, returned
as an M-by-3 array of real scalars. The number of input samples, N, and the Decimation Factor
parameter determine the output size M.
Data Types: single | double

Parameters
Main

Reference frame — Navigation reference frame
NED (default) | ENU

Navigation reference frame, specified as NED (North-East-Down) or ENU (East-North-Up).

Decimation factor — Decimation factor
1 (default) | positive integer

Decimation factor by which to reduce the input sensor data rate, specified as a positive integer.

The number of rows of the inputs –– Accel, Gyro , and Mag –– must be a multiple of the decimation
factor.
Data Types: single | double

Initial process noise — Initial process noise
ahrsfilter.defaultProcessNoise (default) | 12-by-12 matrix of real scalar

Initial process noise, specified as a 12-by-12 matrix of real scalars. The default value,
ahrsfilter.defaultProcessNoise, is a 12-by-12 diagonal matrix as:

 Columns 1 through 6

 0.000006092348396 0 0 0 0 0
 0 0.000006092348396 0 0 0 0
 0 0 0.000006092348396 0 0 0
 0 0 0 0.000076154354947 0 0
 0 0 0 0 0.000076154354947 0
 0 0 0 0 0 0.000076154354947
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 Columns 7 through 12

 0 0 0 0 0 0

 AHRS

4-3

 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0.009623610000000 0 0 0 0 0
 0 0.009623610000000 0 0 0 0
 0 0 0.009623610000000 0 0 0
 0 0 0 0.600000000000000 0 0
 0 0 0 0 0.600000000000000 0
 0 0 0 0 0 0.600000000000000

Data Types: single | double

Orientation format — Orientation output format
'quaternion' (default) | 'Rotation matrix'

Output orientation format, specified as 'quaternion' or 'Rotation matrix':

• 'quaternion' –– Output is an M-by-4 array of real scalars. Each row of the array represents the
four components of a quaternion.

• 'Rotation matrix' –– Output is a 3-by-3-by-M rotation matrix.

The output size M depends on the input dimension N and the Decimation Factor parameter.
Data Types: char | string

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Measurement Noise

Accelerometer noise ((m/s2)2) — Variance of accelerometer signal noise ((m/s2)2)
0.00019247 (default) | positive real scalar

Variance of accelerometer signal noise in (m/s2)2, specified as a positive real scalar.
Data Types: single | double

Gyroscope noise ((rad/s)2) — Variance of gyroscope signal noise ((rad/s)2)
9.1385e-5 (default) | positive real scalar

Variance of gyroscope signal noise in (rad/s)2, specified as a positive real scalar.
Data Types: single | double

Magnetometer noise (μT2) — Variance of magnetometer signal noise (μT2)
0.1 (default) | positive real scalar

Variance of magnetometer signal noise in μT2, specified as a positive real scalar.

4 Blocks

4-4

Data Types: single | double

Gyroscope drift noise (rad/s) — Variance of gyroscope offset drift ((rad/s)2)
3.0462e-13 (default) | positive real scalar

Variance of gyroscope offset drift in (rad/s)2, specified as a positive real scalar.
Data Types: single | double

Environmental Noise

Linear acceleration noise ((m/s2)2) — Variance of linear acceleration noise (m/s2)2

0.0096236 (default) | positive real scalar

Variance of linear acceleration noise in (m/s2)2, specified as a positive real scalar. Linear acceleration
is modeled as a lowpass-filtered white noise process.
Data Types: single | double

Magnetic disturbance noise (μT2) — Variance of magnetic disturbance noise (μT2)
0.5 (default) | real finite positive scalar

Variance of magnetic disturbance noise in μT2, specified as a real finite positive scalar.
Data Types: single | double

Linear acceleration decay factor — Decay factor for linear acceleration drift
0.5 (default) | scalar in the range [0,1)

Decay factor for linear acceleration drift, specified as a scalar in the range [0,1). If linear acceleration
changes quickly, set this parameter to a lower value. If linear acceleration changes slowly, set this
parameter to a higher value. Linear acceleration drift is modeled as a lowpass-filtered white noise
process.
Data Types: single | double

Magnetic disturbance decay factor — Decay factor for magnetic disturbance
0.5 (default) | positive scalar in the range [0,1]

Decay factor for magnetic disturbance, specified as a positive scalar in the range [0,1]. Magnetic
disturbance is modeled as a first order Markov process.
Data Types: single | double

Magnetic field strength (μT) — Magnetic field strength (μT)
50 (default) | real positive scalar

Magnetic field strength in μT, specified as a real positive scalar. The magnetic field strength is an
estimate of the magnetic field strength of the Earth at the current location.
Data Types: single | double

Algorithms
Note: The following algorithm only applies to an NED reference frame.

The AHRS block uses the nine-axis Kalman filter structure described in [1]. The algorithm attempts to
track the errors in orientation, gyroscope offset, linear acceleration, and magnetic disturbance to

 AHRS

4-5

output the final orientation and angular velocity. Instead of tracking the orientation directly, the
indirect Kalman filter models the error process, x, with a recursive update:

xk =

θk
bk
ak
dk

= Fk

θk− 1
bk− 1
ak− 1
dk− 1

+ wk

where xk is a 12-by-1 vector consisting of:

• θk –– 3-by-1 orientation error vector, in degrees, at time k
• bk –– 3-by-1 gyroscope zero angular rate bias vector, in deg/s, at time k
• ak –– 3-by-1 acceleration error vector measured in the sensor frame, in g, at time k
• dk –– 3-by-1 magnetic disturbance error vector measured in the sensor frame, in µT, at time k

and where wk is a 12-by-1 additive noise vector, and Fk is the state transition model.

Because xk is defined as the error process, the a priori estimate is always zero, and therefore the
state transition model, Fk, is zero. This insight results in the following reduction of the standard
Kalman equations:

Standard Kalman equations:

xk
− = Fkxk− 1

+

Pk
− = FkPk− 1

+ Fk
T + Qk

yk = zk− Hkxk
−

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = xk

− + Kkyk

Pk
+ = Pk−− KkHkPk

−

Kalman equations used in this algorithm:

xk
− = 0

Pk
− = Qk

yk = zk

Sk = Rk + HkPk
−HkT

Kk = Pk
−Hk

T Sk
−1

xk
+ = Kkyk

Pk
+ = Pk−− KkHkPk

−

where:

4 Blocks

4-6

• xk
− –– predicted (a priori) state estimate; the error process

• Pk
− –– predicted (a priori) estimate covariance

• yk –– innovation
• Sk –– innovation covariance
• Kk –– Kalman gain
• xk

+ –– updated (a posteriori) state estimate
• Pk

+ –– updated (a posteriori) estimate covariance

k represents the iteration, the superscript + represents an a posteriori estimate, and the superscript −
represents an a priori estimate.

The graphic and following steps describe a single frame-based iteration through the algorithm.

Before the first iteration, the accelReadings, gyroReadings, and magReadings inputs are
chunked into DecimationFactor-by-3 frames. For each chunk, the algorithm uses the most current
accelerometer and magnetometer readings corresponding to the chunk of gyroscope readings.

Detailed Overview

Walk through the algorithm for an explanation of each stage of the detailed overview.

 AHRS

4-7

Model

The algorithm models acceleration and angular change as linear processes.

Predict Orientation

The orientation for the current frame is predicted by first estimating the angular change from the
previous frame:

ΔφN × 3 =
gyroReadingsN × 3− gyroOf f set1 × 3

f s

4 Blocks

4-8

where N is the decimation factor specified by the Decimation factor and fs is the sample rate.

The angular change is converted into quaternions using the rotvec quaternion construction
syntax:

ΔQN × 1 = quaternion(ΔφN × 3, ′rotvec′)

The previous orientation estimate is updated by rotating it by ΔQ:

q1 × 1
− = q1 × 1

+ ∏
n = 1

N
ΔQn

During the first iteration, the orientation estimate, q−, is initialized by ecompass.

Estimate Gravity from Orientation

The gravity vector is interpreted as the third column of the quaternion, q−, in rotation matrix form:

g1 × 3 = rPrior(: , 3) T

Estimate Gravity from Acceleration

A second gravity vector estimation is made by subtracting the decayed linear acceleration estimate of
the previous iteration from the accelerometer readings:

gAccel1 × 3 = accelReadings1 × 3− linAccelprior1 × 3

Estimate Earth's Magnetic Vector

Earth's magnetic vector is estimated by rotating the magnetic vector estimate from the previous
iteration by the a priori orientation estimate, in rotation matrix form:

mGyro1 × 3 = rPrior mT T

Error Model

The error model combines two differences:

• The difference between the gravity estimate from the accelerometer readings and the gravity
estimate from the gyroscope readings: zg = g− gAccel

• The difference between the magnetic vector estimate from the gyroscope readings and the
magnetic vector estimate from the magnetometer:zm = mGyro−magReadings

 AHRS

4-9

Magnetometer Correct

The magnetometer correct estimates the error in the magnetic vector estimate and detects magnetic
jamming.

Magnetometer Disturbance Error

The magnetic disturbance error is calculated by matrix multiplication of the Kalman gain associated
with the magnetic vector with the error signal:

mError3 × 1 = K(10:12, :)3 × 6 z1 × 6
T T

The Kalman gain, K, is the Kalman gain calculated in the current iteration.

Magnetic Jamming Detection

Magnetic jamming is determined by verifying that the power of the detected magnetic disturbance is
less than or equal to four times the power of the expected magnetic field strength:

tf =
true
false

if
else

∑ mError 2 > 4 ExpectedMagneticFieldStrength 2

ExpectedMagneticFieldStrength is a property of ahrsfilter.

Kalman Equations

The Kalman equations use the gravity estimate derived from the gyroscope readings, g, the magnetic
vector estimate derived from the gyroscope readings, mGyro, and the observation of the error
process, z, to update the Kalman gain and intermediary covariance matrices. The Kalman gain is
applied to the error signal, z, to output an a posteriori error estimate, x+.

4 Blocks

4-10

Observation Model

The observation model maps the 1-by-3 observed states, g and mGyro, into the 6-by-12 true state, H.

The observation model is constructed as:

H3 × 9 =

0 gz −gy 0 −κgz κgy 1 0 0 0 0 0
−gz 0 gx κgz 0 −κgx 0 1 0 0 0 0
gy −gx 0 −κgy κgx 0 0 0 1 0 0 0
0 mz −my 0 −κmz −κmy 0 0 0 −1 0 0
−mz 0 mx κmz 0 −κmx 0 0 0 0 −1 0
my −mx 0 −κmy κmx 0 0 0 0 0 0 −1

where gx, gy, and gz are the x-, y-, and z-elements of the gravity vector estimated from the a priori
orientation, respectively. mx, my, and mz are the x-, y-, and z-elements of the magnetic vector
estimated from the a priori orientation, respectively. κ is a constant determined by the Sample rate
and Decimation factor properties: κ = Decimation factor/Sample rate.

Innovation Covariance

The innovation covariance is a 6-by-6 matrix used to track the variability in the measurements. The
innovation covariance matrix is calculated as:

S6x6 = R6x6 + H6x12 P12x12
− H6x12

T

where

 AHRS

4-11

• H is the observation model matrix
• P− is the predicted (a priori) estimate of the covariance of the observation model calculated in the

previous iteration
• R is the covariance of the observation model noise, calculated as:

R6 × 6 =

accelnoise 0 0 0 0 0
0 accelnoise 0 0 0 0
0 0 accelnoise 0 0 0
0 0 0 magnoise 0 0
0 0 0 0 magnoise 0
0 0 0 0 0 magnoise

where

accelnoise = AccelerometerNoise + LinearAccelerationNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

and

magnoise = MagnetometerNoise + MagneticDisturbanceNoise + κ2

GyroscopeDriftNoise + GyroscopeNoise

Update Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state.

The error estimate covariance matrix is updated as:

P12 × 12
+ = P12 × 12

− − K12 × 6 H6 × 12 P12 × 12
−

where K is the Kalman gain, H is the measurement matrix, and P− is the error estimate covariance
calculated during the previous iteration.

Predict Error Estimate Covariance

The error estimate covariance is a 12-by-12 matrix used to track the variability in the state. The a
priori error estimate covariance, P−, is set to the process noise covariance, Q, determined during the
previous iteration. Q is calculated as a function of the a posteriori error estimate covariance, P+.
When calculating Q, it is assumed that the cross-correlation terms are negligible compared to the
autocorrelation terms, and are set to zero:

4 Blocks

4-12

Q =

P+(1) + κ2P+(40) + β + η 0 0 −κ P+(40) + β 0 0 0 0 0 0 0 0

0 P+(14) + κ2P+(53) + β + η 0 0 −κ P+(53) + β 0 0 0 0 0 0 0

0 0 P+(27) + κ2P+(66) + β + η 0 0 −κ P+(66) + β 0 0 0 0 0 0

−κ P+(40) + β 0 0 P+(40) + β 0 0 0 0 0 0 0 0

0 −κ P+(53) + β 0 0 P+(53) + β 0 0 0 0 0 0 0

0 0 −κ P+(66) + β 0 0 P+(66) + β 0 0 0 0 0 0

0 0 0 0 0 0 ν2P+(79) + ξ 0 0 0 0 0

0 0 0 0 0 0 0 ν2P+(92) + ξ 0 0 0 0

0 0 0 0 0 0 0 0 ν2P+(105) + ξ 0 0 0

0 0 0 0 0 0 0 0 0 σ2P+(118) + γ 0 0

0 0 0 0 0 0 0 0 0 0 σ2P+(131) + γ 0

0 0 0 0 0 0 0 0 0 0 0 σ2P+(144) + γ

 AHRS

4-13

where

• P+ –– is the updated (a posteriori) error estimate covariance
• κ –– Decimation factor divided by sample rate.
• β –– Gyroscope drift noise.
• η –– Gyroscope noise.
• ν –– Linear acceleration decay factor.
• ξ –– Linear acceleration noise.
• σ –– Magnetic disturbance decay factor.
• γ –– Magnetic disturbance noise.

Kalman Gain

The Kalman gain matrix is a 12-by-6 matrix used to weight the innovation. In this algorithm, the
innovation is interpreted as the error process, z.

The Kalman gain matrix is constructed as:

K12 × 6 = P12 × 12
− H6 × 12

T S6 × 6
T −1

where

• P− –– predicted error covariance
• H –– observation model
• S –– innovation covariance

Update a Posteriori Error

The a posterior error estimate is determined by combining the Kalman gain matrix with the error in
the gravity vector and magnetic vector estimations:

x12 × 1 = K12 × 6 (z1 × 6)T

If magnetic jamming is detected in the current iteration, the magnetic vector error signal is ignored,
and the a posterior error estimate is calculated as:

x9 × 1 = K(1:9, 1:3 (zg)T

4 Blocks

4-14

Correct

Estimate Orientation

The orientation estimate is updated by multiplying the previous estimation by the error:

q+ = q− θ+

Estimate Linear Acceleration

The linear acceleration estimation is updated by decaying the linear acceleration estimation from the
previous iteration and subtracting the error:

linAccelPrior = (linAccelPriork− 1)ν− b+

where

• ν –– Linear acceleration decay factor

Estimate Gyroscope Offset

The gyroscope offset estimation is updated by subtracting the gyroscope offset error from the
gyroscope offset from the previous iteration:

gyroOf f set = gyroOf f setk− 1− a+

Compute Angular Velocity

To estimate angular velocity, the frame of gyroReadings are averaged and the gyroscope offset
computed in the previous iteration is subtracted:

angularVelocity1 × 3 = ∑gyroReadingsN × 3
N − gyroOf f set1 × 3

where N is the decimation factor specified by the DecimationFactor property.

The gyroscope offset estimation is initialized to zeros for the first iteration.

 AHRS

4-15

Update Magnetic Vector

If magnetic jamming was not detected in the current iteration, the magnetic vector estimate, m, is
updated using the a posteriori magnetic disturbance error and the a posteriori orientation.

The magnetic disturbance error is converted to the navigation frame:

mErrorNED1 × 3 = rPost3 × 3
T(mError1 × 3)T T

The magnetic disturbance error in the navigation frame is subtracted from the previous magnetic
vector estimate and then interpreted as inclination:

Μ = m−mErrorNED

inclination = atan2(Μ(3), Μ(1))

The inclination is converted to a constrained magnetic vector estimate for the next iteration:

m(1) = ExpectedMagneticFieldStrength cos(inclination)
m(2) = 0
m(3) = ExpectedMagneticFieldStrength sin(inclination)

References
[1] Open Source Sensor Fusion. https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/

tree/master/docs

[2] Roetenberg, D., H.J. Luinge, C.T.M. Baten, and P.H. Veltink. "Compensation of Magnetic
Disturbances Improves Inertial and Magnetic Sensing of Human Body Segment Orientation."
IEEE Transactions on Neural Systems and Rehabilitation Engineering. Vol. 13. Issue 3, 2005,
pp. 395-405.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ahrsfilter | ecompass | gpsSensor | imuSensor | imufilter | quaternion

Topics
“Determine Orientation Using Inertial Sensors”

Introduced in R2020a

4 Blocks

4-16

https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs
https://github.com/memsindustrygroup/Open-Source-Sensor-Fusion/tree/master/docs

Global Nearest Neighbor Multi Object Tracker
Multi-sensor, multi-object tracker using GNN assignment
Library: Sensor Fusion and Tracking Toolbox

Description
The Global Nearest Neighbor Multi Object Tracker block is capable of processing detections of many
targets from multiple sensors, much like the trackerGNN System object. The tracker initializes,
confirms, predicts, corrects, and deletes tracks based on a global nearest neighbor (GNN) assignment
algorithm. The tracker estimates the state vector and state vector covariance matrix for each track.
Each detection is assigned to at most one track. If the detection cannot be assigned to any track, the
tracker initializes a new track.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection already has a known classification (the ObjectClassID
field of the returned track is nonzero), that track is confirmed immediately. When a track is
confirmed, the tracker considers the track to represent a physical object. If detections are not
assigned to the track within a specifiable number of updates, the track is deleted.

Ports
Input

Detections — Detection list
Simulink bus containing MATLAB structure

Detection list, specified as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description Type
NumDetections Number of detections integer
Detections Object detections Array of object detection

structures. The first
NumDetections of these
detections are actual detections.

The fields of Detections are:

Field Description Type
Time Measurement time single or double
Measurement Object measurements single or double
MeasurementNoise Measurement noise covariance

matrix
single or double

SensorIndex Unique ID of the sensor single or double

 Global Nearest Neighbor Multi Object Tracker

4-17

Field Description Type
ObjectClassID Object classification ID single or double
MeasurementParameters Parameters used by

initialization functions of
tracking filters

Simulink Bus

ObjectAttributes Additional information passed to
tracker

Simulink Bus

See objectDetection for more detailed explanations of these fields.

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
real scalar

Track update time, specified as a real scalar in seconds. The tracker updates all tracks to this time.
The update time must always increase with each invocation of the block. Units are in seconds. The
update time must be at least as large as the largest Time specified at the Detections input port.

If this port is not enabled, the simulation clock managed by Simulink determines the update time.

Dependencies

To enable this port, in the Port Setting tab, set Prediction time source to Input port.

Cost Matrix — Cost matrix
real-valued Nt-by-Nd matrix

Cost matrix, specified as a real-valued Nt-by-Nd matrix, where Nt is the number of existing tracks and
Nd is the number of current detections.

The rows of the cost matrix correspond to the existing tracks. The columns correspond to the
detections. Tracks are ordered as they appear in the list of tracks at the All Tracks output port on
the previous invocation of the block.

In the first update to the tracker, or if the track has no previous tracks, assign the cost matrix a size
of [0, Nd]. The cost must be calculated so that lower costs indicate a higher likelihood that the tracker
assigns a detection to a track. To prevent certain detections from being assigned to certain tracks,
use Inf.

If this port is not enabled, the filter initialized by the Filter initialization function calculates the
cost matrix using the distance method.

Dependencies

To enable this port, in the Port Setting tab, select Enable cost matrix input.

Detectable TrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

4 Blocks

4-18

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The second column contains the detection probability for the track.
The detection probability is either reported by a sensor or, if not reported, obtained from the
Probability of detection used for track score parameter.

Tracks whose identifiers are not included in Detectable TrackIDs are considered undetectable. The
track deletion logic does not count the lack of detection as a "missed detection" for track deletion
purposes.

If this port is not enabled, the tracker assumes all tracks to be detectable at each invocation of the
block.

Dependencies

To enable this port, in the Port Setting tab, select Enable detectable track IDs Input.

Output

Confirmed Tracks — Confirmed tracks
Simulink bus containing MATLAB structure

Confirmed tracks, returned as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

The fields of the track structure are shown in “Track Structure” on page 4-26.

Depending on the track logic, a track is confirmed if:

• History – A track receives at least M detections in the last N updates. M and N are specified in
Confirmation threshold for the History logic.

• Score – The track score is at least as high as the confirmation threshold specified in Confirmation
threshold for the Score logic.

Tentative Tracks — Tentative tracks
Simulink bus containing MATLAB structure

Tentative tracks, returned as a Simulink bus containing a MATLAB structure. A track is tentative
before it is confirmed.

The fields of the track structure are shown in “Track Structure” on page 4-26.

Dependencies

To enable this port, in the Port Setting tab, select Enable tentative tracks output.

All Tracks — Confirmed and Tentative tracks
Simulink bus containing MATLAB structure

 Global Nearest Neighbor Multi Object Tracker

4-19

Combined list of confirmed and tentative tracks, returned as a Simulink bus containing a MATLAB
structure.

The fields of the track structure are shown in “Track Structure” on page 4-26.

Dependencies

To enable this port, in the Port Setting tab, select Enable all tracks output.

Info — Additional information for analyzing track updates
Simulink bus containing MATLAB structure

Additional information for analyzing track updates, returned as a Simulink bus containing a MATLAB
structure.

This table shows the fields of the info structure:

Field Description
TrackIDsAtStepBeginning Track IDs when step began
CostMatrix Cost of assignment matrix
Assignments Assignments returned from the assignment

function
UnassignedTracks IDs of unassigned tracks returned from the

tracker
UnassignedDetections IDs of unassigned detections returned from the

tracker
InitiatedTrackIDs IDs of tracks initiated during the step
DeletedTrackIDs IDs of tracks deleted during the step
TrackIDsAtStepEnd Track IDs when the step ended

Dependencies

To enable this port, in the Port Setting tab, select Enable information output.

Parameters
Tracker Management

Filter initialization function — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a valid filter initialization function. The tracker uses the filter initialization function when
creating new tracks.

Sensor Fusion and Tracking Toolbox supplies many initialization functions that you can use:

Initialization Function Function Definition
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter

4 Blocks

4-20

Initialization Function Function Definition
initcvekf Initialize constant-velocity extended Kalman filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.
initcapf Initialize constant-acceleration particle filter.
initctpf Initialize constant-turn-rate particle filter.
initcvpf Initialize constant-velocity particle filter.
initcvkf Initialize constant-velocity linear Kalman filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity modified spherical

coordinates extended Kalman filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function. The function must have this syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by objectDetection. The output
of this function must be a filter object: trackingKF, trackingEKF, trackingUKF, trackingCKF,
trackingPF, trackingMSCEKF, trackingGSF, trackingIMM, or trackingABF.

To guide you in writing this function, you can examine the details of the supplied functions from
within MATLAB. For example:

type initcvekf

Assignment algorithm name — Assignment algorithm name
'MatchPairs' (default) | 'Munkres' | 'Jonker-Volgenant' | 'Auction' | 'Custom'

Assignment algorithm, specified as 'MatchPairs', 'Munkres', 'Jonker-Volgenant',
'Auction', or 'Custom'. Munkres is the only assignment algorithm that guarantees an optimal

 Global Nearest Neighbor Multi Object Tracker

4-21

solution, but it is also the slowest, especially for large numbers of detections and tracks. The other
algorithms do not guarantee an optimal solution but can be faster for problems with 20 or more
tracks and detections. Use'Custom' to define your own assignment function and specify its name in
the CustomAssignmentFcn property.

Name of 'Custom' assignment function — Custom assignment function name
character vector

Custom assignment function name, specified as a character string. An assignment function must have
this syntax:

 [assignment,unTrs,unDets] = f(cost,costNonAssignment)

For an example of an assignment function and a description of its arguments, see assignmunkres.
Example: 'mycustomfcn'

Dependencies

To enable this property, set the Assignment algorithm name name to 'Custom'.

Threshold for assigning detections to tracks — Threshold for assigning detections
to tracks
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Threshold for assigning detections to tracks (or gating threshold), specified as a positive scalar or an
1-by-2 vector of [C1,C2], where C1 ≤ C2. If specified as a scalar, the specified value, val, will be
expanded to [val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if their accurate normalized distance is less than C1. See the distance function used with
tracking filters (for example, trackingCKF and trackingEKF) for an explanation of the distance
calculation.

Tips:

• Increase the value of C2 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease it if there are detections that are assigned to tracks they should not be assigned to (too
far away).

Maximum number of tracks — Maximum number of tracks
200 (default) | positive integer

Maximum number of tracks that the block can maintain, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that the block can process, specified as a positive integer. This value
should be greater than or equal to the highest SensorIndex value input at the Detections input
port.

4 Blocks

4-22

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Track Logic

Type of track confirmation and deletion logic — Confirmation and deletion logic
type
History (default) | Score

Confirmation and deletion logic type, selected as History or Score.

• History – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• Score – Track confirmation and deletion is based on a log-likelihood track score. A high score
means that the track is more likely to be valid. A low score means that the track is more likely to
be a false alarm.

Confirmation threshold [M N] — Track confirmation threshold for history logic
[2 3] (default) | real-valued 1-by-2 vector of positive integers

Track confirmation threshold for history logic, specified as a real-valued 1-by-2 vector of positive
integers [M N]. A track is confirmed if it receives at least M detections in the last N updates.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to History.

Deletion threshold [P Q] — Track deletion threshold for history logic
[5 5] (default) | real-valued 1-by-2 vector of positive integers

Track deletion threshold for history logic, specified as a real-valued 1-by-2 vector of positive integers
[P Q]. A track is deleted if, in the last Q updates, it was assigned less than P detections.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to History.

Confirmation threshold [positive scalar] — Track confirmation threshold for score
logic
20 (default) | positive scalar

Track confirmation threshold for score logic, specified as a real-valued positive scalar. A track is
confirmed if its score is at least as high as the confirmation threshold.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

 Global Nearest Neighbor Multi Object Tracker

4-23

Deletion threshold [negative scalar] — Track deletion threshold for score logic
-7 (default) | scalar | negative scalar

Track deletion threshold for score logic, specified as a negative scalar. A track is deleted if its score
decreases by at least the threshold from the maximum track score.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

Probability of detection used for track score — Probability of detection used for
track score
0.9 (default) | scalar in (0,1)

Probability of detection used for track score, specified as a positive scalar in (0,1).
Example: 0.5

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

Rate of false positives used for track score — Probability of false alarm used for
track score
1e-6 (default) | scalar in (0,1)

The probability of false alarm used for track score, specified as a scalar in (0,1).
Example: 1e-5

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

Volume of the sensor's detection bin — Volume of sensor detection bin
1 (default) | positive scalar

The volume of a sensor detection bin, specified as a positive scalar. For example, if a radar produces a
4-D measurement, which includes azimuth, elevation, range, and range rate, the 4-D volume is
defined by the radar angular beam width, the range bin width, and the range-rate bin width. Volume
is used in calculating the track score when initializing and updating a track.
Example: 1.5

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

Rate of new tracks per unit volume — Rate of new tracks per unit volume
1 (default) | positive scalar

The rate of new tracks per unit volume, specified as a positive scalar. The rate of new tracks is used
in calculating the track score during track initialization.
Example: 2.5

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to Score.

4 Blocks

4-24

Port Setting

Prediction time source — Source of prediction time
Auto (default) | Input port

Source for prediction time, specified as Input port or Auto. Select Input port to input an update
time by using the Prediction Time input port. Otherwise, the simulation clock managed by Simulink
determines the update time.

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this check box to enable the input of a cost matrix by using the Cost Matrix input port.

Enable detectable track IDs input — Enable detectable track IDs input
off (default) | on

Select this check box to enable the Detectable track IDs input port.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this check box to enable the output of tentative tracks through the Tentative Tracks output
port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this check box to enable the output of all the tracks through the All Tracks output port.

Enable information output — Enable output port for analysis information
off (default) | on

Select this check box to enable the output port for analysis information through the Info output port.

Source of output bus name — Source of output track bus name
Auto (default) | Property

Source of the output track bus name, specified as:

• Auto — The block automatically creates an output track bus name.
• Property — Specify the output track bus name by using the Specify an output bus name

parameter.

Source of output info bus name — Source of output info bus name
Auto (default) | Property

Source of the output info bus name, specified as one of these options:

• Auto — The block automatically creates an output info bus name.
• Property — Specify the output info bus name by using the Specify an output bus name

parameter.

 Global Nearest Neighbor Multi Object Tracker

4-25

Algorithms
Tracker Logic Flow

When a GNN tracker processes detections, track creation and management follow these steps:

1 The tracker divides detections by originating sensor.
2 For each sensor:

a The tracker calculates the distances from detections to existing tracks and forms a cost
matrix.

b Based on the costs, the tracker performs global nearest neighbor assignment using the
algorithm specified by the Assignment algorithm name parameter.

c The assignment algorithm divides the detections and tracks into three groups:

• Assigned one-to-one detection and track pairs
• Unassigned detections
• Unassigned tracks

3 Unassigned detections initialize new tracks. Using the unassigned detection, the tracker
initializes a new track filter specified by the Filter initialization function parameter. The track
logic for the new track is initialized as well.

The tracker checks if any of the unassigned detections from other sensors can be assigned to the
new track. If so, the tracker updates the new track with the assigned detections from the other
sensors. As a result, these detections no longer initialize new tracks.

4 The pairs of assigned tracks and detections are used to update each track. The track filter is
updated using the correct method provided by the specified tracking filter. Also, the track logic
is updated with a "hit". The tracker checks if the track meets the criteria for confirmation. If so,
the tracker confirms the track and sets the IsCoasted field to false.

5 Unassigned tracks are updated with a "miss" and their IsCoasted field is set to true. The
tracker checks if the track meets the criteria for deletion. If so, the tracker removes the track
from the maintained track list.

6 All tracks are predicted to the latest time value (either the time provided by the Prediction
Time input port, or the time determined by Simulink).

Track Structure

The fields of the track structure are:

Field Definition
SourceIndex Unique source index used to distinguish tracking

sources in a multiple tracker environment.
TrackID Unique track identifier used to distinguish

multiple tracks.
BranchID Unique track branch identifier used to distinguish

multiple track branches.
UpdateTime Time at which the track is updated. Units are in

seconds.

4 Blocks

4-26

Field Definition
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
TrackLogic Confirmation and deletion logic type, returned as

'History' or 'Score'.
TrackLogicState The current state of the track logic type. Based

on the logic type TrackLogic, the logic state is
returned as:

• 'History' – A 1-by-K logical array, where K
is the number of latest track logical states
recorded. In the array, 1 denotes hit and 0
denote miss.

• 'Score' – A 1-by-2 array of real scalars, [cs,
ms]. cs is the current score, and ms is the
maximum score.

IsConfirmed Confirmation status. This field is true if the track
is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the track is
updated without a new detection.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

ObjectClassID Integer value representing the object
classification. The value 0 represents an unknown
classification. Nonzero classifications apply only
to confirmed tracks.

ObjectAttributes Additional information of the track.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Joint Probabilistic Data Association Multi Object Tracker

Functions
assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres | assignsd |
fusecovint | fusecovunion | fusexcov | getTrackPositions | getTrackVelocities

Objects
objectDetection | objectTrack | trackHistoryLogic | trackScoreLogic | trackingABF |
trackingCKF | trackingEKF | trackingGSF | trackingIMM | trackingKF | trackingMSCEKF |
trackingPF | trackingUKF

 Global Nearest Neighbor Multi Object Tracker

4-27

System Objects
trackerGNN | trackerJPDA | trackerTOMHT

Topics
“Introduction to Multiple Target Tracking”
“Introduction to Assignment Methods in Tracking Systems”

Introduced in R2019b

4 Blocks

4-28

IMU
IMU simulation model
Library: Navigation Toolbox / Multisensor Positioning / Sensor

Models
Sensor Fusion and Tracking Toolbox / Multisensor
Positioning / Sensor Models

Description
The IMU Simulink block models receiving data from an inertial measurement unit (IMU) composed of
accelerometer, gyroscope, and magnetometer sensors.

Ports
Input

Linear Acceleration — Acceleration of IMU in local navigation coordinate system (m/s2)
N-by-3 matrix of real scalar

Acceleration of the IMU in the local navigation coordinate system, specified as an N-by-3 matrix of
real scalars in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

Angular Velocity — Angular velocity of IMU in local navigation coordinate system (rad/s)
N-by-3 matrix of real scalar

Angular velocity of the IMU sensor body frame in the local navigation coordinate system, specified as
an N-by-3 matrix of scalars in radians per second. N is the number of samples in the current frame.
Data Types: single | double

Orientation — Orientation of IMU in local navigation coordinate system
N-by-4 array of real scalar | 3-by-3-by-N-element rotation matrix

Orientation of the IMU sensor body frame with respect to the local navigation coordinate system,
specified as an N-by-4 array of real scalars or a 3-by-3-by-N rotation matrix. Each row the of the N-
by-4 array is assumed to be the four elements of a quaternion. N is the number of samples in the
current frame.
Data Types: single | double

Output

Accel — Accelerometer measurement of IMU in sensor body coordinate system (m/s2)
N-by-3 matrix of real scalar

Accelerometer measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in meters per second squared. N is the number of samples in the current frame.
Data Types: single | double

 IMU

4-29

Gyro — Gyroscope measurement of IMU in sensor body coordinate system (rad/s)
N-by-3 matrix of real scalar

Gyroscope measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in radians per second. N is the number of samples in the current frame.
Data Types: single | double

Mag — Magnetometer measurement of IMU in sensor body coordinate system (μT)
N-by-3 matrix of real scalar

Magnetometer measurement of the IMU in the sensor body coordinate system, returned as an N-by-3
matrix of real scalars in microtesla. N is the number of samples in the current frame.
Data Types: single | double

Parameters
Parameters

Reference frame — Navigation reference frame
NED (default) | ENU

Navigation reference frame, specified as NED (North-East-Down) or ENU (East-North-Up).

Temperature (oC) — Operating temperature of IMU (oC)
25 (default) | real scalar

Operating temperature of the IMU in degrees Celsius, specified as a real scalar.

When the block calculates temperature scale factors and environmental drift noises, 25 oC is used as
the nominal temperature.
Data Types: single | double

Magnetic field (NED) — Magnetic field vector expressed in NED navigation frame (μT)
[27.5550, -2.4169, -16.0849] (default) | 1-by-3 vector of scalar

Magnetic field vector expressed in the NED navigation frame, specified as a 1-by-3 vector of scalars.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.

Dependencies

To enable this parameter, set Reference frame to NED.
Data Types: single | double

MagneticField (ENU) — Magnetic field vector expressed in ENU navigation frame (μT)
[-2.4169, 27.5550, 16.0849] (default) | 1-by-3 vector of scalar

Magnetic field vector expressed in the ENU navigation frame, specified as a 1-by-3 vector of scalars.

The default magnetic field corresponds to the magnetic field at latitude zero, longitude zero, and
altitude zero.

4 Blocks

4-30

Dependencies

To enable this parameter, set Reference frame to ENU.
Data Types: single | double

Seed — Initial seed for randomization
67 (default) | nonnegative integer

Initial seed of a random number generator algorithm, specified as a nonnegative integer.
Data Types: single | double

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time that you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations if the model does not change. This option requires additional startup time.

Accelerometer

Maximum readings (m/s2) — Maximum sensor reading (m/s2)
inf (default) | real positive scalar

Maximum sensor reading in m/s2, specified as a real positive scalar.
Data Types: single | double

Resolution ((m/s2)/LSB) — Resolution of sensor measurements ((m/s2)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (m/s2)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (m/s2) — Constant sensor offset bias (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Axis skew (%) — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in a percentage, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
Data Types: single | double

Velocity random walk (m/s2/√Hz) — Velocity random walk (m/s2/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

 IMU

4-31

Velocity random walk in (m/s2/√Hz), specified as a real scalar or 3-element row vector. This property
corresponds to the power spectral density of sensor noise. Any scalar input is converted into a real 3-
element row vector where each element has the input scalar value.
Data Types: single | double

Bias Instability (m/s2) — Instability of the bias offset (m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in m/s2, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Acceleration random walk ((m/s2)(√Hz)) — Acceleration random walk ((m/s2)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Acceleration random walk of sensor in (m/s2)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias from temperature ((m/s2)/℃) — Sensor bias from temperature ((m/s2)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (m/s2)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Gyroscope

Maximum readings (rad/s) — Maximum sensor reading (rad/s)
inf (default) | real positive scalar

Maximum sensor reading in rad/s, specified as a real positive scalar.
Data Types: single | double

Resolution ((rad/s)/LSB) — Resolution of sensor measurements ((rad/s)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (rad/s)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (rad/s) — Constant sensor offset bias (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

4 Blocks

4-32

Constant sensor offset bias in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Axis skew (%) — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in a percentage, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
Data Types: single | double

Bias from acceleration ((rad/s)/(m/s2) — Sensor bias from linear acceleration
(rad/s)/(m/s2)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from linear acceleration in (rad/s)/(m/s2), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

Angle random walk ((rad/s)/(√Hz)) — Acceleration random walk ((rad/s)/(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Acceleration random walk of sensor in (rad/s)/(√Hz), specified as a real scalar or 3-element row
vector. Any scalar input is converted into a real 3-element row vector where each element has the
input scalar value.
Data Types: single | double

Bias Instability (rad/s) — Instability of the bias offset (rad/s)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in rad/s, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Rate random walk ((rad/s)(√Hz)) — Integrated white noise of sensor ((rad/s)(√Hz))
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (rad/s)(√Hz), specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias from temperature ((rad/s)/℃) — Sensor bias from temperature ((rad/s)/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in (rad/s)/℃, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

 IMU

4-33

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Magnetometer

Maximum readings (μT) — Maximum sensor reading (μT)
inf (default) | real positive scalar

Maximum sensor reading in μT, specified as a real positive scalar.
Data Types: single | double

Resolution ((μT)/LSB) — Resolution of sensor measurements ((μT)/LSB)
0 (default) | real nonnegative scalar

Resolution of sensor measurements in (μT)/LSB, specified as a real nonnegative scalar.
Data Types: single | double

Constant offset bias (μT) — Constant sensor offset bias (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Constant sensor offset bias in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Axis skew (%) — Sensor axes skew (%)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Sensor axes skew in a percentage, specified as a real scalar or 3-element row vector with values
ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector where each
element has the input scalar value.
Data Types: single | double

White noise PSD (μT/√Hz) — Power spectral density of sensor noise (μT/√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Power spectral density of sensor noise in μT/√Hz, specified as a real scalar or 3-element row vector.
Any scalar input is converted into a real 3-element row vector where each element has the input
scalar value.
Data Types: single | double

Bias Instability (μT) — Instability of the bias offset (μT)
[0 0 0] (default) | real scalar | real 3-element row vector

Instability of the bias offset in μT, specified as a real scalar or 3-element row vector. Any scalar input
is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

4 Blocks

4-34

Random walk ((μT)*√Hz) — Integrated white noise of sensor ((μT)*√Hz)
[0 0 0] (default) | real scalar | real 3-element row vector

Integrated white noise of sensor in (μT)*√Hz, specified as a real scalar or 3-element row vector. Any
scalar input is converted into a real 3-element row vector where each element has the input scalar
value.
Data Types: single | double

Bias from temperature (μT/℃) — Sensor bias from temperature (μT/℃)
[0 0 0] (default) | real scalar | real 3-element row vector

Sensor bias from temperature in μT/℃, specified as a real scalar or 3-element row vector. Any scalar
input is converted into a real 3-element row vector where each element has the input scalar value.
Data Types: single | double

Temperature scale factor (%/℃) — Scale factor error from temperature (%/℃)
[0 0 0] (default) | real scalar in the range [0,100] | real 3-element row vector in the range [0,100]

Scale factor error from temperature in %/℃, specified as a real scalar or real 3-element row vector
with values ranging from 0 to 100. Any scalar input is converted into a real 3-element row vector
where each element has the input scalar value.
Data Types: single | double

Algorithms
Accelerometer

The accelerometer model uses the ground-truth orientation and acceleration inputs and the
imuSensor and accelparams properties to model accelerometer readings.

 IMU

4-35

Obtain Total Acceleration

To obtain the total acceleration (totalAcc), the acceleration is preprocessed by negating and adding
the gravity constant vector (g= [0; 0; 9.8] m/s2) as:

totalAcc = − acceleration + g

Convert to Sensor Frame

Then the total acceleration is converted from the local navigation frame to the sensor frame using:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

4 Blocks

4-36

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of accelparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of accelparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of accelparams, and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an accelparams property.
Elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of accelparams, SampleRate is a property of imuSensor, and h2
is a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

 IMU

4-37

where Temperature is a property of imuSensor, and TemperatureBias is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
accelparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

accelReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of accelparams.

Gyroscope

The gyroscope model uses the ground-truth orientation, acceleration, and angular velocity inputs,
and the imuSensor and gyroparams properties to model accelerometer readings.

4 Blocks

4-38

Convert to Sensor Frame

The ground-truth angular velocity is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation angularVelocity T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth angular velocity in the sensor frame, a, passes through the bulk model, which adds
axes misalignment and bias:

 IMU

4-39

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of gyroparams, and α1, α2, and α3 are given by the first, second,
and third elements of the AxesMisalignment property of gyroparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of gyroparams and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an gyroparams property. The
elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of gyroparams, SampleRate is a property of imuSensor, and h2 is
a filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

4 Blocks

4-40

where Temperature is a property of imuSensor, and TemperatureBias is a property of gyroparams.
The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
gyroparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

gyroReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of gyroparams.

Magnetometer

The magnetometer model uses the ground-truth orientation and acceleration inputs, and the
imuSensor and magparams properties to model magnetometer readings.

 IMU

4-41

Convert to Sensor Frame

The ground-truth acceleration is converted from the local frame to the sensor frame using the
ground-truth orientation:

a = orientation totalAcc T

If the orientation is input in quaternion form, it is converted to a rotation matrix before processing.

Bulk Model

The ground-truth acceleration in the sensor frame, a, passes through the bulk model, which adds axes
misalignment and bias:

4 Blocks

4-42

b =

1
α2

100
α3

100
α1

100 1
α3

100
α1

100
α2

100 1

aT

T

+ ConstantBias

where ConstantBias is a property of magparams, and α1, α2, and α3 are given by the first, second, and
third elements of the AxesMisalignment property of magparams.

Bias Instability Drift

The bias instability drift is modeled as white noise biased and then filtered:

β1 = h1 * (w)(BiasInstability)

where BiasInstability is a property of magparams and h1 is a filter defined by the SampleRate
property:

H1 z = 1
1 + 2

SampleRate − 1 z−1

White Noise Drift

White noise drift is modeled by multiplying elements of the white noise random stream by the
standard deviation:

β2 = w SampleRate
2 NoiseDensity

where SampleRate is an imuSensor property, and NoiseDensity is an magparams property. The
elements of w are random numbers given by settings of the imuSensor random stream.

Random Walk Drift

The random walk drift is modeled by biasing elements of the white noise random stream and then
filtering:

β3 = h2 * (w) RandomWalk
SampleRate

2

where RandomWalk is a property of magparams, SampleRate is a property of imuSensor, and h2 is a
filter defined as:

H2 z = 1
1− z−1

Environmental Drift Noise

The environmental drift noise is modeled by multiplying the temperature difference from a standard
with the temperature bias:

Δe = (Temperature− 25)(TemperatureBias)

 IMU

4-43

where Temperature is a property of imuSensor, and TemperatureBias is a property of magparams.
The constant 25 corresponds to a standard temperature.

Scale Factor Error Model

The temperature scale factor error is modeled as:

scaleFactorError = 1 + Temperature−25
100 (TemperatureScaleFactor)

where Temperature is a property of imuSensor, and TemperatureScaleFactor is a property of
magparams. The constant 25 corresponds to a standard temperature.

Quantization Model

The quantization is modeled by first saturating the continuous signal model:

e =
MeasurementRange
−MeasurementRange

d

if
if

else

d > MeasurementRange
−d > MeasurementRange

and then setting the resolution:

magReadings = (Resolution) round e
Resolution

where MeasurementRange is a property of magparams.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Classes
accelparams | gyroparams | magparams

System Objects
gpsSensor | imuSensor | insSensor

Topics
“Model IMU, GPS, and INS/GPS”

Introduced in R2020a

4 Blocks

4-44

Joint Probabilistic Data Association Multi Object
Tracker
Joint probabilistic data association tracker
Library: Sensor Fusion and Tracking Toolbox

Description
The Joint Probabilistic Data Association Multi Object Tracker block is capable of processing
detections of multiple targets from multiple sensors. The tracker uses joint probabilistic data
association to assign detections to each track. The tracker applies a soft assignment, in which
multiple detections can contribute to each track. The tracker initializes, confirms, corrects, predicts
(performs coasting), and deletes tracks. The tracker estimates the state vector and state estimate
error covariance matrix for each track. Each detection is assigned to at least one track. If the
detection cannot be assigned to any existing track, the tracker creates a new track.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection already has a known classification (the ObjectClassID
field of the returned track is nonzero), that corresponding track is confirmed immediately. When a
track is confirmed, the tracker considers the track to represent a physical object. If detections are not
assigned to the track within a specifiable number of updates, the track is deleted.

Ports
Input

Detections — Detection list
Simulink bus containing MATLAB structure

Detection list, specified as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description Type
NumDetections Number of detections Integer
Detections Object detections Array of objectDetection

structures. The first
NumDetections of these
detections are actual detections.

The fields of detections are:

Field Description Type
Time Measurement time Single or Double
Measurement Object measurements Single or Double

 Joint Probabilistic Data Association Multi Object Tracker

4-45

Field Description Type
MeasurementNoise Measurement noise covariance

matrix
Single or Double

SensorIndex Unique ID of the sensor Single or Double
ObjectClassID Object classification ID Single or Double
MeasurementParameters Parameters used by

initialization functions of
tracking filters

Simulink Bus

ObjectAttributes Additional information passed to
tracker

Simulink Bus

See objectDetection for more detailed explanation of these fields.

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time of the current invocation of the block. The time tag must also
be greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
real scalar

Track update time, specified as a real scalar in seconds. The tracker updates all tracks to this time.
The update time must always increase with each invocation of the block. The update time must be at
least as large as the largest Time specified in the Detections input port.

If the port is not enabled, the simulation clock managed by Simulink determines the update time.

Dependencies

To enable this port, on the Port Setting tab, set Prediction time source to Input port.

Cost Matrix — Cost matrix
real-valued Nt-by-Nd matrix

Cost matrix, specified as a real-valued Nt-by-Nd matrix, where Nt is the number of existing tracks and
Nd is the number of current detections.

The rows of the cost matrix correspond to the existing tracks. The columns correspond to the
detections. Tracks are ordered as they appear in the list of tracks from the All Tracks output port on
the previous invocation of the block.

In the first update to the tracker, or if the tracker has no previous tracks, assign the cost matrix a size
of [0, Nd]. The cost must be calculated so that lower costs indicate a higher likelihood that the tracker
assigns a detection to a track. To prevent certain detections from being assigned to certain tracks,
use Inf.

If this port is not enabled, the filter initialized by the Filter initialization function calculates the
cost matrix using the distance method.

Dependencies

To enable this port, on the Port Setting tab, select Enable cost matrix input.

4 Blocks

4-46

Detectable TrackIDs — Detectable track IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

Detectable track IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable tracks are
tracks that the sensors expect to detect. The first column of the matrix contains a list of track IDs that
the sensors report as detectable. The optional second column enables you to add the detection
probability for each track.

Tracks whose identifiers are not included in Detectable TrackIDs are considered undetectable. The
track deletion logic does not count the lack of detection as a "missed detection" for track deletion
purposes.

If this port is not enabled, the tracker assumes all tracks to be detectable at each invocation of the
block.

Dependencies

To enable this port, on the Port Setting tab, select Enable detectable track IDs Input.

Output

Confirmed Tracks — Confirmed tracks
Simulink bus containing MATLAB structure

Confirmed tracks, returned as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

The fields of the track structure are shown in “Track Structure” on page 4-56.

Depending on the track logic, a track is confirmed if:

• History – A track receives at least M detections in the last N updates. M and N are specified in
Confirmation threshold for the History logic.

• Integrated – The integrated probability of track existence is higher than the confirmation
threshold specified in Confirmation threshold for the Integrated logic.

Tentative Tracks — Tentative tracks
Simulink bus containing MATLAB structure

Tentative tracks, returned as a Simulink bus containing a MATLAB structure. A track is tentative
before it is confirmed.

The fields of the track structure are shown in “Track Structure” on page 4-56.

Dependencies

To enable this port, on the Port Setting tab, select Enable tentative tracks output.

 Joint Probabilistic Data Association Multi Object Tracker

4-47

All Tracks — Confirmed and tentative tracks
Simulink bus containing MATLAB structure

Combined list of confirmed and tentative tracks, returned as a Simulink bus containing a MATLAB
structure.

The fields of the track structure are shown in “Track Structure” on page 4-56.

Dependencies

To enable this port, on the Port Setting tab, select Enable all tracks output.

Info — Additional information for analyzing track updates
Simulink bus containing MATLAB structure

Additional information for analyzing track updates, returned as a Simulink bus containing a MATLAB
structure.

This table shows the fields of the info structure:

Field Description
TrackIDsAtStepBeginning Track IDs when step began.
CostMatrix Cost matrix for assignment.
Clusters Cell array of cluster reports. See “Feasible Joint

Events” on page 4-55 for more details.
InitiatedTrackIDs IDs of tracks initiated during the step.
DeletedTrackIDs IDs of tracks deleted during the step.
TrackIDsAtStepEnd Track IDs when the step ended.

The Clusters field can include multiple cluster reports. Each cluster report is a structure
containing:

Field Description
DetectionIndices Indices of clustered detections.
TrackIDs Track IDs of clustered tracks.
ValidationMatrix Validation matrix of the cluster. See “Feasible

Joint Events” on page 4-55 for more details.
SensorIndex Index of the originating sensor of the clustered

detections.
TimeStamp Mean time stamp of clustered detections.
MarginalProbabilities Matrix of marginal posterior joint association

probabilities.

Dependencies

To enable this port, on the Port Setting tab, select Enable information output.

4 Blocks

4-48

Parameters
Tracker Management

Filter initialization function — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a valid filter initialization function. The tracker uses the filter initialization function when
creating new tracks.

Sensor Fusion and Tracking Toolbox supplies many initialization functions:

Initialization Function Function Definition
initcvkf Initialize constant-velocity linear Kalman filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter
initcvekf Initialize constant-velocity extended Kalman filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity extended Kalman filter

in modified spherical coordinates.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function using this syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by objectDetection. The output
of this function must be a filter object: trackingKF, trackingEKF, trackingUKF, trackingCKF,
trackingGSF, trackingIMM, trackingMSCEKF, or trackingABF.

 Joint Probabilistic Data Association Multi Object Tracker

4-49

For guidance in writing this function, use the type command to examine the details of built-in
MATLAB functions. For example:

type initcvekf

Note trackerJPDA does not accept all filter initialization functions in Sensor Fusion and Tracking
Toolbox. The full list of filter initialization functions available in Sensor Fusion and Tracking Toolbox
are given in the Initialization section of “Estimation Filters”.

Feasible joint events generation function name — Feasible joint events generation
function name
@jpdaEvents (default) | function handle | character vector

Feasible joint events generation function name, specified as a function handle or as a character
vector containing the name of a feasible joint events generation function. This function generates
feasible joint event matrices from admissible events (usually given by a validation matrix) of a
tracking scenario. A validation matrix is a binary matrix listing all possible detections-to-track
associations. For details, see jpadEvents.

You can also write your own generation function. The function must have this syntax:

FJE = myfunction(ValidationMatrix)

The input and output of this function must exactly follow the formats used in jpdaEvents. For
guidance in writing this function, use the type command to examine the details of jpdaEvents:

type jpdaEvents

Maximum number of tracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the block can maintain, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that the block can process, specified as a positive integer. This value
should be greater than or equal to the highest SensorIndex value input at the Detections input
port.

Absolute tolerance between time stamps of detections — Absolute tolerance
between time stamps of detections
20 (default) | positive integer

Absolute time tolerance between detections for the same sensor, specified as a positive scalar. The
block expects detections from a sensor to have identical time stamps. However, if the time stamp
differences between detections of a sensor are within the margin specified by this parameter, these
detections will be used to update the track estimate based on the average time of these detections.

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

4 Blocks

4-50

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In Interpreted execution mode, you can debug the source code of the
block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Assignment

Threshold for assigning detections to tracks — Threshold for assigning detections
to tracks
30*[1 Inf] (default) | positive scalar | 1-by-2 vector of positive values

Threshold for assigning detections to tracks (or gating threshold), specified as a positive scalar or 1-
by-2 vector of [C1,C2], where C1 ≤ C2. If specified as a scalar, the specified value, val, is expanded to
[val, Inf].

Initially, the tracker executes a coarse estimation for the normalized distance between all the tracks
and detections. The tracker only calculates the accurate normalized distance for the combinations
whose coarse normalized distance is less than C2. Also, the tracker can only assign a detection to a
track if the accurate normalized distance between them is less than C1. See the distance function
used with tracking filters (such as trackingCKF and trackingEKF) for explanation of the distance
calculation.

Tips:

• Increase the value of C2 if there are track and detection combinations that should be calculated
for assignment but are not. Decrease this value if the cost calculation takes too much time.

• Increase the value of C1 if there are detections that should be assigned to tracks but are not.
Decrease this value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

Threshold to initialize a track — Threshold to initialize a track
0 (default) | scalar in the range [0, 1]

The probability threshold to initialize a new track, specified as a scalar in the range [0, 1]. If the
probabilities of associating a detection with any of the existing tracks are all smaller than
InitializationThreshold, the detection is used to initialize a new track. This allows detections
that are within the validation gate of a track but have an association probability lower than the
initialization threshold to spawn a new track.
Example: 0.1

Probability of detection — Probability of detection
0.9 (default) | scalar in the range [0, 1]

Probability of detection, specified as a scalar in the range [0, 1]. This property is used in calculations
of the marginal posterior probabilities of association and the probability of track existence when
initializing and updating a track.

Spatial density of clutter measurements — Spatial density of clutter measurements
1e-5 (default) | positive scalar

Spatial density of clutter measurements, specified as a positive scalar. The clutter density describes
the expected number of false positive detections per unit volume. It is used as the parameter of a

 Joint Probabilistic Data Association Multi Object Tracker

4-51

Poisson clutter model. When Type of track confirmation and deletion logic is set to
'Integrated', this parameter is also used in calculating the initial probability of track existence.

Track Logic

Type of track confirmation and deletion logic — Confirmation and deletion logic
type
History (default) | Integrated

Confirmation and deletion logic type, selected as:

• History – Track confirmation and deletion is based on the number of times the track has been
assigned to a detection in the latest tracker updates.

• Integrated – Track confirmation and deletion is based on the probability of track existence,
which is integrated in the assignment function.

Confirmation threshold [M N] — Track confirmation threshold for history logic
[2, 3] (default) | real-valued 1-by-2 vector of positive integers

Track confirmation threshold for history logic, specified as a real-valued 1-by-2 vector of positive
integers [M N]. A track is confirmed if it receives at least M detections in the last N updates.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'History'.

Deletion threshold [P Q] — Track deletion threshold for history logic
[5, 5] (default) | real-valued 1-by-2 vector of positive integers

Track deletion threshold for history logic, specified as a real-valued 1-by-2 vector of positive integers,
[P Q]. A track is deleted if, in the last Q updates, it was assigned less than P detections.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'History'.

Threshold for registering 'hit' or 'miss' — Threshold for registering a 'Hit' or a
'Miss'
0.2 (default) | scalar in the range [0, 1]

Threshold for registering a 'hit' or 'miss', specified as a scalar in the range [0, 1]. The track history
logic registers a 'miss' and the track will be coasted if the sum of the marginal probabilities of
assignments is below the HitMissThreshold. Otherwise, the track history logic registers a 'hit'.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'History'.

Confirmation threshold [Probability] — Track confirmation threshold for integrated
logic
0.95 (default) | positive scalar

Track confirmation threshold for integrated logic, specified as a real-valued positive scalar. A track is
confirmed if its probability of existence is greater than or equal to the confirmation threshold.

4 Blocks

4-52

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'Integrated'.

Deletion threshold [Probability] — Track deletion threshold for integrated logic
0.1 (default) | positive scalar

Track deletion threshold for integrated logic, specified as a positive scalar. A track is deleted if its
probability of existence drops below this threshold.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'Integrated'.

Spatial density of new targets — Spatial density of new targets
1e-5 (default) | positive scalar

Spatial density of new targets, specified as a positive scalar. The new target density describes the
expected number of new tracks per unit volume in the measurement space. It is used in calculating
the probability of track existence during track initialization.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'Integrated'.

Time rate of true target deaths — Time rate of true target deaths
0.01 (default) | scalar in the range [0, 1]

Time rate of true target deaths, specified as a scalar in the range [0, 1]. This parameter describes the
probability with which true targets disappear. It is related to the propagation of the probability of
track existence (PTE) :

PTE(t + δt) = 1− DeathRate δtPTE(t)
where DeathRate is the time rate of true target deaths, and δt is the time interval since the previous
update time t.

Dependencies

To enable this parameter, set Type of track confirmation and deletion logic to 'Integrated'.

Port Setting

Prediction time source — Source of prediction time
Auto (default) | Input port

Source for prediction time, specified as Input port or Auto. Select Input port to input an update
time by using the Prediction Time input port. Otherwise, the simulation clock managed by Simulink
determines the update time.

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this check box to enable the input of a cost matrix by using the Cost Matrix input port.

 Joint Probabilistic Data Association Multi Object Tracker

4-53

Enable detectable track IDs input — Enable detectable track IDs input
off (default) | on

Select this check box to enable the Detectable track IDs input port.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this check box to enable the output of tentative tracks through the Tentative Tracks output
port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this check box to enable the output of all the tracks through the All Tracks output port.

Enable information output — Enable output port for analysis information
off (default) | on

Select this check box to enable the output port for analysis information through the Info output port.

Source of output bus name — Source of output track bus name
Auto (default) | Property

Source of the output track bus name, specified as:

• Auto — The block automatically creates an output track bus name.
• Property — Specify the output track bus name by using the Specify an output bus name

parameter.

Source of output info bus name — Source of output info bus name
Auto (default) | Property

Source of the output info bus name, specified as one of these options:

• Auto — The block automatically creates an output info bus name.
• Property — Specify the output info bus name by using the Specify an output bus name

parameter.

Algorithms
Tracker Logic Flow

When a joint probabilistic data association (JPDA) tracker processes detections, track creation and
management follow these steps:

1 The tracker divides detections into multiple groups by originating sensor.
2 For each sensor:

a The tracker calculates the distances from detections to existing tracks and forms a
costMatrix.

b The tracker creates a validation matrix based on the assignment threshold (or gate
threshold) of the existing tracks. A validation matrix is a binary matrix listing all possible
detections-to-track associations. For details, see “Feasible Joint Events” on page 4-55.

4 Blocks

4-54

c Tracks and detections are then separated into clusters. A cluster can contain one track or
multiple tracks if these tracks share common detections within their validation gates. A
validation gate is a spatial boundary, in which the predicted detection of the track has a high
likelihood to fall. For details, see “Feasible Joint Events” on page 4-55.

3 Update all clusters following the order of the mean detection time stamp within the cluster. For
each cluster, the tracker:

a Generates all feasible joint events. For details, see jpdaEvents.
b Calculates the posterior probability of each joint event.
c Calculates the marginal probability of each individual detection-track pair in the cluster.
d Reports weak detections. Weak detections are the detections that are within the validation

gate of at least one track, but have probability association to all tracks less than the
IntitializationThreshold.

e Updates tracks in the cluster using correctjpda.
4 Unassigned detections (detections not in any cluster) and weak detections spawn new tracks.
5 The tracker checks all tracks for deletion. Tracks are deleted based on the number of scans

without association using 'History' logic or based on their probability of existence
using'Integrated' track logic.

6 All tracks are predicted to the latest time value (either the time input if provided, or the latest
mean cluster time stamp).

Feasible Joint Events

In the typical workflow for a tracking system, the tracker needs to determine if a detection can be
associated with any of the existing tracks. If the tracker only maintains one track, the assignment can
be done by evaluating the validation gate around the predicted measurement and deciding if the
measurement falls within the validation gate. In the measurement space, the validation gate is a
spatial boundary, such as a 2-D ellipse or a 3-D ellipsoid, centered at the predicted measurement. The
validation gate is defined using the probability information (state estimation and covariance, for
example) of the existing track, such that the correct or ideal detections have high likelihood (97%
probability, for example) of falling within this validation gate.

However, if a tracker maintains multiple tracks, the data association process becomes more
complicated, because one detection can fall within the validation gates of multiple tracks. For
example, in the following figure, tracks T1 and T2 are actively maintained in the tracker, and each of
them has its own validation gate. Since the detection D2 is in the intersection of the validation gates
of both T1 and T2, the two tracks (T1 and T2) are connected and form a cluster. A cluster is a set of
connected tracks and their associated detections.

 Joint Probabilistic Data Association Multi Object Tracker

4-55

To represent the association relationship in a cluster, the validation matrix is commonly used. Each
row of the validation matrix corresponds to a detection while each column corresponds to a track. To
account for the eventuality of each detection being clutter, a first column is added and usually
referred to as "Track 0" or T0. If detection Di is inside the validation gate of track Dj, then the (j, i+1)
entry of the validation matrix is 1. Otherwise, it is zero. For the cluster shown in the figure, the
validation matrix Ω is

Ω =
1 1 0
1 1 1
1 0 1

Note that all the elements in the first column of Ω are 1, because any detection can be clutter or false
alarm. One important step in the logic of joint probabilistic data association (JPDA) is to obtain all the
feasible independent joint events in a cluster. Two assumptions for the feasible joint events are:

• A detection cannot be emitted by more than one track.
• A track cannot be detected more than once by the sensor during a single scan.

Based on these two assumptions, feasible joint events (FJEs) can be formulated. Each FJE is mapped
to an FJE matrix Ωp from the initial validation matrix Ω. For example, with the validation matrix Ω,
eight FJE matrices can be obtained:

Ω1 =
1 0 0
1 0 0
1 0 0

, Ω2 =
0 1 0
1 0 0
1 0 0

, Ω3 =
1 0 0
0 1 0
1 0 0

, Ω4 =
1 0 0
0 0 1
1 0 0

Ω5 =
0 1 0
0 0 1
1 0 0

, Ω6 =
1 0 0
1 0 0
0 0 1

, Ω7 =
0 1 0
1 0 0
0 0 1

, Ω8 =
1 0 0
0 1 0
0 0 1

As a direct consequence of the two assumptions, the Ωp matrices have exactly one "1" value per row.
Also, except for the first column which maps to clutter, there can be at most one "1" per column.
When the number of connected tracks grows in a cluster, the number of FJE increases rapidly. The
jpdaEvents function uses an efficient depth-first search algorithm to generate all the feasible joint
event matrices.

Track Structure

The fields of a track structure are:

Field Definition
SourceIndex Unique source index used to distinguish tracking

sources in a multiple tracker environment.
TrackID Unique track identifier used to distinguish

multiple tracks.
BranchID Unique track branch identifier used to distinguish

multiple track branches.
UpdateTime Time at which the track is updated. Units are in

seconds.
Age Number of times the track survived.

4 Blocks

4-56

Field Definition
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
TrackLogic Confirmation and deletion logic type, returned as

'History' or 'Integrated'.
TrackLogicState The current state of the track logic type. Based

on the logic type TrackLogic, the logic state is
returned as:

• 'History' – A 1-by-K logical array, where K
is the number of latest track logical states
recorded. In the array, 1 denotes hit and 0
denote miss.

• 'Integrated' – A nonnegative scalar. The
scalar represents the integrated probability of
existence of the track. The default value is 0.5.

IsConfirmed Confirmation status. This field is true if the track
is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the track is
updated without a new detection.

IsSelfReported Indicate if the track is reported by the tracker.
This field is used in a track fusion environment. It
is returned as true by default.

ObjectClassID Integer value representing the object
classification. The value 0 represents an unknown
classification. Nonzero classifications apply only
to confirmed tracks.

ObjectAttributes Additional information of the track.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Global Nearest Neighbor Multi Object Tracker

Functions
correctjpda | getTrackPositions | getTrackVelocities | jpdaEvents |
predictTracksToTime

Objects
objectDetection | objectTrack | trackHistoryLogic | trackingABF | trackingCKF |
trackingEKF | trackingIMM | trackingKF | trackingUKF

System Objects
staticDetectionFuser | trackerGNN | trackerTOMHT

 Joint Probabilistic Data Association Multi Object Tracker

4-57

Topics
“Introduction to Multiple Target Tracking”
“Introduction to Assignment Methods in Tracking Systems”

Introduced in R2019b

4 Blocks

4-58

Track-Oriented Multi-Hypothesis Tracker
Track-Oriented Multi-Hypothesis Tracker
Library: Sensor Fusion and Tracking Toolbox

Description
The Track-Oriented Multi-Hypothesis Tracker block processes detections of multi targets from
multiple sensors. The tracker block initializes, confirms, predicts, corrects, and deletes tracks. Inputs
to the tracker block are detection reports generated by objectDetection, radarSensor,
monostaticRadarSensor, irSensor, or sonarSensor objects. The tracker block estimates the
state vector and state vector covariance matrix for each track. The tracker assigns detections based
on a track-oriented, multi-hypothesis approach.

Any new track starts in a tentative state. If enough detections are assigned to a tentative track, its
status changes to confirmed. If the detection already has a known classification (the ObjectClassID
field of the returned track is nonzero), that track is confirmed immediately. When a track is
confirmed, the multi-object tracker considers the track to represent a physical object. If detections
are not assigned to the track within a specifiable number of updates, the track is deleted. For an
overview of how the tracker functions, see “Algorithms” on page 4-69.

Ports
Input

Detections — Detection list
Simulink bus containing MATLAB structure

Detection list, specified as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description Type
NumDetections Number of detections Integer
Detections Object detections Array of objectDetection

structures. The first
NumDetections of these
detections are actual detections.

The fields of the detections structure are:

Field Description Type
Time Measurement time Single or Double
Measurement Object measurements Single or Double
MeasurementNoise Measurement noise covariance

matrix
Single or Double

 Track-Oriented Multi-Hypothesis Tracker

4-59

Field Description Type
SensorIndex Unique ID of the sensor Single or Double
ObjectClassID Object classification ID Single or Double
MeasurementParameters Parameters used by

initialization functions of
tracking filters

Simulink Bus

ObjectAttributes Additional information passed to
tracker

Simulink Bus

See objectDetection for a more detailed explanation of these fields.

Note The object detection structure contains a Time field. The time tag of each object detection
must be less than or equal to the time at the current invocation of the block. The time tag must also
be greater than the update time specified in the previous invocation of the block.

Prediction Time — Track update time
real scalar

Track update time, specified as a real scalar in seconds. The tracker updates all tracks to this time.
The update time must always increase with each invocation of the block. The update time must be at
least as large as the largest Time specified in the Detections input port.

If the port is not enabled, the simulation clock managed by Simulink determines the update time.
Dependencies

To enable this port, on the Port Setting tab, set Prediction time source to Input port.

Cost Matrix — Cost matrix
real-valued N-by-M matrix

Cost matrix, specified as a real-valued N-by-M matrix, where N is the number of branches and M is
the number of current detections.

The rows of the cost matrix must be in the same order as the list of branches. Branches are ordered
as they appear in the list of branches from the All Branches output port on the previous invocation
of the block. The columns correspond to the detections.

In the first update to the tracker, or if the tracker has no previous tracks, assign the cost matrix a size
of [0, N]. The cost must be calculated so that lower costs indicate a higher likelihood that the tracker
assigns a detection to a track. To prevent certain detections from being assigned to certain tracks,
use Inf.

If this port is not enabled, the filter initialized by the Filter initialization function calculates the
cost matrix using the distance method.
Dependencies

To enable this port, on the Port Setting tab, select Enable cost matrix input.

Detectable BranchIDs — Detectable Branch IDs
real-valued M-by-1 vector | real-valued M-by-2 matrix

4 Blocks

4-60

Detectable branch IDs, specified as a real-valued M-by-1 vector or M-by-2 matrix. Detectable
branches are branches that the sensors expect to detect. The first column of the matrix contains a list
of branch IDs that the sensors report as detectable. The optional second column enables you to add
the detection probability for each branch. Branches are listed in the All Branches output from the
previous invocation of the block.

Tracks whose identifiers are not included in Detectable BranchIDs are considered undetectable.
The track deletion logic does not count the lack of detection as a "missed detection" for track deletion
purposes.

If this port is not enabled, the tracker assumes all tracks to be detectable at each invocation of the
block.

Dependencies

To enable this port, on the Port Setting tab, select Enable detectable branch IDs input.

Output

Confirmed Tracks — Confirmed tracks
Simulink bus containing MATLAB structure

Confirmed tracks, returned as a Simulink bus containing a MATLAB structure. The structure has the
form:

Field Description
NumTracks Number of tracks
Tracks Array of track structures of a length set by the

Maximum number of tracks parameter. Only
the first NumTracks of these are actual tracks.

The fields of the track structure are shown in “Track Structure” on page 4-71.

A track is confirmed if it satisfies the threshold specified in the Confirmation threshold parameter
under the Track Logic tab.

Tentative Tracks — Tentative tracks
Simulink bus containing MATLAB structure

Tentative tracks, returned as a Simulink bus containing a MATLAB structure. A track is tentative
before it is confirmed.

The fields of the track structure are shown in “Track Structure” on page 4-71.

Dependencies

To enable this port, on the Port Setting tab, select Enable tentative tracks output.

All Tracks — Confirmed and tentative tracks
Simulink bus containing MATLAB structure

Combined list of confirmed and tentative tracks, returned as a Simulink bus containing a MATLAB
structure.

The fields of the track structure are shown in “Track Structure” on page 4-71.

 Track-Oriented Multi-Hypothesis Tracker

4-61

Dependencies

To enable this port, on the Port Setting tab, select Enable all tracks output.

Info — Additional information for analyzing track updates
Simulink bus containing MATLAB structure

Additional information for analyzing track updates, returned as a Simulink bus containing a MATLAB
structure.

This table shows the fields of the info structure:

Field Description
BranchIDsAtStepBeginning Branch IDs when the update began.
CostMatrix Cost of assignment matrix.
Assignments Assignments returned from the assignTOMHT

function.
UnassignedTracks IDs of unassigned branches returned from the

tracker.
UnassignedDetections IDs of unassigned detections returned from the

tracker.
InitialBranchHistory Branch history after branching and before

pruning.
InitialBranchScores Branch scores before pruning.
KeptBranchHistory Branch history after initial pruning.
KeptBranchScores Branch scores after initial pruning.
Clusters Logical array mapping branches to clusters.

Branches belong in the same cluster if they share
detections in their history or belong to the same
track either directly or through other branches.

TrackIncompatibility Branch incompatibility matrix. The (i,j)
element is true if the i-th and j-th branches have
shared detections in their history or belong to the
same track.

GlobalHypotheses Logical matrix mapping branches to global
hypotheses. Compatible branches can belong in
the same hypotheses.

GlobalHypScores Total score of global hypotheses.
PrunedBranches Logical array of branches that the

pruneTrackBranches function determines to
prune.

GlobalBranchProbabilities Global probability of each branch existing in the
global hypotheses.

BranchesDeletedByPruning Branches deleted by the tracker.
BranchIDsAtStepEnd Branch IDs when the update ended.

4 Blocks

4-62

Dependencies

To enable this port, on the Port Setting tab, select Enable information output.

All Branches — All branches
Simulink bus containing MATLAB structure

All branches, returned as a Simulink bus containing a MATLAB structure.

The fields of the branch structure are the same as the “Track Structure” on page 4-71.

Dependencies

To enable this port, on the Port Setting tab, select Enable all branches output.

Parameters
Tracker Management

Tracker identifier — Unique tracker identifier
0 (default) | nonnegative integer

Unique tracker identifier, specified as a nonnegative integer. This parameter is passed as the
SourceIndex in the tracker outputs, and distinguishes tracks that come from different trackers in a
multiple-tracker system. You must specify this property as a positive integer to use the track outputs
as inputs to a trackFuser object.
Example: 1

Filter initialization function — Filter initialization function
@initcvekf (default) | function handle | character vector

Filter initialization function, specified as a function handle or as a character vector containing the
name of a filter initialization function. The tracker uses a filter initialization function when creating
new tracks.

Sensor Fusion and Tracking Toolbox provides many initialization functions that are compatible with
this block.

Initialization Function Function Definition
initcvabf Initialize constant-velocity alpha-beta filter
initcaabf Initialize constant-acceleration alpha-beta filter
initcvekf Initialize constant-velocity extended Kalman filter.
initcackf Initialize constant-acceleration cubature filter.
initctckf Initialize constant-turn-rate cubature filter.
initcvckf Initialize constant-velocity cubature filter.
initcapf Initialize constant-acceleration particle filter.
initctpf Initialize constant-turn-rate particle filter.
initcvpf Initialize constant-velocity particle filter.
initcvkf Initialize constant-velocity linear Kalman filter.

 Track-Oriented Multi-Hypothesis Tracker

4-63

Initialization Function Function Definition
initcvukf Initialize constant-velocity unscented Kalman

filter.
initcaekf Initialize constant-acceleration extended Kalman

filter.
initcakf Initialize constant-acceleration linear Kalman

filter.
initcaukf Initialize constant-acceleration unscented Kalman

filter.
initctekf Initialize constant-turn-rate extended Kalman

filter.
initctukf Initialize constant-turn-rate unscented Kalman

filter.
initcvmscekf Initialize constant-velocity modified spherical

coordinates extended Kalman filter.
initrpekf Initialize constant-velocity range-parametrized

extended Kalman filter.
initapekf Initialize constant-velocity angle-parametrized

extended Kalman filter.
initekfimm Initialize tracking IMM filter.

You can also write your own initialization function. The function must have the following syntax:

filter = filterInitializationFcn(detection)

The input to this function is a detection report like those created by the objectDetection object.
The output of this function must be a filter object: trackingKF, trackingEKF, trackingUKF,
trackingCKF, trackingPF, trackingMSCEKF, trackingGSF, trackingIMM, or trackingABF.

To guide you in writing this function, you can examine the details of the supported functions from
within MATLAB. For example:

type initcvekf

Data Types: function_handle | char

Threshold for assigning detections to tracks — Threshold for assigning detections
to tracks
30*[0.3 0.7 1 Inf] (default) | positive scalar | 1-by-3 vector of positive values | 1-by-4 vector of
positive values

Threshold for assigning detections to tracks, specified as a positive scalar, a 1-by-3 vector of non-
decreasing positive values, [C1,C2,C3], or a1-by-4 vector of non-decreasing positive values,
[C1,C2,C3,C4]. If specified as a scalar, the specified value, val, will be expanded to [0.3,0.7,1,Inf]*val.
If specified as [C1,C2,C3], it will be expanded as [C1,C2,C3,Inf].

The thresholds control (1) the assignment of a detection to a track, (2) the creation of a new branch
from a detection, and (3) the creation of a new branch from an unassigned track. The threshold
values must satisfy: C1 <= C2 <= C3<=C4.

4 Blocks

4-64

• C1 defines a distance such that if a track has an assigned detection with lower distance than C1,
the track is no longer considered unassigned and does not create an unassigned track branch.

• C2 defines a distance such that if a detection has been assigned to a track with lower distance
than C2, the detection is no longer considered unassigned and does not create a new track branch.

• C3 defines the maximum distance for assigning a detection to a track.
• C4 defines combinations of track and detection for which an accurate normalized cost calculation

is performed. Initially, the tracker executes a coarse estimation for the normalized distance
between all the tracks and detections. The tracker only calculates the accurate normalized
distance for the combinations whose coarse normalized distance is less than C4.

Tips:

• Increase the value of C3 if there are detections that should be assigned to tracks but are not.
Decrease the value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

• Increasing the values C1 and C2 helps control the number of track branches that are created.
However, doing so reduces the number of branches (hypotheses) each track has.

• Increase the value of C4 if there are combinations of track and detection that should be calculated
for assignment but are not. Decrease it if cost calculation takes too long.

Data Types: single | double

Maximum number of tracks — Maximum number of tracks
100 (default) | positive integer

Maximum number of tracks that the block can maintain, specified as a positive integer.

Maximum number of sensors — Maximum number of sensors
20 (default) | positive integer

Maximum number of sensors that can be connected to the tracker, specified as a positive integer.
MaxNumSensors must be greater than or equal to the largest value of SensorIndex found in all the
detections used to update the tracker. SensorIndex is one of the properties of an
objectDetection object. The block's MaxNumSensors property determines how many sets of
ObjectAttributes fields each output track can have.

Track state parameters — Parameters of track-state reference frame
struct | struct array

Parameters of track-state reference frame, specified as a struct or a struct array. Use this property to
define the track state reference frame and how to transform the track from the tracker (called
source) coordinate system to the fuser coordinate system.
Data Types: struct

Track output method — Track output method
'Tracks' (default) | 'Hypothesis' | 'Clusters'

Track output method, specified as 'Tracks', 'Hypothesis', or 'Clusters'.

• 'Tracks' – Output the centroid of each track based on its track branches.
• 'Hypothesis' – Output branches that are in certain hypotheses. If you choose this option, list

the hypotheses to output using the HypothesesToOutput property.

 Track-Oriented Multi-Hypothesis Tracker

4-65

• 'Clusters' – Output the centroid of each cluster. Similar to the 'Tracks' output, but includes
all tracks within a cluster.

Data Types: char

Simulate using — Type of simulation to run
Interpreted Execution (default) | Code Generation

• Interpreted execution — Simulate the model using the MATLAB interpreter. This option
shortens startup time. In the Interpreted execution mode, you can debug the source code of
the block.

• Code generation — Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time.

Hypotheses Management

Maximum number of hypotheses to be maintained — Maximum number of hypotheses to
be maintained
5 (default) | positive integer

Maximum number of hypotheses maintained by the tracks in cases of ambiguity, specified as a
positive integer. Larger values increase the computational load.
Example: 10
Data Types: single | double

Maximum number of track branches per track — Maximum number of track branches
per track
3 (default) | positive integer

Maximum number of track branches (hypotheses) allowed for each track, specified as a positive
integer. Larger values increase the computational load.
Data Types: single | double

Maximum number of scans maintained in the branch history — Maximum number of
scans maintained in the branch history
4 (default) | positive integer

Maximum number of scans maintained in the branch history, specified as a positive integer. The
number of track history scans is typically from 2 through 6. Larger values increase the computational
load.
Data Types: single | double

Minimum probability required to keep a branch — Minimum probability required to
keep a branch
.001 (default) | positive scalar

Minimum probability required to keep a track branch, specified as a positive scalar less than one. Any
track with probability lower than the specified probability is pruned. Typical values are 0.001 to
0.005.
Example: .003

4 Blocks

4-66

Data Types: single | double

N-scan pruning method — N-scan pruning method
'None' (default) | 'Hypothesis'

N-scan pruning method, specified as 'None' or 'Hypothesis'. In N-scan pruning, branches that
belong to the same track are pruned (deleted) if, in the N-scans history, they contradict the most
likely branch for the same track. The most-likely branch is defined in one of two ways:

• 'None' – No N-scan pruning is performed.
• 'Hypothesis' – The chosen branch is in the most likely hypothesis.

Example: 'Hypothesis'

Track Logic

Confirmation threshold [positive scalar] — Minimum score required to confirm track
20 (default) | positive scalar

Minimum score required to confirm a track, specified as a positive scalar. Any track with a score
higher than this threshold is confirmed.
Example: 12
Data Types: single | double

Deletion threshold [negative scalar] — Maximum score drop for track deletion
-7 (default) | scalar

The maximum score drop before a track is deleted, specified as a scalar. Any track with a score that
falls by more than this parameter from the maximum score is deleted. Deletion threshold is affected
by the probability of a false alarm.
Example: -1
Data Types: single | double

Probability of detection used for track score — Probability of detection used for
track score
0.9 (default) | positive scalar between 0 and 1

Probability of detection, specified as a positive scalar between 0 and 1. This property is used to
compute track score.
Example: 0.5
Data Types: single | double

Rate of false positives used for track score — Probability of false alarm used for
track score
1e-6 (default) | scalar

The probability of false alarm, specified as a scalar. This property is used to compute track score.
Example: 1e-5
Data Types: single | double

 Track-Oriented Multi-Hypothesis Tracker

4-67

Volume of the sensor's detection bin — Volume of sensor measurement bin
1 (default) | positive scalar

The volume of a sensor measurement bin, specified as a positive scalar. For example, if a radar
produces a 4-D measurement, which includes azimuth, elevation, range, and range rate, the 4-D
volume is defined by the radar angular beam width, the range bin width, and the range-rate bin
width. Volume is used in calculating the track score when initializing and updating a track.
Example: 1.5
Data Types: single | double

Rate of new tracks per unit volume — Rate of new tracks per unit volume
1 (default) | positive scalar

The rate of new tracks per unit volume, specified as a positive scalar. The parameter is used in
calculating the track score during track initialization.
Example: 2.5
Data Types: single | double

Port Setting

Prediction time source — Source of prediction time
Auto (default) | Input port

Source for prediction time, specified as Input port or Auto. Select Input port to input an update
time by using the Prediction Time input port. Otherwise, the simulation clock managed by Simulink
determines the update time.

Enable cost matrix input — Enable input port for cost matrix
off (default) | on

Select this parameter to enable the input of a cost matrix by using the Cost Matrix input port.

Enable detectable branch IDs input — Enable detectable branch IDs input
off (default) | on

Select this parameter to enable the Detectable branch IDs input port.

Enable tentative tracks output — Enable output port for tentative tracks
off (default) | on

Select this parameter to enable the output of tentative tracks through the Tentative Tracks output
port.

Enable all tracks output — Enable output port for all tracks
off (default) | on

Select this parameter to enable the output of all the tracks through the All Tracks output port.

Enable information output — Enable output port for analysis information
off (default) | on

Select this parameter to enable the output port for analysis information through the Info output port.

4 Blocks

4-68

Enable all branches output — Enable output port for all branches
off (default) | on

Select this parameter to enable the output of all the branches through the All Branches output port.

Source of output bus name — Source of output track bus name
Auto (default) | Property

Source of the output track bus name, specified as:

• Auto — The block automatically creates an output track bus name.
• Property — Specify the output track bus name by using the Specify an output bus name

parameter.

Source of output info bus name — Source of output information bus name
Auto (default) | Property

Source of the output info bus name, specified as:

• Auto — The block automatically creates an output info bus name.
• Property — Specify the output info bus name by using the Specify an output info bus name

parameter.

Dependencies

To enable this parameter, on the Port Setting tab, select Enable information output.

Algorithms
Tracker Logic Flow

When you process detections using the tracker, track creation and management follow these steps.

1 The tracker attempts to assign detections to existing tracks.
2 The track allows for multiple hypotheses about the assignment of detections to tracks.
3 Unassigned detections result in the creation of new tracks.
4 Assignments of detections to tracks create branches for the assigned tracks.
5 Tracks with no assigned detections are coasted (predicted).
6 All track branches are scored. Branches with low initial scores are pruned.
7 Clusters of branches that share detections (incompatible branches) in their history are

generated.
8 Global hypotheses of compatible branches are formulated and scored.
9 Branches are scored based on their existence in the global hypotheses. Low-scored branches are

pruned.
10 Additional pruning is performed based on N-scan history.
11 All tracks are corrected and predicted to the input time.

 Track-Oriented Multi-Hypothesis Tracker

4-69

Assignment Thresholds for Multi-Hypothesis Tracker

Three assignment thresholds, C1 , C2, and C3, control (1) the assignment of a detection to a track, (2)
the creation of a new branch from a detection, and (3) the creation of a new branch from an
unassigned track. The threshold values must satisfy: C1 <= C2 <= C3.

If the cost of an assignment is C = costmatrix(i,j), the following hypotheses are created based
on comparing the cost to the values of the assignment thresholds. Below each comparison, there is a
list of the possible hypotheses.

Tips:

4 Blocks

4-70

• Increase the value of C3 if there are detections that should be assigned to tracks but are not.
Decrease the value if there are detections that are assigned to tracks they should not be assigned
to (too far away).

• Increasing the values C1 and C2 helps control the number of track branches that are created.
However, doing so reduces the number of branches (hypotheses) each track has.

• To allow each track to be unassigned, set C1 = 0.
• To allow each detection to be unassigned, set C2 = 0.

Data Precision

All numeric inputs can be single or double precision, but they all must have the same precision.

Track Structure

The fields of a track structure are:

Field Definition
SourceIndex Unique source index used to distinguish tracking

sources in a multiple tracker environment.
TrackID Unique track identifier used to distinguish

multiple tracks.
BranchID Unique track branch identifier used to distinguish

multiple track branches.
UpdateTime Time at which the track is updated. Units are in

seconds.
Age Number of times the track survived.
State Value of state vector at the update time.
StateCovariance Uncertainty covariance matrix.
TrackLogic Confirmation and deletion logic type, returned as

'History' or 'Integrated'.
TrackLogicState The current state of the track logic type. Based

on the logic type TrackLogic, the logic state is
returned as:

• 'History' – A 1-by-K logical array, where K
is the number of latest track logical states
recorded. In the array, 1 denotes hit and 0
denote miss.

• 'Integrated' – A nonnegative scalar. The
scalar represents the integrated probability of
existence of the track. The default value is 0.5.

IsConfirmed Confirmation status. This field is true if the track
is confirmed to be a real target.

IsCoasted Coasting status. This field is true if the track is
updated without a new detection.

 Track-Oriented Multi-Hypothesis Tracker

4-71

Field Definition
IsSelfReported Indicate if the track is reported by the tracker.

This field is used in a track fusion environment. It
is returned as true by default.

ObjectClassID Integer value representing the object
classification. The value 0 represents an unknown
classification. Nonzero classifications apply only
to confirmed tracks.

ObjectAttributes Additional information of the track.

References
[1] Werthmann, J. R. "Step-by-Step Description of a Computationally Efficient Version of Multiple

Hypothesis Tracking." In International Society for Optics and Photonics, Vol. 1698, pp.
228-301, 1992.

[2] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House
Radar Library, Boston, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
getTrackPositions | getTrackVelocities

Objects
objectDetection | objectTrack | trackingABF | trackingCKF | trackingEKF | trackingGSF
| trackingIMM | trackingKF | trackingMSCEKF | trackingPF | trackingUKF

System Objects
irSensor | monostaticRadarSensor | radarSensor | sonarSensor | trackerGNN

Introduced in R2020a

4 Blocks

4-72

Apps

5

Tracking Scenario Designer
Design tracking scenarios, configure platforms and sensors, and generate synthetic object detections

Description
The Tracking Scenario Designer app enables you to design and visualize synthetic tracking
scenarios for testing your estimation and tracking systems.

Using the app, you can:

• Create platforms (including planes, cars, towers, and boats) using an interactive interface and
configure platform properties in the tracking scenario.

• Configure 2D or 3D trajectories (including position, orientation, and velocities) of platforms using
waypoint trajectories in the tracking scenario.

• Create radar sensors mounted on the platform and configure sensor properties.
• Simulate the tracking scenario and dynamically visualize the platform trajectories, sensor

coverages, and object detections.
• Generate MATLAB code of the scenario and sensors, and then programmatically modify the

scenario for application purposes. You can also import the previously saved scenario back into the
app for further simulation.

Open the Tracking Scenario Designer App
• MATLAB Toolstrip: On the Apps tab, under Signal processing and communications, click the

app icon .
• MATLAB command prompt: Enter trackingScenarioDesigner.

Examples

Set Up Platforms in Tracking Scenario Designer

To launch the Tracking Scenario Designer, use the command:

trackingScenarioDesigner

To add a platform in the app, select one platform (tower, for example) form the PLATFORM tab and
click the Platform Canvas to place the platform.

5 Apps

5-2

You can change the platform properties through the Platform Properties tab. For example, to set
the platform center to the origin, set all initial position coordinates to zero in Initial Pose.

You can also change the Length, Width, and Height of the platform. By default, the Tower
platform's offset in the z direction is half of the platform height, which places the tower center at its
bottom. If the offset is zero, then the platform center collocates with the tower's geometric center.

 Tracking Scenario Designer

5-3

The center offset is defined as the position vector from the geometric center of a platform to the
specified center of the platform.

In the app, you can also specify the uncertainty of the estimated platform pose through the Pose
Estimation tab. The value of each parameter in the tab represents the standard deviation of the
corresponding quantity. The standard deviation setup is useful for some practical tracking
considerations. For example, the accuracy of a sensor mounted on a tower is impacted if the pose of
the tower includes errors. In the app, if you set the standard deviations to be nonzero values for a
platform with a mounting sensor, you can observe the inaccuracy of the sensor detections introduced
by these standard deviations.

You can also add other platforms in the app. Add a Plane platform on the canvas and set its initial
position as [50, -50, 100]. You can see the center of the plane (red) is at its geometric center by
default.

5 Apps

5-4

You can change the default setting of any class (and define new classes) using the Platform Gallery
Editor, which you can open by clicking the drop-down arrow on the PLATFORM tab.

You cannot edit the class of a currently used platform. To delete a platform, select the platform from
the drop-down list and click the delete (trash can) icon.

 Tracking Scenario Designer

5-5

Set Up Trajectories of Platforms in Tracking Scenario Designer

To launch the Tracking Scenario Designer, use the command:

trackingScenarioDesigner

Add a Plane platform on the platform canvas and place the plane at [0, 0, 1000] by specifying its
initial position through the Initial Pose tab as:

Next, add a few waypoints to the platform. Right-click the platform and select Add Waypoints, or
select the platform and click Waypoints on the TRAJECTORY toolstrip. Then consecutively click the
canvas to add waypoints. To end the action, on the keyboard, click Enter. You can drag the waypoints
to change the trajectory. The specified trajectory represents the trajectory of the platform center
defined in the Platform Center Offset tab.

5 Apps

5-6

 Tracking Scenario Designer

5-7

On the TRAJECTORY tab, if the Trajectory Course and the Platform Orientation parameters are
set to auto, the app calculates the trajectory by fitting a smooth curve including all the waypoints and
aligning the platform orientation with the trajectory. With Time set to Auto, the app calculates the
trajectory duration (Time) based on the default platform speed, which can be specified through the
PLATFORM Gallery Editor.

To display the trajectory table below, click Trajectory Table. To display the Time-Altitude plot, click
Time-Altitude Plot.

5 Apps

5-8

 Tracking Scenario Designer

5-9

After changing a trajectory parameter selection from Auto to Table, you can edit the corresponding
quantity in the Trajectory Table. After you edit the table, observe the change of the trajectory .

You can drag points up and down in altitude in the Time-Altitude plot. After setting Time to Table,
you can drag points forward and backward in time.

To delete a trajectory, select the trajectory and click Delete Trajectory.

5 Apps

5-10

Set Up Sensors In Tracking Scenario Designer

The MAT-file TSD_Platforms was previously saved with a tracking scenario session. To launch the
application and load the session file, use the command:

trackingScenarioDesigner('TSD_Platforms.mat')

The application opens and loads the scenario. The scenario contains two platforms:

• A 60-meter high tower located at the origin of the local NED frame.
• A target traveling at a course speed of 750 m/s around the tower.

Next, mount a sensor on the top of the tower to monitor its surroundings. There are four predefined
classes of sensors available in the app.

 Tracking Scenario Designer

5-11

You can also click the drop-down arrow to edit the existing classes or add new classes of sensors.

In the app, you select the tower platform, choose a rotator sensor, and place it on the top of the
tower. Click the projection button to enable a y-z projection view.

5 Apps

5-12

The sensor is positioned at the bottom of the tower by default. To move the sensor to the top of the
tower, change its Mounting Location & Angles.

 Tracking Scenario Designer

5-13

Enable detection in the elevation by selecting Report Elevation. Set the sensor's Field of View for
Elevation to 15 deg to allow a wide coverage region in elevation. Set the Mechanical scan limits
for Elevation to [-15, -5] deg to let the sensor "stare up".

To simulate the tracking scenario and observe the detection of the target generated by the sensor,
Click Run. (You can also choose Run Without Detections.)

You find that the sensor generates only one detection. You can let the sensor scan faster and generate
more detections by adjusting its scan rate using two parameters:

• Update Rate — Determines the number of field of view slices the sensor steps through per second.
• Field of View — Determines the width of each sensor field of view slice or beam.

In the app, increase the Update Rate of the sensor to 200 Hz. With the azimuthal field of view set as
1 deg, the resulting scan rate in the azimuth is 200 deg/s, which is above the default Max scan rate
(75 deg/s). Increase Max scan rate to 300 deg/s to allow a high scan rate.

Click Run to simulate the scenario again. The sensor now generates multiple sets of detections.

5 Apps

5-14

You can also export the script of the scenario by clicking Export. Using the exported script, you can
modify the scenario programactically and use the generated scenario to test various tracking
algorithms. See “Design and Simulate Tracking Scenario with Tracking Scenario Designer” example
for more details on how to modify the generated scenario.

• “Design and Simulate Tracking Scenario with Tracking Scenario Designer”

Parameters
Platform Properties — Platform properties including dimensions, pose, and RCS
tab

To enable the Platform Properties parameters, add at least one platform to the scenario. Then,
select a platform from either the Platform Canvas or the Platform Properties parameter. The
parameter values in the Platform Properties tab are based on the platform that you select.

Parameter Description
Current Platform Currently selected platform, specified as a list of

platforms in the scenario.
Name Name of platform, specified as a string.
Class Platform class, specified as Plane, Tower, Car,

or Boat.

You can change the default settings (such as Speed) of the four platform classes and add new
platform classes using the Platform Gallery Editor. You can open the editor by clicking the drop-
down arrow on the PLATFORM tab and selecting Add/Edit Platform Gallery.

Dimensions — Platform dimensions
tab

 Tracking Scenario Designer

5-15

Platform dimensions, specified as Length, Width, and Height in meters.

Parameter Description
Length (m) Length of platform, specified as a nonnegative

scalar in meters.
Width (m) Width of platform, specified as a nonnegative

scalar in meters.
Height (m) Height of platform, specified as a nonnegative

scalar in meters.

You can also specify the Platform Center Offset using the X, Y, and Z offsets. The offset is measured
from the geometric center of the platform to the specified center.

Parameter Description
X (m) Offset in the x-direction, specified as a scalar in

meters.
Y (m) Offset in the y-direction, specified as a scalar in

meters.
Z (m) Offset in the z-direction, specified as a scalar in

meters.

Initial Pose — Initial position and orientation of platform
tab

Initial position and orientation of platform, specified by three position coordinates X, Y, and Altitude
in meters and three rotational angles Roll, Pitch, and Yaw in degrees.

Parameter Description
X (m) Initial x coordinate of the platform center in the

scenario frame, specified as a scalar in meters.
Y (m) Initial y coordinate of the platform center in the

scenario frame, specified as a scalar in meters.
Altitude (m) Initial altitude of the platform center in the

scenario frame, specified as a scalar in meters.
Roll (°) Orientation angle of the platform about the x-axis

of the scenario frame, specified as a scalar in
degrees.

Pitch (°) Orientation angle of the platform about the y-axis
of the scenario frame, specified as a scalar in
degrees.

Yaw (°) Orientation angle of the platform about the z-axis
of the scenario frame, specified as a scalar in
degrees.

Pose Estimation — Accuracy of platform pose estimation
tab

Accuracy of the platform pose estimation, specified as standard deviations for three rotational
angles : Roll, Pitch, and Yaw, and two translational motion quantities : Position and Velocity.

5 Apps

5-16

When the standard deviation value of any motion quantity is specified as nonzero, the platform pose
contains errors corresponding to that motion quantity.

Parameter Description
Roll (°) Standard deviation of the roll angle of the

platform, specified as a scalar in degrees.
Pitch (°) Standard deviation of the pitch angle of the

platform, specified as a scalar in degrees.
Yaw (°) Standard deviation of the yaw angle of the

platform, specified as a scalar in degrees.
Position (m) Standard deviation of position coordinates of the

platform, specified as a scalar in degrees.
Velocity (m) Standard deviation of velocity coordinates of the

platform, specified as a scalar in degrees.

Radar Cross Section — Radar cross section information
tab

Radar cross section information, including RCS pattern information and RCS Viewer specifications.
You can specify a constant RCS pattern as a scalar in dBsm, or you can import RCS information
through the Import Signature window after selecting the Import RCS tab.

Parameter Description
Constant RCS Pattern RCS pattern, specified as a positive constant in

dBsm.
Import RCS Import RCS pattern through an Import

Signature window.

You can also specify the RCS Viewer by changing the Elevation Cut in degrees and the Frequency
Cut in Hz.

Parameter Description
Elevation Cut Elevation cut of RCS viewer, specified as a scalar

in degrees.
Frequency Cut Frequency cut of RCS viewer, specified as a

scalar in Hz.

Sensor Properties — Sensor properties including sensor mounting, scanning settings,
and detection settings
tab

To enable the Sensor Properties parameters, add at least one sensor to the platform. Then, select a
sensor from either the Sensor Canvas or the Sensor Properties tab. The parameter values in the
Sensor Properties tab are based on the platform and sensor that you select.

Parameter Description
Current Platform Current platform on which the sensor is mounted,

specified as a list of platforms in the scenario.

 Tracking Scenario Designer

5-17

Parameter Description
Current Sensor Currently selected sensor, specified as a list of

sensors in the scenario.
Name Name of sensor, specified as a string.
Update Rate Sensor update rate, specified as a positive scalar

in Hz.
Type Sensor type, specified as:

• Sector Monostatic Radar
• No Scanning Monostatic Radar
• Rotator Monostatic Radar
• Raster Monostatic Radar

Mounting Location & Angles — Sensor mounting location and angles
tab

Sensor mounting location and angles on the platform, specified by three position coordinates X, Y,
and Z in meters and three rotational angles Roll, Pitch, and Yaw in degrees.

Parameter Description
X (m) x coordinate of the sensor on the platform frame,

specified as a scalar in meters.
Y (m) y coordinate of the sensor on the platform frame,

specified as a scalar in meters.
Z (m) z coordinate of the sensor on the platform frame,

specified as a scalar in meters.
Roll (°) Orientation angle of the sensor about the x-axis of

the platform frame, specified as a scalar in
degrees.

Pitch (°) Orientation angle of the sensor about the y-axis of
the platform frame, specified as a scalar in
degrees.

Yaw (°) Orientation angle of the sensor about the z-axis of
the platform frame, specified as a scalar in
degrees.

Scanning & Field of view — Scanning and field of view of sensor
tab

Parameter Description
Report Elevation Enable sensor reporting elevation information,

specified as on or off.
Scan Mode Mode of sensor scanning, selected as

Mechanical, Eletric, or Mechanical and
eletric.

5 Apps

5-18

Parameter Description
Field of View (°) Field of view of the sensor, specified as two

nonnegative scalars representing Azimuth and
Elevation in degrees.

Mechanical scan limits (°) Upper and lower limits of mechanical scan,
specified as two scalars for Azimuth in degrees.
If Report Elevation is enabled, you can specify
the scan limits for Elevation in degrees.

To enable this parameter, set the Scan Mode to
Mechanical or Mechanical and eletric.

Electronic scan limits (°) Upper and lower limits of electronic scan,
specified as two scalars for Azimuth in degrees.
If Report Elevation is enabled, you can specify
the scan limits for Elevation in degrees .

To enable this parameter, set the Scan Mode to
Electric or Mechanical and eletric.

Max scan rate (°/s) Maximum scan rate, specified as a scalar for
Azimuth in degrees per second. If Report
Elevation is enabled, you can specify the
maximum scan rate for Elevation in degrees per
second.

If the specified scan rate (Update Rate * Field
of View) is larger than the Max scan rate, the
sensor scan rate is truncated at the Max scan
rate.

To enable this parameter, set the Scan Mode to
Mechanical or Mechanical and eletric.

Detections Settings — Detections Settings
tab

Detection settings of the sensor, specified by using detections probability, false alarm rate, reference
range, and reference RCS.

Parameter Description
Detection Probability Probability of sensor successfully detecting a

target, specified as a scalar in [0,1]. This quantity
defines the probability of detecting a target with
a radar cross-section larger than the Reference
RCS and within the Reference Range of the
sensor.

False Alarm Rate Probability of sensor making a false detection in
each sensor resolution cell, specified as a scalar
in [1e-7,1e-3].

 Tracking Scenario Designer

5-19

Parameter Description
Reference Range (m) Reference range for the given Detection

Probability and the given Reference RCS,
specified as a positive scalar in meters.

Reference RCS (dBsm) Reference radar cross-section (RCS) for the given
Detection Probability and the given Reference
Range, specified as a scalar in dBsm.

Advanced Settings — Advance settings
tab

Advanced settings of the sensor are listed in this table.

Parameter Description
Max Number of Detections Maximum number of detections reported by the

sensor, specified as a positive integer.
Report False Alarm Enable the sensor to model and report false

alarms, specified as on or off. When specified as
off, the sensor does not generate any false
detection.

Report Range Rate Enable the radar to measure and report target
range rates, specified as on or off.

Model Target Occlusion Enable occlusion of objects from extended
objects, specified as on or off. Turn off this
option to disable occlusion of extended objects.

Model Range Ambiguity Enable range ambiguities, specified as on or off.
When specified as off, the sensor cannot resolve
range ambiguities and target ranges beyond the
Max Unambiguous Range are wrapped into the
interval [0, MaxUnambiguousRange]. When
false, targets are reported at their unambiguous
range.

Model Range Rate Ambiguity Enable range-rate ambiguities, specified as on or
off. Turn on this option to enable range-rate
ambiguities by the sensor. When true, the sensor
does not resolve range rate ambiguities and
target range rates beyond the Max
Unambiguous Radial Speed are wrapped into
the interval [–MaxUnambiguousRadialSpeed,
MaxUnambiguousRadialSpeed]. When false,
targets are reported at their unambiguous range
rate.

To enable this parameter, set Report Range
Rate to on.

5 Apps

5-20

Parameter Description
Max Unambiguous Range (m) Maximum unambiguous range, specified as a

positive scalar. Maximum unambiguous range
defines the maximum range for which the radar
can unambiguously resolve the range of a target.

Max Unambiguous Radial Speed (m/s) Maximum unambiguous radial speed, specified as
a positive scalar. Radial speed is the magnitude of
the target range rate. Maximum unambiguous
radial speed defines the radial speed for which
the radar can unambiguously resolve the range
rate of a target.

To enable this parameter, set Report Range
Rate to on.

Accuracy & Noise — Accuracy and noise settings
tab

The accuracy and noise setting of the sensor are listed in this table.

Parameter Description
Azimuth (°) Azimuth resolution and bias, specified as two

nonnegative scalars:

• Azimuth resolution defines the minimum
separation in azimuth angle at which the
radar can distinguish two targets.

• Azimuth bias is expressed as a fraction of the
azimuth resolution. This value sets a lower
bound on the azimuthal accuracy of the
sensor.

Elevation (°) Elevation resolution and bias, specified as two
nonnegative scalars:

• Elevation resolution defines the minimum
separation in elevation angle at which the
radar can distinguish two targets.

• Elevation bias is expressed as a fraction of the
azimuth resolution. This value sets a lower
bound on the elevation accuracy of the sensor.

To enable this parameter, turn on Report
Elevation.

 Tracking Scenario Designer

5-21

Parameter Description
Range (m) Range resolution and bias, specified as two

nonnegative scalars:

• Range resolution defines the minimum
separation in range at which the radar can
distinguish between two targets.

• Range bias is expressed as a fraction of the
range resolution. This value sets a lower
bound on the range accuracy of the radar.

Range Rate (m/s) Range rate resolution and bias, specified as two
nonnegative scalars:

• Range rate resolution defines the minimum
separation in range rate at which the radar
can distinguish between two targets.

• Range rate bias is expressed as a fraction of
the range rate resolution. This value sets a
lower bound on the range rate accuracy of the
radar.

Add noise to measurements Add measurement noise in the detections,
specified as on or off.

TRAJECTORY — Trajectory settings
tab on toolstrip

To edit the trajectory and control the trajectory generation, use the trajectory settings.

• Click Waypoints to add waypoints to a selected platform.
• Click Delete Trajectory to delete an existing trajectory.
• Click Trajectory Table to display the trajectory table.
• Click Time-Altitude plot to display the time vs altitude plot.

You can also choose to automatically generate the waypoint trajectory or manually input waypoints by
changing the selections of the PATH AND ORIENTATION and the SPEED parameters.

Parameter Selection
Trajectory Course • Auto: When selected, the app generates the course by fitting

all the waypoints with a smooth curve.
• Table: When selected, you can manually edit the trajectory

course at each waypoint using the Trajectory Table.

5 Apps

5-22

Parameter Selection
Platform Orientation • Auto: When selected, the app calculates the yaw and pitch

angles of the platform to align the platform with the trajectory
and calculates the roll angle to cancel the centripetal
acceleration.

• Table: When selected, you can manually edit the yaw, pitch,
and roll angles at each waypoint using the Trajectory Table.

Time • Auto: When selected, the app calculates the visiting time at all
the waypoints.

• Table: When selected, you can manually edit the visiting time
at each waypoint using the Trajectory Table.

Ground speed • Auto: When selected, the app uses the default ground speed
for each platform class at each waypoint.

• Table: When selected, you can manually edit the ground speed
at each waypoint using the Trajectory Table.

Climb Rate • Auto: When selected, the app calculates the climb rate at each
waypoint to smoothly fit all the waypoints.

• Table: When selected, you can manually edit the climb rate at
each waypoint using the Trajectory Table.

Trajectory Table — Trajectory information
table

Trajectory information for each waypoint, specified as a table of scalars. When you insert waypoints
on the platform canvas, the table is automatically generated . Click Trajectory Table under the
Trajectory tab to display the table.

After you change the parameter values in the table, the platform trajectory changes accordingly on
the canvas. The table includes these trajectory parameters.

Parameter Description
Times (s) Time at which the platform visits the waypoint,

specified as a scalar in seconds.
X (m) x coordinate of the waypoint in the scenario

navigation frame.
Y (m) y coordinate of the waypoint in the scenario

navigation frame.
Altitude (m) Altitude of the platform waypoint in the scenario

navigation frame.

 Tracking Scenario Designer

5-23

Parameter Description
Course (°) The direction of motion on the x-y plane, specified

as an angle measurement from the x direction.
Ground speed (m/s) Magnitude of the projected velocity on the x-y

plane, specified as a scalar in meters.
Climb Rate (m/s) Climb rate of the waypoint, which is the

projection of the platform velocity in the z
direction.

Roll (°) Orientation angle of the platform about the x-axis
of the scenario frame, in degrees, specified as a
scalar.

Pitch (°) Orientation angle of the platform about the y-axis
of the scenario frame, in degrees, specified as a
scalar.

Yaw (°) Orientation angle of the platform about the z-axis
of the scenario frame, in degrees, specified as a
scalar.

Programmatic Use
The trackingScenarioDesigner command opens the Tracking Scenario Designer app.

The trackingScenarioDesigner(scenarioFileName) command opens the app and loads the
specified scenario MAT-file into the app. This file must be a tracking scenario file saved from the app.

If the scenario file is not in the current folder or not in a folder on the MATLAB path, specify the full
path name. For example:

drivingScenarioDesigner('C:\Desktop\myTrackingScenario.mat');

You can also load prebuilt scenario files. Before loading a prebuilt scenario, add the folder containing
the scenario to the MATLAB path.

Tips
• The apps uses the NED frame as the default coordinate frame, in which a platform with positive

altitude has negative z coordinate.
• You can undo (press Ctrl+Z) and redo (press Ctrl+Y) changes you make on the scenario and

sensor canvases. For example, you can use these keyboard shortcuts to delete a recently placed
road center or redo the movement of a radar sensor.

• You can use the Space bar on the keyboard to reset the Platform Canvas to a view containing all
platforms and trajectories.

• You can use the Enter and Esc keys on the keyboard to accept and cancel a waypoint,
respectively.

5 Apps

5-24

See Also
Objects
Platform | monostaticRadarSensor | radarSensor | rcsSignature | trackingScenario |
waypointTrajectory

Topics
“Design and Simulate Tracking Scenario with Tracking Scenario Designer”

Introduced in R2020a

 Tracking Scenario Designer

5-25

	Functions
	allanvar
	ctrect
	ctrectmeas
	ctrectmeasjac
	ctrectjac
	jpdaEvents
	insfilter
	ecompass
	magcal
	monteCarloRun
	partitionDetections
	randrot
	angvel
	rotvecd
	eulerd
	meanrot
	slerp
	classUnderlying
	compact
	conj
	ctranspose, '
	transformMotion
	dist
	euler
	exp
	ldivide, .\
	log
	minus, -
	mtimes, *
	norm
	normalize
	ones
	parts
	power, .^
	prod
	rdivide, ./
	rotateframe
	rotatepoint
	rotmat
	rotvec
	times, .*
	transpose, .'
	uminus, -
	zeros
	constvel
	constveljac
	cvmeas
	cvmeasjac
	constacc
	constaccjac
	constvelmsc
	constvelmscjac
	cvmeasmsc
	cvmeasmscjac
	cameas
	cameasjac
	constturn
	constturnjac
	ctmeas
	ctmeasjac
	getTrackPositions
	getTrackVelocities
	initcaabf
	initcvabf
	initcackf
	initcapf
	initcvckf
	initcvpf
	initctckf
	initctpf
	initcaggiwphd
	initctggiwphd
	initcvggiwphd
	initcagmphd
	initctgmphd
	initcvgmphd
	initctrectgmphd
	ctrectcorners
	switchimm
	initcvmscekf
	initapekf
	initrpekf
	initekfimm
	initcaekf
	initcakf
	initcaukf
	initctekf
	initctukf
	initcvekf
	initcvkf
	initcvukf
	clone
	correct
	correctjpda
	distance
	initialize
	likelihood
	predict
	predict
	residual
	assignauction
	assignjv
	assignkbest
	assignkbestsd
	assignmunkres
	assignsd
	assignTOMHT
	fusecovint
	fusecovunion
	fusexcov
	clusterTrackBranches
	compatibleTrackBranches
	pruneTrackBranches
	triangulateLOS
	radarChannel
	underwaterChannel
	clearData
	emissionsInBody

	Classes
	ahrs10filter
	reset
	predict
	pose
	fusemag
	residualmag
	fusealtimeter
	residualaltimeter
	correct
	stateinfo
	residual
	trackingSensorConfiguration
	pose
	stateinfo
	reset
	predict
	fusemvo
	residualmvo
	fusegps
	correct
	residual
	residualgps
	insfilterErrorState
	stateinfo
	reset
	predict
	pose
	fusemag
	residualmag
	fusegyro
	residualgyro
	fusegps
	fuseaccel
	residualaccel
	correct
	residual
	residualgps
	insfilterAsync
	correct
	fusegps
	fusemag
	residualmag
	pose
	predict
	reset
	stateinfo
	residual
	residualgps
	insfilterMARG
	correct
	fusegps
	residual
	residualgps
	fuserSourceConfiguration
	ggiwphd
	append
	clone
	correct
	correctUndetected
	extractState
	labeledDensity
	likelihood
	merge
	predict
	prune
	scale
	gmphd
	pose
	predict
	reset
	stateinfo
	insfilterNonholonomic
	accelparams
	gyroparams
	magparams
	objectDetection
	objectTrack
	toStruct
	quaternion
	trackingScenario
	Platform
	Platform.emit
	Platform.detect
	Platform.targetPoses
	Platform.pose
	trackingScenario.platform
	trackingScenario.advance
	detect
	emit
	trackingScenario.platformPoses
	trackingScenario.platformProfiles
	propagate
	trackingScenario.record
	trackingScenario.restart
	trackingScenarioRecording
	read
	coverageConfig
	rcsSignature
	rcsSignature.value
	tsSignature
	tsSignature.value
	irSignature
	irSignature.value
	trackingKF
	trackingEKF
	trackingUKF
	radarEmission
	sonarEmission
	theaterPlot
	clearPlotterData
	coveragePlotter
	plotCoverage
	detectionPlotter
	findPlotter
	orientationPlotter
	platformPlotter
	plotDetection
	plotOrientation
	plotPlatform
	plotTrack
	plotTrajectory
	trackPlotter
	trajectoryPlotter
	trackingABF
	trackingCKF
	trackingGSF
	trackingIMM
	trackingMSCEKF
	trackingPF
	trackScoreLogic
	mergeScores
	sync
	trackHistoryLogic
	checkConfirmation
	checkDeletion
	clone
	hit
	init
	miss
	output
	reset

	System Objects
	altimeterSensor
	ahrsfilter
	complementaryFilter
	imufilter
	insSensor
	gpsSensor
	radarSensor
	irSensor
	sonarSensor
	radarEmitter
	sonarEmitter
	kinematicTrajectory
	waypointTrajectory
	waypointInfo
	lookupPose
	monostaticRadarSensor
	trackAssignmentMetrics
	currentAssignment
	trackMetricsTable
	truthMetricsTable
	trackErrorMetrics
	cumulativeTrackMetrics
	cumulativeTruthMetrics
	currentTrackMetrics
	currentTruthMetrics
	trackFuser
	deleteTrack
	initializeTrack
	trackOSPAMetric
	trackGOSPAMetric
	trackerTOMHT
	deleteBranch
	initializeBranch
	getTrackFilterProperties
	setTrackFilterProperties
	getBranches
	predictTracksToTime
	trackerGNN
	trackerPHD
	initializeTrack
	trackerJPDA
	poseTrajectory
	imuSensor
	loadparams
	trackBranchHistory
	getHistory
	staticDetectionFuser
	timescope
	generateScript
	hide
	isVisible
	show

	Blocks
	AHRS
	Global Nearest Neighbor Multi Object Tracker
	IMU
	Joint Probabilistic Data Association Multi Object Tracker
	Track-Oriented Multi-Hypothesis Tracker

	Apps
	Tracking Scenario Designer

